APPENDIX H

Preliminary Geotechnical Investigation

PRELIMINARY GEOTECHNICAL INVESTIGATION THE HAVILLAND FIELD DEVELOPMENT REVISION 01

Wheatland County, Alberta

Submitted to: Patrick Wetter B & A Planning Group 600, 215 9th Avenue SW Calgary, Alberta. T2P 1K3

E2K FILE #: 2019-4683 Date: February 23rd, 2023

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION	1
3.0	METHOD OF INVESTIGATION	3
3.1	INVESTIGATION SUMMARY	.3
3.2	LABORATORY TESTING	.4
4.0	SUBSURFACE SOIL CONDITIONS	4
4.1	SOIL STRATIGRAPHY OVERVIEW	.4
4.2	TOPSOIL	.5
4.3	SILT	.5
4.4	SILTY CLAY (TILL)	.5
4.5	SAND	.6
4.6	BEDROCK	.6
4.7	FROST DEPTH PREDICTION	.6
4.8	GROUNDWATER	.6
5.0	RECOMMENDATIONS AND CONSIDERATIONS	7
5.1	GENERAL DISCUSSION	.8
5.2	SITE PREPARATION	.8
5.3	SITE GRADING AND DRAINAGE	.8
5.4	TEMPORARY EXCAVATIONS	.9
5.5	FILL AND COMPACTION	.9
5.6	UNDERGROUND SERVICES	10
5.7	FOUNDATION SYSTEMS	11
5.	7.1 Foundation Geotechnical Resistance Factors	11
5.	7.2 Strip and Spread Footings	11
5.	7.3 Cast-in-Placed Concrete Piles	
5.	7.4 Laterally Loaded Piles (Modulus of Horizontal Subgrade Reaction)	
5.8	FLOOR SLAB-ON-GRADE	
5.9	CONCRETE TYPE	
5.10		
6.0	LATERAL EARTH PRESSURE ON WALL 1	7
7.0	SEISMIC CLASSIFICATION OF THE SITE 1	8
8.0	PAVEMENT DESIGN AND CONSTRUCTION 1	
9.0	GEOTECHNICAL REVIEW	20
10.0	LIMITATIONS	20
11.0	CLOSURE	!1

TABLE OF CONTENTS

Table 1 : Boreholes Coordinates and Elevations	3
Table 2: Groundwater Elevations Monitored on-site on November 18, 2019.	7
Table 3: Minimum Cover for Underground Services	10
Table 4: Geotechnical Resistance Factors for Foundations	11
Table 5: Typical Ultimate Limit State Design Parameters for Pile Foundation	13
Table 6: SLS Modulus of Subgrade	14
Table 7: Sulphate Content Testing Results	16
Table 8: Soil Resistivity Results	16
Table 9: Typical Soil Resistivity Range for Different Degrees of Corrosion	17
Table 10: Preliminary Pavement Structures	19
Table 11: Preliminary Pavement Structures	19

_____1

1.0 INTRODUCTION

As requested, E2K Engineering Ltd. (E2K) has completed a preliminary geotechnical investigation in support of a proposed industrial development to be located within the West Highway 1 Area Structure Plan. The subject property consists of three zones with approximately rectangular shapes, located approximately forty (40) kilometres east of the City of Calgary, along the south and the north sides of TransCanada Highway 1 in Wheatland County, Alberta.

Details of the development plans, including layout and final grades, were not available at the time of this study. Accordingly, the comments and recommendations provided in the report are general in nature and suitable only for preliminary design and planning purposes. When design details are available, supplementary investigation and analysis will be required to finalize the geotechnical recommendations.

Based on the information provided by B&A Planning Group, it is understood that this property has been identified by the authorities of Wheatland County, Alberta, as a corridor for industrial development.

The preliminary geotechnical investigation completed on the property consisted of drilling twenty (20) boreholes, installing PVC standpipes, and conducting soil sampling and laboratory testing. The objective of the preliminary geotechnical investigation was to obtain subsurface soil and groundwater information to provide recommendations about the geotechnical aspects of the proposed development. This report provides recommendations regarding site preparation, shallow and deep foundation options, frost protection, groundwater considerations, temporary excavation stability, concrete type, and other factors that may be relevant.

2.0 SITE DESCRIPTION

The Project Site is adjacent to an existing industrial development. The site contains numerous wetlands and existing oil and gas infrastructure, including oil wells and pipelines.

According to available geodetical information, the approximate project area is approximately 1,500 Acres (610 Ha), divided into three separate zones (see Figure 1):

• Zone 1:

Located approximately 800 m south of TransCanada Highway 1, is delimited by Range Road 264 to the east, Range Road 265 to the west, a vacant land adjacent to Highway 1 to the north and Township Road 240 to the south.

The zone has an approximately rectangular shape with an approximate area of 940 Acres (380 Ha) and a very flat surface sloping from east to west with an approximate average slope of 0.12%. The zone has a depression running from the northeast to the southwest corner.

This zone includes six parcels with the following legal description:

- o 4-26-24-8 SW 0012 901 294
- o 4-26-24-8 SE 0028 909 794
- o 4-26-24-5 NW 0021 883 971
- o 4-26-24-5 NE 0013 787 866
- o 4-26-24-5 SW 0021 777 891
- o 4-26-24-5 SE 0021 777 909

• Zone 2:

Located next to TransCanada Highway 1, Zone 2 is delimited by Range Road 264 to the east, Range Road 265 to the west, a vacant land to the north and Highway 1 to the south. The zone has an approximately rectangular shape and a very flat surface sloping to a depression located on the north border of the area with an approximate average slope of 0.7%. The approximate area of the zone is 320 Acres (130 Ha).

This zone includes two parcels with the following legal description:

- o 4-26-24-17 SW 0021 843 693
- o 4-26-24-17 SE 0021 843 701

• Zone 3:

Located approximately 220 meters south of the TransCanada Highway 1, Zone 3 is delimited by Range Road 263 to the east, Range Road 264 to the west and a vacant land to the north and south. The zone has an irregular shape with an approximate area of 240 Acres (100 Ha) and grades sloping from the east border to a depression found at the west border with an average slope of 1.7%.

This zone includes two parcels with the following legal description:

- o 4-26-24-9 NW 0021 809 728
- o 4-26-24-9 SE 0021 809 736

At the time of this investigation, the Project Site was mostly covered by grassland vegetation, which is a sign of an arid to semi-arid climate.

3.0 METHOD OF INVESTIGATION

3.1 INVESTIGATION SUMMARY

The geotechnical investigation was conducted between October 15, 2019, and October 17, 2019, utilizing a track-mounted auger drill rig using solid stem augers. The rig was owned and operated by All Service Drilling Ltd. in Airdrie, AB. Twelve (12) boreholes were drilled within the footprint of the Zone 1, four (4) boreholes were drilled within the footprint of Zone 2, and four (4) boreholes were drilled within the footprint of Zone 3.

The boreholes were drilled to a maximum depth of 9.1 meters below the ground surface or auger refusal. Standard Penetration Tests (SPT's) were performed, and split spoon samples were collected at selected intervals during the investigation. Approximate borehole locations are presented in Figure 2 and approximate coordinates and elevations of these boreholes are provided in Table 1.

Borehole Number	Easting (m)	Northing (m)	Elevation (masl)
BH-01	317,076.83	5,656,196.87	1,006.41
BH-02	317,094.99	5,655,603.67	1,106.39
BH-03	317,104.80	5,654,990.40	1,007.52
BH-04	317,117.74	5,654,300.43	1,005.54
BH-05	317,902.95	5,656,366.38	1,007.37
BH-06	317,864.37	5,655,810.03	1,005.67
BH-07	317,816.19	5,655,293.77	1,005.56
BH-08	317,777.52	5,654,491.97	1,005.39
BH-09	318,548.25	5,656,128.38	1,006.00
BH-10	318,578.19	5,656,127.32	1,003.98
BH-11	318,292.45	5,654,867.34	1,002.71
BH-12	318,439.58	5,654,296.34	1,002.76
BH-13	317,228.74	5,657,913.83	1,107.27
BH-14	317,229.89	5,657,478.64	1,011.86
BH-15	318,409.76	5,657,876.71	1,105.57
BH-16	318,328.16	5,657,444.55	1,105.27
BH-17	318,970.18	5,656,940.32	1,002.03
BH-18	318,959.31	5,656,560.22	1,002.25
BH-19	319,683.74	5,656,870.94	992.86
BH-20	320,248.11	5,656,463.66	991.17

Table 1 : Boreholes Coordinates and Elevations

Coordinate System: UTM Zone 12

The subsurface soil conditions were continuously logged using the Modified Unified Soil Classification System which includes soil types along with descriptions. Depths at which different soil types were encountered along with their color and moisture content were also logged. Disturbed soil samples were acquired at regular intervals from the auger and split spoon sampler.

Following drilling, 25 mm PVC standpipes were installed in all boreholes to the completion depths. The standpipes were slotted from the bottom up to a three meters length of the standpipe to allow for groundwater to infiltrate the pipes and allow for measurements. The boreholes were then backfilled with sand, drill cuttings, and sealed near the surface with bentonite. Detailed logs of the boreholes can be found in the Attachments of this report.

3.2 LABORATORY TESTING

Laboratory testing included determination of the natural moisture contents of all soil samples recovered during the investigation. Also, grain size distribution analyses, Atterberg limits, and sulphate tests were performed on select samples recovered during the investigation.

The results of the laboratory testing program are summarized on the borehole logs in the Attachments of this report and are discussed when relevant throughout the report.

4.0 SUBSURFACE SOIL CONDITIONS

The details of the soil and groundwater conditions encountered at the boreholes are presented in borehole logs in the Attachments. The following is a summary of the soil conditions encountered in these boreholes.

It should be noted that geological conditions are innately variable. The subsurface stratigraphy is available only at the borehole locations. In order to develop recommendations from this information, it is necessary to make some assumptions concerning conditions other than at borehole locations. Adequate field reviews should be undertaken during further development of this project to confirm that these assumptions are reasonable.

4.1 SOIL STRATIGRAPHY OVERVIEW

The soil stratigraphy at the borehole locations generally consisted of topsoil overlying interbedded layers of native non-plastic silt, silty clay, and sand, overlying bedrock.

4.2 TOPSOIL

Topsoil was encountered at the surface with thicknesses ranging from 150 to 300 mm. The topsoil generally was generally low plastic and consisted of silt, trace of clay, containing some organics.

4.3 SILT

Deposits of silt were encountered underneath topsoil in all the boreholes except Borehole BH-01, BH-05, BH-12, BH-16, BH-19, and BH-20, and extended to depths ranging between 0.9 m and 3.0 m below the existing ground surface(mbgs). The silt was generally described as non-plastic, trace to some sand, and a trace of clay.

Deposits of silt and sand were encountered below the clay layer in Boreholes BH-13, BH-14, BH-15, and BH-16 and extended to depths ranging from 5.8 m to 7.6 mbgs. The silt was loose to compact and brown. Moisture contents of the silt ranged from 8% to 15%.

4.4 SILTY CLAY (TILL)

Deposits of silty clay were encountered below the topsoil and below the silt in all the boreholes except Borehole BH-20, where the clay till was encountered below a sand layer, and BH-01, BH-05, BH-12, BH-16, BH-19, and BH-20 where this silty clay layer was found underneath the topsoil. This clay till extended to depths ranging from 1.8 m to 9.2 mbgs. The clay was described as silty, some sand, trace of gravel and brown in colour.

SPT testing, together with pocket penetrometer measurements on auger samples, were conducted within the silty clay deposit. The standard penetration test performed within this silty clay resulted in N values ranging between 7 and 38 for 300 mm of penetration. This is indicative of a firm to hard consistency. The undrained shear strength, as determined by the pocket penetrometer varies from 25 kPa to 225 kPa.

The results of the Atterberg Limit tests conducted on the clay indicated a Liquid Limit ranging from 33 to 63 percent, confirming medium to high plasticity. Corresponding Plastic Limits and Plastic Indexes ranged between 12 to 24 percent and 20 to 39 percent, respectively.

Moisture content within the samples from the clay resulted in values ranging from 11.0 percent to 28.5 percent.

4.5 SAND

Deposits of sand were encountered below the topsoil in Borehole BH-20 and below the silty clay in Boreholes BH-14, BH-15, and BH-19. The sand extended to depths ranging from 2.3 m to 7.6 mbgs. The sand layer was described as silty, trace of clay, trace of gravel, and brown. Moisture contents from within the sand layer varied between 8.2% and 20.4%. SPT blow counts within the sand layer varied between 9 and more than 100 blows for 300 mm, indicating a compact to very dense relative density.

4.6 BEDROCK

Bedrock was encountered below the silty clay in all the boreholes except Boreholes BH-05 and BH-13, where the bedrock was encountered below the silt layer, and BH-14 and BH-15 where the bedrock was encountered below the sand layer. All the boreholes were terminated on auger refusal or bedrock encountered. The bedrock was generally described as siltstone, sandstone, or mudstone, extremely weak to very weak, highly weathered, and brown to grey.

4.7 FROST DEPTH PREDICTION

Protection against the effects of frost action will likely be a concern at this site due to the inherent frost susceptibility of the near-surface soil. The design frost penetration depth can be estimated based on the thermal conductivity method outlined in Section 13 of the Canadian Foundation Engineering Manual (CFEM).

For preliminary analysis purposes, an average of the values for the upper portion of the soils encountered in the site investigation was assumed. Based on the encountered subsoils along with using an average moisture content of 13.1% in the upper silt and silty clay deposits, and a long term (30 year) mean air freezing index of 995°C-days obtained from Figure 13.6 of the Canadian Foundation Engineering Manual (2006), the frost depth for this site is anticipated to be 2.2 mbgs.

4.8 GROUNDWATER

Standpipes were installed in all the boreholes. Upon drilling completion, groundwater was only encountered in Borehole BH-01 at 2.7 mbgs and Borehole BH-10 at 6.0 mbgs. Groundwater levels were also monitored on-site on November 18, 2019, with the results shown in Table 2.

The relative high groundwater elevations found in the area during the final monitoring could be the result of the accumulation of rainwater perched on relatively impermeable strata of clay and bedrock. It should be noted that the groundwater table varies with seasonal conditions including precipitation, site drainage conditions, and local hydrogeology. Fluctuations in the groundwater levels should be anticipated.

Borehole	Ground Water	Borehole	Ground Water
Number	Depth (mbgs.)	Number	Depth (mbgs.)
BH-01	1.85	BH-11	1.85
BH-02	4.75	BH-12	2.75
BH-03	4.30	BH-13	3.45
BH-04	2.60	BH-14	5.60
BH-05	3.80	BH-15	3.70
BH-06	5.30	BH-16	0.75
BH-07	4.60	BH-17	7.70
BH-08	1.05	BH-18	5.45
BH-09	5.05	BH-19	1.50
BH-10	3.60	BH-20	2.80

Table 2: Groundwater Elevations Monitored on-site on November 18, 2019.

Groundwater levels in Alberta typically fluctuate up to 1.0 m seasonally (approximately), with a maximum water level occurring during spring and summer and a minimum in winter.

5.0 RECOMMENDATIONS AND CONSIDERATIONS

Preliminary design and construction recommendations for geotechnical aspects of the project are presented in the subsection below. The recommendations below offer varying options intended to aid in the development of the project concepts and specifications.

The recommendations are provided on the understanding and condition that E2K will be retained to review the relevant aspects of the final foundation design (drawings and specification) and will be retained to conduct such field reviews as are necessary to ensure compliance with geotechnical aspects of the Alberta Building Code, this report and the final plans and specifications.

5.1 GENERAL DISCUSSION

The soils are relatively competent and will provide an adequate bearing for industrial and other infrastructure. A shallow foundation system consisting of spread and strip footings founded on native undisturbed silty clay or silt may be considered suitable for the proposed development. Deep foundation systems bearing on bedrock may be considered suitable if a higher bearing capacity is required, given the presence of shallow bedrock in the project site.

Floor slabs-on-grade are considered feasible provided that certain precautions are undertaken as discussed below in the relevant subsection.

5.2 SITE PREPARATION

All topsoil and weeds including any debris should be removed within the proposed development areas to prevent post-construction settlement and production of methane. Topsoil may be stockpiled and reused for non-structural areas only, such as landscaping. Reusing this material as backfill soil for subgrade support is not recommended.

Sub-excavation should extend beyond the perimeter of the proposed structures a minimum distance at least equal to the depth from the bearing grades to the surface of the suitable subgrade.

It is recommended that the exposed subgrade in areas requiring structural subgrade support be proof rolled to identify any soft or loose areas. Where soft or loose areas are identified, specific remediation measures for the encountered conditions should be recommended by the geotechnical engineer. The exposed subgrade should be reviewed and approved by the geotechnical engineer before proceeding with construction activities.

5.3 SITE GRADING AND DRAINAGE

It is anticipated that grading will be required at this site. The finished grade in the vicinity of the proposed buildings, including paved areas and sidewalks, should be sloped away from the proposed structures. The upper 0.3 m of backfill around the structures should consist of compacted clay, concrete, or asphalt to function as an impermeable barrier against the ingress of surface runoff. Finished grades should be sloped away from the structures at a minimum slope of 2%.

Site grading should be provided in paved areas both during and following constructions, such that water is rapidly shed from the surface of the pavement to a positive drainage system.

Downspouts should be positively directed away from buildings or if the local regulation permit, directed into the storm drainage system. The downspout should not be directed into foundation perimeter drains.

5.4 TEMPORARY EXCAVATIONS

Excavation safety is the responsibility of the contractor. It is anticipated that excavation will be required for the foundation footings and deep utilities.

Temporary excavations are to be sloped from the bottom of the excavation at an angle not steeper than 45 degrees, or 1H:1V. Where site constraints make it not possible to comply with the above requirements, and where the excavation is near to adjacent buildings or other settlement sensitive structures, the underpinning of the adjacent buildings and shoring would be required.

The degree of stability of excavation walls typically decreases with time. Therefore, it is recommended that excavation work is planned such that the length of time the excavation remains open is minimized. If signs of instability such as sloughing, seepage or tension cracks are observed, the excavation would need to be cut back to flatter slopes or a shoring system implemented. Where minor seepage is encountered, it may be sufficient to grade the excavation to a low point and pump the water out of the area.

Stockpiles of materials and excavated soils should be placed away from the slope crest by a distance equal to the depth of the excavation. Similarly, wheel loads should be kept back at least 1 m from the crest of the excavation. The applicable sections of the Occupational Health and Safety Act must be followed.

5.5 FILL AND COMPACTION

Acceptable fill materials would include imported well-graded crushed gravels with a maximum particle size of 25 mm to 80 mm containing less than 10% fines. Alternatively, onsite low plastic clay would be suitable although the settlement would be larger and frost susceptibility higher.

Fill materials must not contain organics, frozen soils, construction debris, concrete, boulders larger than two-thirds of the lift thickness, or any other deleterious materials. Fill must not be placed on the frozen ground, or any subgrade surface not approved by the geotechnical engineer. Where clay fill is used, clods or lumps should be broken up as much as possible before placement. Where clay backfill is used, sheepsfoot rollers are recommended. Where gravel backfill is used, smooth drum rollers are recommended.

It is recommended to place and compact any fill to a minimum of 98% of the Standard Proctor Maximum Dry Density (SPMDD), in uniform lifts not exceeding 200 mm loose thickness. Compaction requirements must be achieved for the full thickness and extents of each lift. Moisture conditioning to within 2% of the optimum moisture content is required. Uniformity of compaction and uniformity of backfill materials will be critical to minimizing differential settlements.

For gravel fills placed and compacted to 98% SPMDD, settlement of up to 0.5% of the lift thickness is anticipated. For clays compacted to 98% SPMDD, settlement of up to 1.0% of the lift thickness is anticipated. The estimation of this settlement is based only on the self-weight of the fill. It is anticipated that the majority of the settlement would occur during the first freeze-thaw cycle.

5.6 UNDERGROUND SERVICES

The burial depths for water lines and sewer lines should be established based on Wheatland County Design and Construction Standarads (2016), as shown in Table 3.

Service	Clay and Silt Backfill (m)	Gravel Backfill (m)
Water Mains	3.0	3.3
Sanitary Sewer Mains	2.5	2.8

Table 3: Minimum Cover for Underground Services

Insulation may be required for any main that is installed with less than the minimum cover described above. This insulation should be designed by a qualified professional to prevent the pipes from freezing.

The use of trench boxes may be required during utility installation. All these services shall be installed as per Wheatland County minimum requirements.

Pipe support using conventional bedding methods is anticipated to be suitable for this site. The grain size distribution of the proposed bedding materials should be reviewed by the geotechnical engineer and checked for filter compatibility with the native soils. A non-woven geotextile fabric may be required to separate bedding materials from native soils.

5.7 FOUNDATION SYSTEMS

Details of the development plans, including layout and final grades, were not available at the time of this study. Based on our evaluation of the encountered soils, shallow and deep foundations are considered suitable at the project site. Recommendations for shallow and deep foundations are provided below.

5.7.1 Foundation Geotechnical Resistance Factors

The geotechnical resistance factors required to calculate the factored foundation resistance to axial and horizontal loads in accordance with the 2019 National Building Code of Canada (NBCC – Alberta Edition) are provided in Table 4.

Case	Analysis Method	Resistance Factor, φ
Deep Foundations Axial Compression	Semi-empirical analysis using laboratory and in-situ test data	0.4
Deep Foundations Axial Compression	Dynamic load test results	0.5
Deep Foundations Axial Compression	Static load test results	0.6
Deep Foundations Axial Tension	Semi-empirical analysis using laboratory and in-situ test data	0.3
Deep Foundations Axial Tension	Static load test results	0.4
Horizontal Load Resistance	All	
Shallow footings	Semi-empirical analysis using laboratory and in-situ test data	0.5

Table 4: Geotechnical Resistance Factors for Foundations

5.7.2 Strip and Spread Footings

Based on the investigation completed by E2K, strip and spread footings founded at a depth of 1.5 m below grade at the project site would be suitable for the proposed structures.

For protection against frost action, perimeter footings in the heated area should be extended to provide at least 1.5 m of soil cover. Isolated footings or footings in the unheated portion of the building should have at least 2.2 m of soil cover unless provided with equivalent insulation. It should be noted that where under slab-on-grade insulation is utilized to support an in-floor heating system, the structure should be treated as unheated and have the footings founded below the frost line.

The minimum factored geotechnical bearing resistance at the Ultimate Limit State (ULS) for footings based at a depth of 1.5 m below the existing ground surface on native silty clay (Till), silt or sand is generally considered to be 100 kPa and the minimum factored geotechnical bearing resistance at the Ultimate Limit State (ULS) for footings based at a depth of 3.0 m below the existing ground surface on native silty clay (Till), silt or sand is generally considered to be 150 kPa.

Higher bearing capacities can be expected at increasing depths below the existing ground surface. It should be noted that the Serviceability Limit States (SLS) values shall be estimated based on a maximum total settlement of 25 mm and 10 mm differential settlement for the footings ranging from 0.6 to 1.5 m.

It is recommended that provision should be made for drainage (weeping tile) around the foundation perimeter to the depth of maximum frost penetration. The weeping tile is to be connected to a storm sewer system if permitted by the County. It should be installed with a positive slope away from foundation elements or pumped to a stormwater drain in accordance with the current Alberta Building Code requirements.

Where it is necessary to place footings at different levels, the foundation elevations between footings should be stepped in a maximum of 600 mm steps at a maximum inclination of 10 horizontal to 7 vertical (10H:7V). The lower footing must be installed first to help minimize the risk of undermining the upper footing.

A consistent bearing surface is important as different soils have different capacities to resist loads and may consolidate and settle at different rates, which can cause significant structural deformation. Once foundation grade has been excavated, a qualified geotechnical engineer should be present to inspect the subgrade soils to confirm the soil conditions and that a consistent bearing surface has been prepared.

Additionally, the excavation for foundations should not be exposed to rain, snow, freezing temperatures and ponded water before footing construction. Insulated tarps should be utilized on the bearing surface if freezing temperatures are anticipated before concrete placement. Heating and hoarding of the bearing surface may be required should sustained temperatures below zero be encountered. Groundwater was not expected to adversely affect the bearing surfaces.

Although not anticipated, foundation footings can also be placed on engineered fill provided a geotechnical engineer inspects the soil conditions. The fill material should consist of approved granular material and should be compacted to 98% SPMDD with optimum moisture content within 2% of optimum value.

5.7.3 Cast-in-Placed Concrete Piles

Piles should be designed to support the statically structural loading by the unfactored geotechnical shaft resistance at Ultimate Limit State (ULS) multiplied by a corresponding Geotechnical Resistance Factor (Φ) in accordance with the current Alberta Building Code requirements.

Cast-in-place concrete piles founded in very stiff to hard silty clay or bedrock may be predesigned to resist axial compressive loads and lateral loads by a combination of the unfactored typical shaft and base resistances provided in Table 5.

Type of Material	Ultimate Shaft Resistance (kPa)	Ultimate Base Resistance (kPa)
Silt or Clay Till (0 m-2.2m)	-	-
Clay Till or Silt (below 2.2 m to bedrock)	60	600 @ 6.0 mbgs and below
Bedrock	180	2500

Table 5: Typical Ultimate Limit State Design Parameters for Pile Foundation

Note: Ultimate Limit State Design Parameters in this Table are unfactored

It should be noted that a Geotechnical Resistance Factor (Φ) of 0.4 is to be applied to the ultimate values of compressive strength as recommended by CFEM (2006). Where uplifting is applied, a Geotechnical Resistance Factor (Φ) of 0.3 should be applied to the pile shaft ultimate value.

Bored piles should have an overall length below the maximum expected frost depth for this property (2.2 mbgs) of not less than 6.0 m and a minimum shaft diameter of 450 mm (18 inches). It is recommended that longitudinal reinforcement in the piles should extend to the full length of the piles to provide adequate lateral and uplift resistance. Base resistance should only be considered in the design where base cleaning can be verified. E2K should review the design, layout, and installation procedure prior to finalization of the foundation plan.

Bored cast-in-place piles should be spaced no closer than 2.5 times the pile diameter (measured center-to-center). Pile group effects should be considered for piles spaced closer than 2.5 times the base diameter.

Groundwater is anticipated to be encountered during pile installation. Considering the potential of encountering groundwater seepage, casing will likely be required during pile installation. Casing should be at hand before drilling starts and used, if necessary, to seal off the water and prevent sloughing of the pile bore.

5.7.4 Laterally Loaded Piles (Modulus of Horizontal Subgrade Reaction)

The resistance of vertical piles to horizontal load should be considered in the foundation design. The resistance of vertical piles to horizontal loads involves soil-structure interaction and is commonly analyzed using computer structural analysis or with lateral pile analysis. Lateral pile performance in compact sandy or silty soil or stiff silty clay till may also be analyzed using a modulus of horizontal subgrade reaction (ks).

The modulus of horizontal subgrade reaction has been estimated based on the soil properties at the site. It is recommended that the design ks value increase linearly with depths. The SLS modulus of horizontal subgrade reaction for a pile of diameter 'D' has been estimated as shown in Table 6:

Type of Material	Ks (MPa/m)
Native Silty Clay, Sand or and Silt Soil below excavation depths (depth >2.2 mbgs)	25/D
Bedrock Surface	40/D
Bedrock at 2 m below bedrock surface. (Increasing linearly from bedrock surface)	80/D

Table 6: SLS Modulus of Subgrade

The spring constant (K) for use in modeling lateral pile capacity may be obtained as follows:

 $K = ks \times D \times L (MN/m)$

Where:

L = Length of the pile segment (m).

5.8 FLOOR SLAB-ON-GRADE

The slab-on-grade construction is considered suitable for the proposed structures. With this type of floor system, construction is to be completed during non-freezing temperatures. Should any topsoil be encountered during the excavations, it should be removed from the slab on grade subgrade soils.

Small vertical movements are inevitable for a grade-supported floor slab due to the consolidation of soft or native soils. Slabs should be allowed to float on the subgrade and be tied into the foundation walls or grade beams only at doorways.

To further reduce the potential effects of vertical slab movement, the following design provisions should be implemented to allow the slab to move independently of the structural components of the building:

- Partitions and non-bearing walls should not be rigidly connected to bearing walls or columns.
- Slabs should be allowed to float on the subgrade and be tied into the foundation walls or grade beams only at doorways.
- Concrete slabs should be reinforced and articulated at regular intervals to provide for controlled cracking.
- The installation of buried water supply lines beneath the floor slab should be avoided wherever possible. Wastewater lines beneath the floor slabs should consist of PVC pressure pipe with welded joints.
- Positive site drainage should be provided away from the proposed building footprint.
- Frost should not be allowed to penetrate beneath the floor slab just prior to, during or after construction.

5.9 CONCRETE TYPE

Sulphate content testing was performed on five (5) samples recovered during the investigation to determine the potential for sulphate attack on any concrete that would come in contact with soils. The location and results of this testing are shown in the following table:

Borehole No.	Depth	Degree of Exposure
BH-01	2.3 m	Severe
BH-05	1.5 m	Very Severe
BH-09	3.1 m	Severe
BH-13	3.1 m	Negligible
BH-17	4.6 m	Negligible

Table 7: Sulphate Content Testing Results

These results show a negligible to very severe potential for sulphate attack for the soils at this property. Therefore, as per CSA guidelines, all concrete placed in contact with the native soil at this site should be made from CSA Type HS (Type 50), HSb, HSL or HSe cement having a minimum compressive strength of 35 MPa at 56 days. The maximum water-cement ratio should be 0.40 and an air entrainment agent is recommended for improved workability and durability.

5.10 RESISTIVITY

In order to estimate the conductivity of the native soils for potential corrosion and to design a cathodic protection system, laboratory resistivity testing was conducted on five (5) soil samples recovered from depths between 1.5 to 3.1 mbgs. The results of the resistivity test are shown in Table 8.

Borehole No.	Depth	Moisture	Dial Reading	Multiplication Factor	Resistivity (Ohms-cm)
BH-01	3.1	15.3	1.45	1000	1450
BH-05	3.1	12.2	3.9	1000	3900
BH-09	3.1	15.4	1.4	1000	1400
BH-13	2.3	14.8	1.4	1000	1400
BH-17	1.5	16.3	1.8	1000	1800

Table 8: Soil Resistivity Results

The results indicated a 'Severe' degree of corrosion potential for the steel elements in all the boreholes, except for BH-05, which corresponds to a "Moderate" degree of corrosion potential on the steel elements, as shown in Table 9 below.

Soil Resistivity (ohm-cm)	Degree of Corrosion
6,000 - 10,000	Very Low
4,500 - 6,000	Low
2,000 - 4,500	Moderate
< 2,000	Severe

Detailed investigation and testing for specific areas of the property could provide different degree of corrosion potential on the steel elements for the different areas of this project site.

6.0 LATERAL EARTH PRESSURE ON WALL

Lateral earth pressures for foundation walls can be calculated using the following equation and the parameters provided below.

$$P_0 = K_0 (\gamma_b \cdot \mathbf{H} + \mathbf{q})$$

Where:

- P_0 = Lateral earth pressure at rest condition where no movements of walls occur at a given depth (kPa).
- K_0 = Coefficient of earth pressure at rest condition; use 0.5 for backfill material assumed to consist of the silty clay and silt native soils found on site.
- γ_b = Bulk unit weight of soil for backfill; for compact fine sand and silts, use 19.5 kN/m3.
- H = Depth below final grade (m).
- q = Any surcharge pressure at ground level.

If drainage is not provided, allowance should be made for hydrostatic pressures. In addition, the hydrostatic pressure due to water should be applied.

$$P_w = \gamma_w \cdot H_w$$

Where:

 $P_w =$ Hydrostatic pressure (kPa). $\gamma_w =$ Unit weight of water (9.8 kN/m3). $H_w =$ Depth below the top of the water table (m).

The above-noted expression assumes native material compacted to approximately 95% of Standard Proctor maximum dry density and the horizontal ground behind the basement wall. If the ground surface slopes upwards away from the wall, design wall pressures should be re-evaluated.

7.0 SEISMIC CLASSIFICATION OF THE SITE

Seismic design for various structures is based on the 2019 National Building Code -Alberta Edition (ABC). The primary objective of the ABC earthquake resistant design requirements is to protect the life and safety of the public in response to strong ground shaking. Structures designed in conformance to the code may undergo structural damage but should not collapse as a result of the ground shaking.

The 2014 ABC seismic design procedures are based on ground motion parameters (e.g., peak ground acceleration, (PGA) and spectral acceleration, Sa values) having a 2% probability of exceedance in 50 years; i.e., the 2,475-year return period earthquake event.

Based on the results of the E2K field investigation, it is appropriate to classify the ground conditions at the subject site as a Class D site, in a conservative way and in accordance with the 2014 ABC This classification must be confirmed for the different developments to be built in this area.

Liquefaction of the clay till and silt material at this site is not of substantial concern in the event of significant seismic activity.

8.0 PAVEMENT DESIGN AND CONSTRUCTION

The locations of the roadways or pavement structures have yet to be finalized and grading is still to be determined. Based on the preliminary information obtained during this Geotechnical Investigation, it is anticipated that the pavement subgrade will comprise near-surface soils (moderately to highly frost susceptible native silt and silty clay, typically very moist).

The minimum depth requirements for asphalt concrete pavement in Wheatland County are included in the Wheatland County Design and Construction Standards Manual (2016).

Based on the information above, the following preliminary pavement structures in Table 10 are recommended

	Minimum	Minimum	Minimum
Deed Classification	Granular Base	Granular Sub-	Asphalt
Road Classification	Course	Base Course	Pavement
	Thickness (mm)	Thickness (mm)	Thickness (mm)
UL (Urban Lane)	50	200	50 Mix B
UIC			60 Mix B
(Urban Industrial	150	250	70 Mix A
Commercial)			
UR	400	000	40 Mix B
(Urban Residential)	100	200	50 Mix A
URC			60 Mix B
(Urban residential	100	200	70 Mix A
Collector)			
UPC	450	050	60 Mix B
(Urban Primary Collector)	150	250	70 Mix A
, <u>,</u> ,			

Table 10: Preliminary Pavement Structures

The minimum asphalt concrete pavement thicknesses for major roads, as specified in the Wheatland County Design and Construction Standards Manual (2016), area shown in Table 11.

Road Classification	Minimum Granular Base Course Thickness (mm)	Minimum Granular Sub- Base Course Thickness (mm)	Minimum Asphalt Pavement Thickness (mm)
Local Road Collector – Service Road	100	50	50 (Min.)
Collector - Industrial / Commercial Road	130	75 (Max.)	70 (Max.)
Major Collector – Road Allowance (Paved Standard)	110	60	50 (Min.)

These recommended pavement designs and should be reviewed when grading/subgrade conditions have been finalized and traffic conditions determined. The pavement structures should be constructed in agreement with applicable Wheatland County and Alberta Transportation Specifications.

9.0 GEOTECHNICAL REVIEW

It is recommended that the final drawings be submitted to E2K for general geotechnical review for compatibility with the site conditions and the recommendations provided in this report.

The comments and recommendations provided in this report are based on the site conditions as revealed in a limited number of boreholes at the time of the investigation. Further, details of the development plans, including layout and final grades were not available at the time of this study.

Accordingly, the comments and recommendations provided in this report are general in nature and suitable only for preliminary design and planning purposes. When design details are available, they should be submitted for review by E2K to verify the applicability of the recommendations presented in this report and may require additional investigation and/or analysis.

10.0 LIMITATIONS

Recommendations made within this report are based on the interpreted findings encountered in twenty (20) boreholes. It should be noted that natural conditions are innately variable. Should conditions other than those reported herein, be identified at any stage of development, E2K should be notified and given the opportunity to re-evaluate current information, if required.

The recommendations presented herein, are subject to an adequate level of inspection during construction. Levels of inspection are generally set out by the 2019 National Building Code - Alberta Edition (ABC) and therefore should be followed to not contravene relevant code requirements.

The ABC Schedules are an integral part of the development process and stipulate that a "Geotechnical Engineer of Record" shall be assigned to each project falling under code jurisdiction. This title shall not infer any overall responsibility for geotechnical aspects of this construction project, without the prior consent of E2K and written clarification of project responsibility.

This report has been prepared with accepted soil and foundation engineering practices for the project specified above in this report. No third party may rely on the information contained in this report without the express written permission of E2K. No other warranty is expressed or implied.

11.0 CLOSURE

We trust the information contained herein meets your present requirements. Should you require further information, please do not hesitate to contact our office.

Yours Truly; E2K Engineering Ltd.

Prepared by: Miguel Ardin, P.Eng. Project Geotechnical Engineer

Attachments:

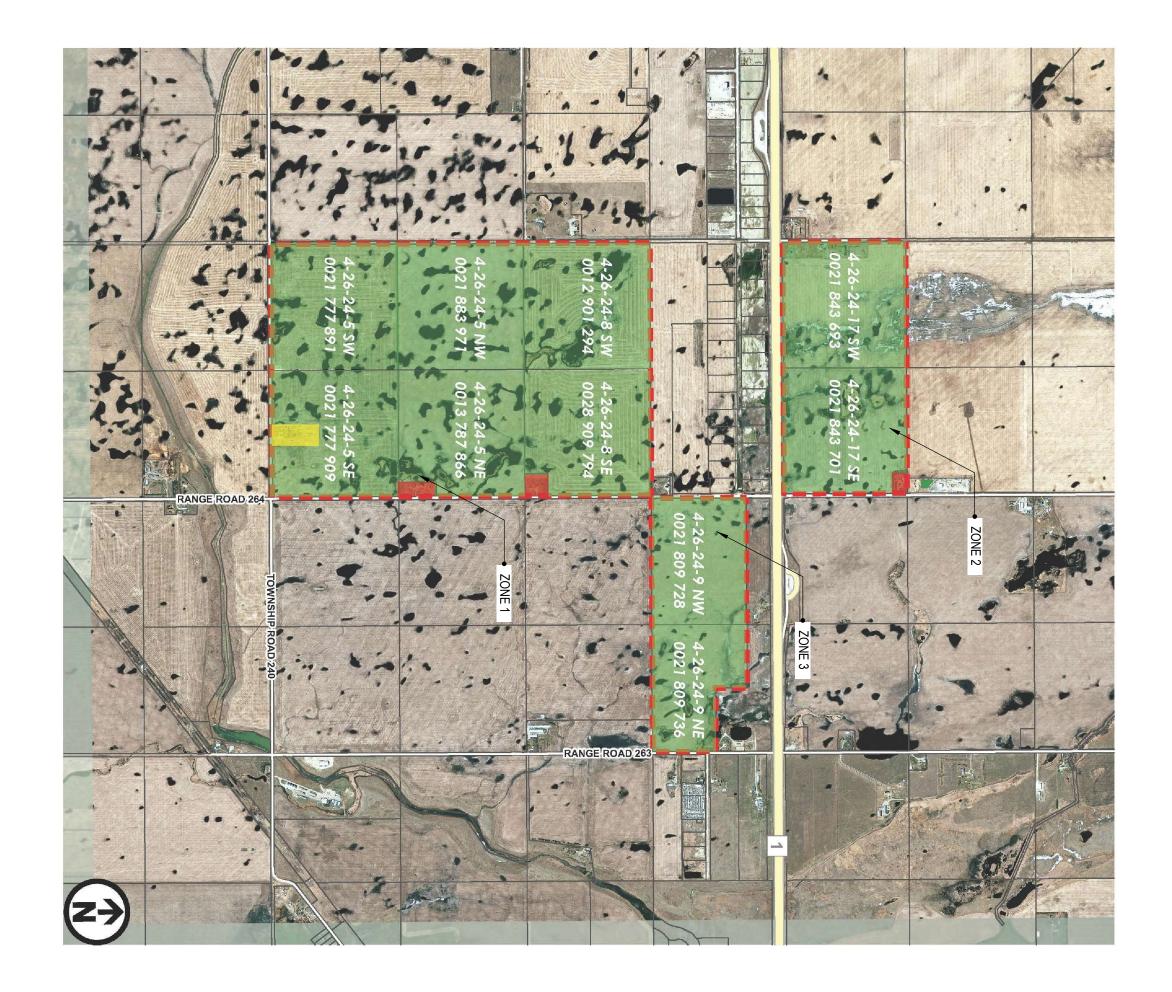
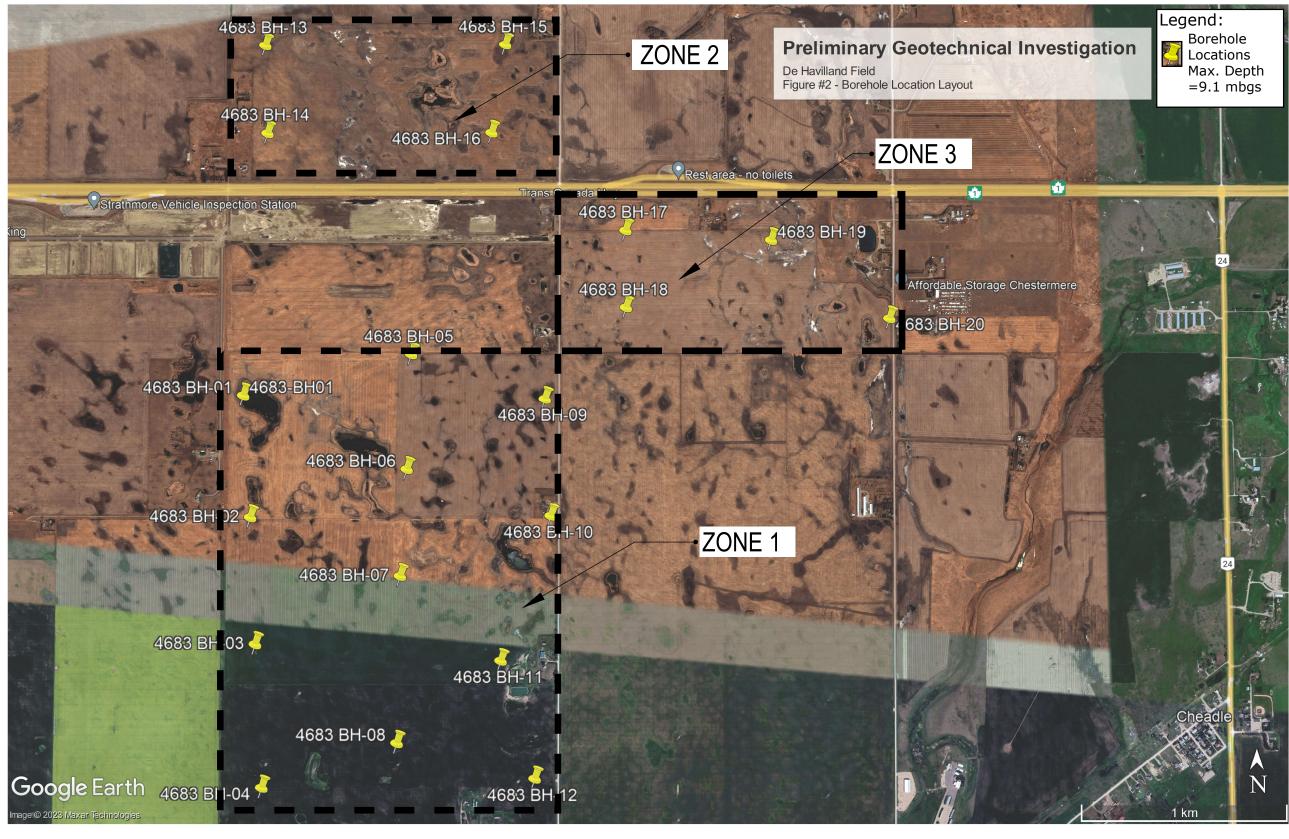

Figure 1: Location Drawing

Figure 2: Borehole Locations Borehole Logs Explanation of Terms and Symbols

Reviewed by: Brad Ellingwood, P.Eng. Senior Geotechnical Engineer

Borehole Location Plan



PRELIMINARY GEOTECHNICAL INVESTIGATION THE HAVILLAND FIELD WHEATLAND COUNTY, ALBERTA

E2K PROJECT#: 2019-4683 FEBRUARY 2023 FIGURE 1 - LOCATION DRAWING

Notes: - See Table 1 for Borehole Coordinates and Elev. - 25 mm Standpipes installed in all Boreholes

E2K PROJECT#: 2019-4683 FEBRUARY 2023 FIGURE 2 - BOREHOLE LOCATIONS

APPENDIX A Borehole Logs

		ME: Wheatland County 2151836 AB Planning Group	IIIC		OCATION: S	-		laer					<u> </u>		IOLE NO: BH-01 CT NO: 2019-4683		
		656196.87			EASTING: 31			301							TION: 1006.41 m		
			COR	E SAM		SPT SAMP	LE	E	GR	AB S/	AMPLE	Ш			DVERY		
	FILL TYP			GRAVI		SLOUGH			GR				-)	
											▲ VANE		-				Τ
(e la	BOL	001	SAMPLE TYPE	2		ATTER	BERG	S LIM	TS	_	100 20	0 30 W COL	00 4	400	_	SLOTTED PIEZOMETER	í i
Depth (m) Water Level	SOIL SYMBOL	SOIL		SAMPLE NO	SPT BLOWS	MOISTI	&		-		20 40) 6	0	80	OTHER	E	
Dep Nate	OIL S	DESCRIPTION	MPI	AMF	/300 mm	PLASTIC	JRE C M.C.		liquid		UNCONF. S			kPa) ◆ 400	DATA	SLO 570	Ĺ
	S		l'S	0		₽ 20	40	60			● 0.5 x POC 100 20	CKETPE	EN. (kP	a) ● 400			-
0		TOPSOIL (150mm)	_				+0 : :	: :			: : : :	:		: :			才
ľ		CLAY (TILL), silty, some sand, medium plastic, firm to stiff, moist,															1
ł		light brown				18:4						÷					
.1			-	S1												H F	
'								: :	: :	\	(÷		: :		A F	1
ſ		heless 4 Free excidence etaining				· · · · · · · · · · · · · · · · · · ·					<u>}</u>					1 F	1
		below 1.5m, oxidation staining, coal inclusions, occasional sand	X	SPT1	2-3-4	27.6					į / E – E				REC = 40%	ØF	1
-2		pockets and seams	\vdash	4		<u>.</u>						•••		•			1
		at 2 3m % Crain Size of S2 Class		S2		19/4								: :	SO4: 0.229%	Ø	1.
F		at 2.3m, % Grain Size of S2, Clay: 16%, Silt: 47%, Sand 37%							••••••		- \	•••••••••••••••••••••••••••••••••••••••		•	(SEVERE)	BE	1
ł		at 2.7m, groundwater encountered														N F	1
3				h	0 10 55	:15.3	• • • • • •		•••••••	•				•	REC = 60%		1
Ê		DEDDOOK eiltetene highly	- Ň	SPT2	6-13-50									: :	Resistivity: 1450 Ohms-cm (SEVERE)	Æ	1
s s		BEDROCK, siltstone, highly weathered, very weak, grey		1													
4		······································	=	S3										X		E	
4								: :	: :			-			×	E	1
Ś																E	1
ŝ			∇		-0										REC = 0%	Æ	1
5			Ŵ	SPT3	50										>> 		
Ś				S4		:13								: :			1.
ŝ								• • • • •	•••••••••••••••••••••••••••••••••••••••					•		Æ	1
Ś		below 5.8m, turning dark grey in						: :	: :			-		: :		Æ	
6		\sim color	4				• • • • •		•••			•••		• • • • •		μΞ	4
		End of Borehole due to Practical															1
		Auger Refusal - 25mm PVC standpipe installed to															
-7		6.1m below grade															
<i>'</i>		 groundwater encountered at 2.7m below grade upon completion 					: :	: :						: :			
		- groundwater measured at 1.85m															
		below grade on November 18, 2019 - hole backfilled with drill cuttings and															
8		sealed with bentonite						· ÷ · · ;	· · · · · · · · ·			•••		•			
								: :									
									••••••••			· · : · · ·					
9										•		••••••••					
10											; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;						
10																	
											: ::::::::::::::::::::::::::::::::::						
							: :							: :			
11											<u></u>	:	: :	00		10	
Sk									BY: H D BY:						MPLETION DEPTH: 6 MPLETION DATE: 10		
ngineering to	rd.								. ום ס.	1117				501	ILLING DATE. 10	Page	

		ME: Wheatland County 2151836 AB Planning Group	/ 1110		LOCATION: DRILL TYPE	-				E NO: BH-02 NO: 2019-4683	3	
		655603.67			EASTING: 3		- 0			N: 1006.39 m		
	E TYPE		CORE	E SAM		SPT SAMPL	.E GRAB		NO RECOVER			
	ILL TYP			GRAV		SLOUGH	GROL		DRILL CUTTIN		D	
								▲ VANE SHEAR	(kPa) ▲			
e a	BOL	001	YPE	g			BERG LIMITS	100 200 30 BLOW COUI			LER I	
Depth (m) Water Level	SYM	SOIL	Ē	Ц	SPT BLOWS	MOISTI		20 40 60	80	OTHER	E	:
Nate	S IL	DESCRIPTION	MP	AMI	/300 mm	PLASTIC	M.C. LIQUID			DATA	SLO	Ι.
-	Š		Ś				40 60 80	• 0.5 x POCKETPE 100 200 30	N. (kPa) ● 0 400		L 0	'
0	33333	TOPSOIL (150mm)										
		SILT, trace sand, trace caly, poorly										10
		brown				10.0						
-1			F	S1								
'											1 A F	1
										-0.00%		1(
Ē		GLAY (TILL), slity, some sand, trace gravel (sub-rounded < 25mm).	X	SPT1	3-4-5			•		20 = 80%		
-2	03 03 03 03 00 <td< td=""></td<>											
ĺ		brown, oxidation staining, coal inclusions, occasional sand pockets		\$22		15.9						
				32				$\mathbf{x}_{\mathbf{x}_{\mathbf{y}}}}}}}}}}$				11
ŧ											ИF]
-3				1				····	R	EC = 95%	K K	
ĺ			X	SPT2	4-4-8							1
			<u> </u>				• • • • • • • • • • • • • • • • • • • •				N F	1 "
				S3		16,6						
-4												
											1 A F	1 1
Ţ		4.6m. turning medium plastic.		1					R	EC = 95%		
-5		becoming very stiff in consistency	X	SPT3	5-7-12							
5			<u> </u>			15.7					1 A F	1
ł			F	S4		•	· · · · · · · · · · · · · · · · · · ·					11
-6											Æ	1
			∇	SPT/	6_10_12				R	EC = 95%		
			\square		r 0-10-12			·····			Æ	
						17.1					Æ	
.7			F	S5				······				
											Æ	1
Ē		7.6m, becoming very stiff to hard		,			• • • • • • • • • • • • • • • • • • • •		R	=C = 25%	E	
			X	SPT5	9-11-16					20 20/0		
-8			\vdash								Æ	1
ł				S6		16.5						
F												1
9 4		BEDROCK, mudstone, highly	+									
f		\weathered, very weak, grey	/]									1
		End of Borehole - 25mm PVC standpipe installed to										1
		8.8m below grade										
10		 no groundwater encountered upon completion 					• • • • • • • • • • • • • • • • • • • •					
		- groundwater measured at 4.75m										
		below grade on November 18, 2019										
11		 hole backfilled with drill cuttings and sealed with bentonite 										
				I	1	• • •	LOGGED BY: HL			TION DEPTH:	9.10 m	<u> </u>
11	-						REVIEWED BY: M	1.0		ETION DATE: 10		

		ME: Wheatland County 2151836 AB Planning Group	-		LOCATION: DRILL TYPE	-		iger								LE NO: BH-03 F NO: 2019-468	3	
NORTH	HING: 56	654990.4		I	EASTING: 3	17104.8		-					E	LEV	ATI	ON: 1007.52 m		
SAMPL	E TYPE	SHELBY TUBE	CORE	E SAM	IPLE 🛛	SPT SAMP	LE	E	GR	AB S	SAMPL	E	∭N(O RE	COV	ERY		
BACKF	FILL TYF	PE BENTONITE	PEA (GRAV	EL 🎹	SLOUGH			GR	OUT	-		D	RILL (CUT	TINGS 🔝 SAN	D	
Depth (m) Water Level	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE NO	SPT BLOWS /300 mm		& JRE C M.C	ONTE	IQUID		100 20 ♦ UNC 100 ● 0.5	VANE SH 200 BLOW 40 ONF. SHI 200 x POCKI	300 COUNT 60 EAR STR 300 ETPEN. (400 80 8. (kPa) 400 (kPa)) ♦	OTHER DATA	SLOTTED	
0	*****	TOPSOIL (200mm)				20	<u>40</u>	<u>60</u>	80		100	200	300	400	· · · ·			+
-1		SILT, trace to some sand, poorly graded, loose, damp to moist, light brown, locally cemented		S1		9												10
-2		CLAY (TILL), silty, some sand, trace gravel (sub-rounded < 15mm), medium plastic, stiff, moist, brown, oxidation staining, coal inclusions, occasional sand pockets and seams		SPT1	4-4-7	16.3					•					REC = 95%		10
-3				SPT2	2-6-8	16.3										REC = 95%		10
⁴ ⊻ 5		below 4.6m, becoming very stiff in consistency at 4.6m, % Grain Size of SPT3, Clay: 16%, Silt: 49%, Sand 35% 5.3m, increase in silt content, low plastic		SPT3	5-10-12	15.6 13.3										REC = 95%		10
6		BEDROCK, siltstone, highly weathered, very weak, brown	X	SPT4	10-16-20	1d5									• • • • • • •	REC = 70%		1(
-8		End of Borehole due to Practical Auger Refusal - 25mm PVC standpipe installed to 7.3m below grade - no groundwater encountered upon								•••••					•••••••••••••••••••••••••••••••••••••••			_ 10
9		 - no groundwater encountered upon completion - groundwater measured at 4.3m below grade - hole backfilled with drill cuttings and sealed with bentonite 																
-10															•••••••••••••••••••••••••••••••••••••••			
11							÷ ÷	: :	: :		: :	: :			:			
	-								BY: H							PLETION DEPTH:		
2K							REV	IEWE	D BY:	M/	4				OMP	PLETION DATE: 1	0/17/19 Page	

		ME: Wheatland County 2151836 . Planning Group			LOCATION: DRILL TYPE	-			BOREHOLE NO: BH-04 PROJECT NO: 2019-46	
NORTH	HING: 5	654300.43		E	EASTING: 3	17117.74	-	E	ELEVATION: 1005.54 m	I
SAMPL	_E TYPE	SHELBY TUBE	CORE	E SAM		SPT SAMPL		للمسلب	IO RECOVERY	
BACKF	FILL TYP		PEA (GRAVI	EL III	SLOUGH	GRO		RILL CUTTINGS 🔀 SA	ND
Depth (m) Water Level	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE NO	SPT BLOWS /300 mm	MOISTU PLASTIC	BERG LIMITS	▲ VANE SHEAR (kf 100 200 300 ■ BLOW COUNT 20 40 60 ● UNCONF. SHEAR STI 100 200 300 ● 0.5 x POCKETPEN. 100 200 300	400 ■ 80 R. (kPa) ◆ DATA	SLOTTED PIEZOMETER
0		TOPSOIL (250mm)				20	<u>40 60 80</u>	<u>100 200 300</u>		
-1		SILT, some sand, trace clay, poorly graded, loose to compact, damp to moist, light brown	/	S1		111				1
2		CLAY (TILL), silty, some sand, trac gravel (sub-rounded < 10mm), medium plastic, very stiff, moist, brown, oxidation staining, coal inclusions, occasional sand pockets	Å	SPT1	5-7-10	14.7 [.] 15.5		•	REC = 50%	1
⊻ 3		and seams		SPT2	5-8-12	T			REC = 95%	1
4				S3		16.5				1
5		below 5.3m, turning grey in colo becoming medium to high plastic,	r,	SPT3 S4	6-10-14	16,2			REC = 90%	1
6		maximum recovered grain size (mr < 30mm		SPT4	5-8-12	16.8			REC = 95%	
·7			X	S5 SPT5	6-9-12				REC = 0%	
9		End of Borehole		S6						
10		 - 25mm PVC standpipe installed to 9.1m below grade - no groundwater encountered upo completion - groundwater measured at 2.6m below grade on November 18, 2019 - hole backfilled with drill cuttings a 	in 9							
11		sealed with bentonite								
0	5		I		1	· · · ·	LOGGED BY: HL		COMPLETION DEPTH	9.10 m
o/k							REVIEWED BY: M	ЛА	COMPLETION DATE:	

	ing: 50 e type		CORE PEA (BAMPLE TYPE	E SAM GRAVI										ELE	VAT	CT NO: 2019-4683		
Depth (m) Water Level	e type Ill typ	E SHELBY TUBE E BENTONITE	PEA (E SAM GRAVI	PLE 🛛	SPT SAMP	LE		CP									
Depth (m) Water Level	ILL TYF		PEA (GRAV					Un On	KAB :	SAMPL	E		NO R	RECO	VERY		
Depth (m) Water Level		SOIL							GR							TTINGS 🔝 SAND		
0			SAMPLI	SAMPLE NO	SPT BLOWS /300 mm		& JRE (M.(G LIM CONT	IITS		▲ 100 20 ♦ UNC 100	x POCK	300 COUN 60 EAR S 300 ETPEN) 40 NT■ TR. (kF) 40 N. (kPa)	00 00 ⊃a) ◆ 00	OTHER DATA	SLOTTED PIEZOMETER	i
	WW	TOPSOIL (200mm)	_			20	40	60 : : :	80		100	200	<u>300</u>) 40	00 : :			╞
-1		CLAY (TILL), silty, some sand, medium plastic, stiff, moist, light brown below 1.5m, high plastic, oxidation staining, coal inclusions, occasional sand pockets and seams, becoming very moist at 1.5m, % Grain Size of SPT1, Clay: 59%, Silt: 26%, Sand 15%		SPT1	3-4-6	17.2 31.1 14	9				•					 SO4: 4.253% (Very SEVERE) SO4: 4.253% (Very SEVERE) REC = 60%		10 10
3 ¥		SILT, trace sand, trace clay, poorly graded, compact, moist, olive borwn below 3m, increase in sand content (being sandy) BEDROCK, siltstone, highly		SPT2	10-17-18	122										REC = 70% Resistivity: 3900 Ohms-cm (Moderate)		10
		below 5.2m, increase in strength (becoming weak), turning grey in color		SPT3	50	12.6						· · · · · · · · · · · · · · · · · · ·			~	REC = 5%		10
6		End of Borehole due to Practical Auger Refusal - 25mm PVC standpipe installed to 5.6m below grade - no groundwater encountered upon competition - groundwater measured at 3.8m below grade on November 18, 2019 - hole backfilled with drill cuttings an														· · ·		10
8		sealed with bentonite																ç
10																		9
				L	1	· · ·	LO	GGED	BY: I	· HL	• •		<u>· ·</u>		 COM	IPLETION DEPTH: 6	.10 m	L
Sk							-		ED BY		A					IPLETION DATE: 10/		

		ME: Wheatland County 2151836 A Planning Group	ND INC		LOCATION: DRILL TYPE			INer					-		HOLE NO: BH-06 ECT NO: 2019-468	3	
		6655810.03			EASTING: 3			iyei							TION: 1005.67 m	0	
	LE TYP		CORI	E SAM		SPT SAMP	LE	F	GR	AB SAN	1PLF	٦			OVERY		
	FILL TY		_	GRAV		SLOUGH			GR							D	
]		Ľ	<u> </u>		▲ VA	NE SHE	AR (kPa) 🔺			
ر د ا	SOIL SYMBOL	001	SAMPLE TYPE	Q		ATTER	RBERG	G LIMI	TS		100	200	300 OUNT	400		SLOTTED	
Depth (m) Water Level	SYN	SOIL	Ē	PLE	SPT BLOWS /300 mm	MOISTL	& IRE C		NT		20	40	60 AR STR.	80	OTHER ▶ DATA	ILIC	
Vat	SOIL	DESCRIPTION	AMF	SAMPLE N	/000 11111	PLASTIC	M.C		IQUID		100	200	300	400		SL(
_			0			20	40	60	80		0.5 x l 100	POCKE1	PEN. (k 300	Pa)● 400			
0	<u>}}}}}</u>	TOPSOIL (150mm) SILT, trace sand, poorly graded,									: :				• • •	88	2
		loose, moist, light brown								· · · · · · ·		•••••••••••••••••••••••••••••••••••••••					(10
				S1											•		10
-1							• • • • • •	•••••••		•	·····	•••••••		••••••	· · · ·		1
															• • •		
		CLAY (TILL), silty, some sand, trace gravel (sub-rounded < 15mm),	' [\/	SPT1	4-4-4	15.3									REC = 90%		10
-2		medium plastic, stiff, moist, brown,	\square	4												Ø	
		oxidation staining, coal inclusions, occasional sand pockets and seams		S2							÷ ;				• • •		
															•		10
-3																Ø	
		below 3m, becoming very stiff in consistency and dark brown in color	. N	SPT2	6-7-11	14									REC = 90%		
			\square	4													1
				S3											•	H	10
-4															· · · ·		1
															•	Ø	
		at 4.6m, 10mm thick sand seams	; _			16.5									REC = 95%		10
-5		encountered	X	SPT3	7-8-14	•										A F	1
· <u> </u>				S4											•	H	1
						· · · · · · · · · · · · · · · · · · ·	•	••••••		•				•••	•		10
															•		
-6						192									REC = 95%		
			X	SPT4	5-8-12	₩ •											
				1											• • •		9
-7		below 6.9m, turning dark olive in color	F	S5													
															· • •	Æ	1
						16.8									REC = 80%		9
-8			X	SPT5	3-13-25	•					÷;				· · · · · ·	F	
		BEDROCK, mudstone, highly		1											• • • •	E	1
		weathered, very weak, bluish grey	F	S6								•••••••••••••••••••••••••••••••••••••••			· · · · ·		g
															•		4 °
-9	XXXX	End of Borehole													• • • • • • • •		-
		- 25mm PVC standpipe installed to													: : : · · ·		
		8.8m below grade - no groundwater encountered upor	ו ו														g
-10		completion - groundwater measured at 5.3m					•	••••••			÷;	•••••••	••••••	•••			
		below grade													•		
		 hole backfilled with drill cuttings an sealed with bentonite 	nd									••••••		•••••			ļ
11								: :	: :						•		
A									BY: H						MPLETION DEPTH:		
engineering to	74						KEV		D BY:	IVIA					MPLETION DATE: 1	0/16/19 Page	

	IING: 50 E TYPE ILL TYF	—	CORE		DRILL TYPE EASTING: 3'			-											
BACKFI	ILL TYF		CORE		_/ (011110. 0	17816.19									ELE	EVA	TION: 1005.56 m		
				E SAN	IPLE	SPT SAMP	LE		\blacksquare	GRAE	3 SAM	PLE			NO F	RECO	OVERY		
Depth (m) Water Level	MBOL		PEA (GRAV		SLOUGH				GROI	JT			\square	DRIL	L CL	JTTINGS 🔝 SAN	D	
	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE NO	SPT BLOWS /300 mm		& URE M.	CON c.		T UID	1 2 + UI 1	20 NCON 00 0.5 x	ANE SH 200 BLOW 40 NF. SHE 200 POCKE	300 COUN 60 EAR S 300 ETPEN) 4 NT ■ (TR. (k) 4 N. (kPa	<u>80</u> (Pa) ◆ (00 a) ●	OTHER DATA	SLOTTED PIEZOMETER	
0	<u>}}}}</u>	TOPSOIL (200mm)				20 : : : :	40	<u>60</u>	80	:		100	200	300) 4 :	100 : :			
-1		SILT, trace sand, poorly graded, loose, damp to moist, light brown		S1															10
-2		CLAY (TILL), silty, some sand, trac gravel (sub-rounded < 20mm), medium plastic, stiff to very stiff, moist, brown, oxidation staining, co inclusions, occasional sand pockets and seams	al A	SPT1	6-6-4	14.5:						•					REC = 70%		10
3		at 3.0m, % Grain Size of SPT2, Clay: 19%, Silt: 50%, Sand 32%		SPT2	2 4-5-10	16.7 Heta							•••••				REC = 80%		1(
⁴ ⊻		below 4.6m, becoming very stiff consistency at 5.3m, transitions into bedrock	Å	SPT3	6-8-12	15											REC = 90%		10
6 TYXX		(bedrock surface) BEDROCK, siltstone, highly weathered, very weak, brown		SPT4	50	15.9											REC = 10%		10
7				S5		13.2													
8		End of Borehole due to Practical Auger Refusal - 25mm PVC standpipe installed to 6.7m below grade - no groundwater encountered upo completion																	ç
9		 groundwater measured at 4.6m below grade on November 18, 2019 hole backfilled with drill cuttings a sealed with bentonite 	9 and																5
10													•••						9
11						: : :			<u>;</u>	:	:	: :	:	: :	:	: :		7.00	
SL							-			': HL BY: N	10				_		MPLETION DEPTH: MPLETION DATE: 1		

	T: B&A I	Planning Group	AB Inc		LOCATION: DRILL TYPE	•		uger										_E NO: BH-08 NO: 2019-4683	}	
		654491.97			EASTING: 3													DN: 1005.39 m		
	E TYPE		CORE			SPT SAMPI	LE			GRAE		/IPLE			NO F					
BACKF	ILL TYP	PE BENTONITE ·	PEA (GRAV		SLOUGH				GROL	JT						UTT	INGS 🔝 SANE)	
Depth (m) Water Level	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE NO	SPT BLOWS /300 mm		&	CON		T DID	•	100 20 UNCO 100	ANE SH 200 BLOW 40 NF. SHI 200 POCKI 200	300 COUI 60 EAR S 300) 4 NT ■ STR. (k) 4 N. (kPa	<u>400</u> 80 ⟨Pa) ◀ 400	•	other Data	SLOTTED	
0		TOPSOIL (200mm)						:		÷		:	200							
-1 👤		SILT, trace to some sand, poorly graded, loose to compact, damp, lig brown, locally cemented	ht	S1		78											· · · · · · · · · · · · · · · · · · ·			10
-2		CLAY (TILL), silty, some sand, trace gravel (sub-rounded < 15mm), medium plastic, firm to stiff, damp to moist, brown, oxidation staining, coa inclusions, occasional sand pockets and seams	, X	SPT1	4-4-4	17.3												REC = 95%		10
-3		below 3m, becoming very stiff in consistency	X	SPT2	2 4-6-11	152							L					REC = 90%		1(
5		BEDROCK, siltstone, highly weathered, very weak, olive grey		SPT3	8-11-14	10.3												REC = 50%		1
6 6				S4				· · · · · · · · · · · · · · · · · · ·												10
7			_	S5		10.6														
8		End of Borehole due to Practical Auger Refusal - 25mm PVC standpipe installed to 7.3m below grade - no groundwater encountered upor completion	1																	ç
9		- groundwater measured at 1.05m below grade on November 18, 2019 - hole backfilled with drill cuttings ar sealed with bentonite	nd														· · · · · · · · · · · · · · · · · · ·			9
10								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								· · · · · ·			
11						: : :			<u>:</u> :	:	:	:		: :	:				7 60	
al	-							gged View			10							LETION DEPTH: 7 LETION DATE: 10		

		ME: Wheatland County 2151836 A Planning Group			LOCATION: DRILL TYPE	-		iger					_		OLE NO: BH-09 CT NO: 2019-4683		
NORTH	HING: 56	656128.38		1	EASTING: 3								EL	EVAT	ΓΙΟΝ: 1006 m		
	E TYPE		CORE			SPT SAMP	LE				AMPLE		Шио				
BACKF	FILL TYP	PE BENTONITE]PEA (GRAV		SLOUGH			GR	TUC						1	
Depth (m) Water Level	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE NO	SPT BLOWS /300 mm		&	ONTE	NT .iquid		100 20 UNCO 100 0.5 >	200 BLOW (40 NF. SHE 200 (POCKE	EAR (kPa) 300 COUNT 60 AR STR. 300 TPEN. (k	400 80 (kPa) ◆ 400 Pa) ●	OTHER DATA	SLOTTED PIEZOMETER	
0	333333	_ TOPSOIL (150mm)	7			20	40	60	80		100	200	300	400			十
-1		SILT, some sand, fine grained, poorly-graded, loose, damp to moist, light brown		S1		8.1											10
-2		CLAY (TILL), silty, some sand, trace gravel (sub-angular < 30mm), medium plastic, stiff, moist, brown, oxidation staining, coal inclusions, occasional sand pockets and seams	Å	SPT1	3-3-4	14.6					•				REC = 70%		10
-3		at 3.0m, % Grain Size of SPT2, Clay: 16%, Silt: 49%, Sand 35%	X	SPT2	4-5-8	154 I O									SO4: 1.639% (SEVERE) Resistivity: 1400 Ohms-cm (SEVERE) SO4: 1.639%		10
4		BEDROCK, siltstone, highly		S3											(SEVERE) ··· Resistivity: 1400 Ohms-cm (SEVERE) REC = 95% REC = 95%		1(
5 👤		weathered, very weak, brown		SPT3 S4	4-8-22	14.6:											1
6 6 22			X	SPT4	50	11.4									REC = 20%		1
7				S5		14.3											
8		End of Borehole due to Practical Auger Refusal - 25mm PVC standpipe installed to 7.3m below grade - no groundwater encountered upon															
9		completion - groundwater measured at 5.05m below grade on November 18, 2019 - hole backfilled with drill cuttings and	d														
10		sealed with bentonite															
11								· · · · · · · · · · · · · · · · · · ·									
0		1			1		LOG	GED	BY: H		<u> </u>			CON	/ IPLETION DEPTH: 7	.60 m	
ok							REV	IEWE	D BY:	MA				CON	IPLETION DATE: 10	/16/19	

		/IE: Wheatland County 2151836 AB Planning Group	-		LOCATION: DRILL TYPE	-		ger					-			LE NO: BH-10 T NO: 2019-468	3	
NORTH	HING: 56	656127.32		E	EASTING: 3	18578.19		-					E	ELE∖	/ATI	ON: 1003.98 m		
SAMPL	E TYPE	SHELBY TUBE	COR	E SAM	PLE	SPT SAMPL	E	E	GR/	AB S/	AMPLE	_	١	NO RE	ECOV	/ERY		
BACKF	ILL TYP	E BENTONITE	PEA	GRAVI	EL 🎹	SLOUGH		[GR	OUT				DRILL	CUT	TINGS 🔝 SANI	D	
Uepth (m) Water Level	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE NO	SPT BLOWS /300 mm	ATTER MOISTL PLASTIC	&	ONTE		-	100 20 • UNCO 100	ANE SHE 200 BLOW (40 NF. SHE 200	300 COUN 60 AR ST 300	400 T ■ 80 TR. (kPa 400) a)◆ D	OTHER DATA	SLOTTED	
0							40	60	80		100	POCKE	300	400				_
0		TOPSOIL (200mm) SILT, some sand, fine-grained, poorly graded, loose, damp to moist, light brown		S1														1
2		CLAY (TILL), silty, some sand, trace gravel (sub-angular < 15mm), medium plastic, stiff, moist, dark brown, oxidation staining, coal inclusions, occasional sand pockets		SPT1	3-3-8	14.9					•					REC = 90%		1
3 _▼_		and seams	X	SPT2	3-4-7	16:										REC = 95%		1
4		below 4.6m, becoming very stiff in consistency		SPT3	5-8-11	186 176										REC = 95%		1
6		 		SPT4	22-23-50	16.4										REC = 30%		
7				S5														
8		End of Borehole due to Practical Auger Refusal - 25mm PVC standpipe installed to 7.6m below grade - groundwater encountered at 6m below grade upon completion																
9		 groundwater encountered at 3.6m below grade on November 18, 2019 hole backfilled with drill cuttings and sealed with bentonite 																
10																-		
11								GFD	BY: H		: :	: : :	:			LETION DEPTH:	 7.60 m	
N	-								D BY:							PLETION DATE: 1		

		ME: Wheatland County 2151836 AB Planning Group			LOCATION: DRILL TYPE					PRC		NO: 2019-468	3	
NORTH	HING: 56	654867.34		E	EASTING: 3					ELE	VATION	N: 1002.71 m		
SAMPL	E TYPE	SHELBY TUBE	CORE	E SAM		SPT SAMPL					RECOVER			
BACKF	ILL TYF		PEA	GRAVI		SLOUGH	G	ROUT	-	~		NGS 🔝 SAN	D	
Depth (m) Water Level	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE NO	SPT BLOWS /300 mm	MOISTU PLASTIC			■ BLOW CO 20 40 ◆ UNCONF. SHEAF 100 200 3 ● 0.5 x POCKETP	000 40 UNT ■ 60 8 3 STR. (kF 600 40 EN. (kPa	00 80 Pa) ◆ 00	other Data	SLOTTED PIEZOMETER	i
0		TOPSOIL (200mm)				20	40 60 80 :::::::::	:	<u>100 200 3</u>	100 41 : :	00			
-1		SILT, some sand, fine-grained, poorly graded, loose, damp to moist, light brown		S1		10,9								10
2		CLAY (TILL), silty, some sand, no gravel, medium plastic, firm to stiff, moist to very moist, brown, oxidation staining, coal inclusions, occasional sand pockets and seams		SPT1 S2	2-3-4	285		1			RI	EC = 60%		10
-3		below 3m, becoming moist in moisture content and stiff to very stiff in consistency at 3m, % Grain Size of SPT2, Clay: 21%, Silt: 45%, Sand 34%	X	SPT2 S3	2 3-8-8	17. 10. 16.5					RI	EC = 90%		10
5		at 4.5m, water encountered BEDROCK, mudstone, highly weathered, very weak, brown		SPT3	6-22-50	124					RI	EC = 60%		
6			X	SPT4	50						RI	EC = 0%		
7		End of Borehole due to Practical		S5		21.7				· · · · · · · · · · · · · · · · · · ·				
8		Auger Refusal - 25mm PVC standpipe installed to 7.3m below grade - no groundwater encountered upon completion												
9		- groundwater measured at 1.05m below grade on November 18, 2019 - hole backfilled with drill cuttings and sealed with bentonite												
10														
11														9
0							LOGGED BY:					ETION DEPTH:		
OK							REVIEWED BY	Y: MA	١		COMPLE	ETION DATE: 1	0/16/19	

		ME: Wheatland County 2151836 AB Planning Group			LOCATION: DRILL TYPE	•		iger						-			NO: BH-12 IO: 2019-468	3	
		654296.34			EASTING: 3			<u>J</u> -									: 1002.76 m	-	
	E TYPE		CORE	E SAM		SPT SAMPI	LE	E	GR/	AB S	SAMPL	E				COVER			
	ILL TYP		PEA (GRAV		SLOUGH			GR	OUT				_		UTTIN		D	
Depth (m) Water Level	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE NO	SPT BLOWS /300 mm	ATTER MOISTU PLASTIC	&	ONTE			100 20 ♦ UNC 100	BLO 40 ONF. S 200) 3 W COI () () () () () () () () () () () () () () (00 UNT 50 STR. 00	400 80 (kPa) • 400		OTHER DATA	SLOTTED	
0 8	****	TOPSOIL (300mm)				20	40	60	80		100	5 x POC 200) <u>3</u>		400 400				_
-1		CLAY (TILL), silty, some sand, trace gravel (sub-rounded < 15mm), medium plastic, stiff, moist, brown, oxidation staining, coal inclusions, occasional sand pockets and seams		S1	459	168										RE	C = 50%		10
-2 ¥		at 2.3m, sand lense (0.6m thickness)		SP11	4-5-8	13.6													10
-3		below 3m, becoming very stiff in consistency below 3.8m, transition into		SPT2 S3	7-11-17	13.8										RE	C = 90%		
5 4444		bedrock (bedrock surface) BEDROCK, mudstone, highly weathered, very weak, dark brown	X	SPT3	22-25-25	18.3										RE	C = 95%		
6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		below 6.1m, turtning brown in color																	
7		below 6.9m, turning bluish grey in color End of Borehole due to Practical		S5															
8		Auger Refusal - 25mm PVC standpipe installed to 7.6m below grade - no groundwater encountered upon completion - groundwater measured at 2.75m																	
9		below grade on November 18, 2019 - hole backfilled with drill cuttings and sealed with bentonite														· · · · · · · · · · · · · · · · · · ·			
10																· · · · · · · · · · · · · · · · · · ·			
11															-				9
			•			•			BY: H								TION DEPTH:		
OK							REV	IEWE	D BY:	MA	۱.				CC	MPLE	TION DATE: 1	0/17/19	

		ME: Wheatland County 2151836 AB Planning Group			LOCATION: DRILL TYPE	•		aer						-		OLE NO: BH-13 CT NO: 2019-4683		
		657913.83			EASTING: 3											TION: 1007.27 m		
			CORE	E SAM		SPT SAMPL	E	E	GRA	AB SA	MPLE		_			VERY		
	FILL TYF			GRAV		SLOUGH			GRC									
								Ľ			٨٧	ANE SH		(kPa) 🖌				
(e la	SOIL SYMBOL	001	SAMPLE TYPE	g		ATTER	BERG	LIMI	TS		100	200 BLOW	30	04	00	-	SLOTTED PIEZOMETER	
Depth (m) Water Level	MΥ	SOIL	Ē	SAMPLE	SPT BLOWS	MOIOTI	&				20	40	60) 8	0	OTHER	μ	
Dep Vate	OIL S	DESCRIPTION	MPI	AMF	/300 mm	MOISTU PLASTIC	JRE CO M.C.		IN I	•	UNCC 100	NF. SH 200			Pa) ◆ 00	DATA	SLO FT	
	SC SC		S	0		⊢ – –	•				• 0.5 : 100	x POCK 200	ETPE 30	N. (kPa) ● 00			
0		TOPSOIL (200mm)				20 : : :	+0 : :		: :		:	200	: :	:				
		SILT & SAND (fine-grained), trace									-							10
		clay, poorly graded, compact, damp to moist, brown				10.9							-					
_1		CLAY (TILL), silty, some sand, trace	-	S1		10.9 •											Ø	
'		gravel (sub-angular < 30mm),									-			-			88	10
		medium plastic, stiff, damp to moist, brown, oxide staining, coal inclusions,											į.				A F	
		occasional sand pockets and seams	\mathbb{N}	SPT1	3-5-5	14.8	: :	: :	: :	:	L :		: :	÷		REC = 40%	1 A	
-2		·	\square				• • • • • • • •										86	1
				0													Ø	10
				S2						·			\mathbf{i}			Resistivity: 1400 ··· Ohms-cm (SEVERE)	ØK	
ļ											÷			~~~~		. ,	ØF	1
-3		below 3m, becoming hard in				10.0	• • • • • • • •							•••••••••••••••••••••••••••••••••••••••		SO4: 0.054%	Ø	
T		consistency, weathered	X	SPT2	7-50	: 18:6 • •	: :	: :	: :				: :	-	>	►Negligible) SO4: 0.054%	88	10
<u> </u>		at 3.0m, % Grain Size of SPT2, Clay: 18%, Silt: 51%, Sand 31%	\vdash				• • • • • • • •							•••••••		· (Negligible)	1 A	1
Ĺ		SILT, some sand, fine-grained, trace		S3			: :	: :	: :		÷		: :			REC = 60% High blow count due to	86	1
-4		clay, poorly graded, very dense,								· · · ;				•••••••		· · rock at tip of spoon	81	
		locally cemented, damp, light brown											-		/ :		1 F	10
							::::	: :	::::		:		: :	••••		REC = 50%	86	1
-			X	SPT3	6-16-50	15.4 . •					-		-	∎(:			1 K	
-5			\vdash			101											88	
		below 5.3m, increae in sand	=	S4		*							<u>.</u>		$\sum_{i=1}^{n}$		86	10
		content (being sandy)					: :	: :	: :		÷		: :	:	i \		1 A	
-6							• • • • • • •	÷								.\	86	1
5		at 6.0m, water encountered (becoming wet to saturated)	$\overline{\nabla}$		50			: :			-					REC = 40%	E	10
ŝ		BEDROCK, mudstone, highly	\wedge	SPT4	50		· · · · · · · ·	÷;	·				÷;		> · · · ·	·>■ ···	Æ	
5		weathered, very weak, light grey				21.4											Æ	1
-7			=	S5			• • • • • • • •										E]
ŝ							: :	: :	: :		÷	: :	: :	÷			Æ	10
ŝ							• • • • • • • •	······································						•••••••		•••	Æ	1
ŝ											-						Æ]
-8										· • • • •		····		••••••			Æ	
5				S6													Æ	
s e																	E	
-9																	H	
		End of Borehole	-														ra=r.	4
		- 25mm PVC standpipe installed to										; ;;			 			
		9.1m below grade - groundwater encountered at 6m									-							
-10		below grade upon completion								.					: :			
		- groundwater measured at 3.45m below grade on November 18, 2019						: :			÷							g
		- hole backfilled with drill cuttings and					• • • • • • • •											
		sealed with bentonite									-							
11						: : :			BY: H	<u> </u> : 	:	: :	: :	:		IPLETION DEPTH: 9	10 m	
Sk														_		IPLETION DEPTH. 9		
dimension to	rd.							_ / 1 L						-	5010		Page	

		ME: Wheatland County 2151836 A Planning Group			LOCATION:	-		iaer						-		HOLE NO: ECT NO: 20		3	
		657478.64			EASTING: 3			55						-		ATION: 101			
			COR	E SAM		SPT SAMPI	LE		GR	RAB	SAMP	ĹΕ	П			COVERY			
	FILL TYF		PEA			SLOUGH			GR					_		UTTINGS	SAN	C	
												VANE	SHEA	R (kPa					
Depth (m) Water Level	SOIL SYMBOL	SOIL	SAMPLE TYPE	2		ATTER		G LIN	IITS	ŀ	10	BL	ow co					SLOTTED	
ter L	SYN	DESCRIPTION	Ш	SAMPLE	SPT BLOWS /300 mm	MOISTU	& JRE C	ONT	ENT	-	20 ♦UN		0 SHEAR	60 STR	80 (kPa)		HER ATA	LO	
Wat	SOIL	DESCRIPTION	AMF	SAN		PLASTIC	M.C		LIQUID		10	0 2	00 3	300	400		(17)	ЫS Ц	! ;
_						20	40	60	80		10	.5 x PO 0 21	CKETP	2EN. (F 300	(Pa) • 400	·			
0	<u> </u>	_TOPOSOIL (150mm) SILT, sandy (fine grained), poorly	-/													•			
		graded, compact, damp to moist,					•												
		brown		S1												•		H F	1
1							• • • • • •			••••				÷;	•••••••	· · · ·]
																· ·		HE	1
ł		CLAY (TILL), silty, some sand, trace gravel (sub-rounded < 20mm),	\mathbb{N}	SPT1	4-7-9	13.9										REC = 60%	6		
2		medium plastic, stiff, moist, brown,	\square		-													10 F	1
		oxide staining, coal inclusions, occasional sand pockets and seams		S2		13.6						•				•			
ł		·····								••••								BE	1
<u> </u>												-				•		HE	1
3		below 3m, becoming very stiff	\square	spt2	5-8-13							•				REC = 95%	6		1
ł			\square		. 5-0-15									÷;		: 		H F	
				S3		12.2							\mathbf{N}		-	• • •			1.
4		SAND, fine grained, some silt, poorly graded, very dense, damp		0.00		 										:		HE	1
		<u> </u>													N.	•			
4				7												REC = 30%	6		1
5			X	SPT3	14-50	13.Z										>>		Æ	1
												-			-	•			1
Ţ		below 5.3m, increase in silt content (silt & sand), locally		S4			·	• • • • •						÷;		: :		Æ	1
_		cemented														•		E	1
6		BEDROCK, siltystone, highly					•			••••						REC = 30%	6		1
ŝ		weathered, very weak, light grey	X	SPT4	43-50	12.2										>> •	0		
S S			<u> </u>												-	•			1.
7			=	S5		6.2 •	· · · · · ·									· · · · ·		E	1
Į.																•			1
ŝ		End of Borehole due to Practical	_				•			••••				÷;	•••			μШ	-
8		Auger Refusal																	1
υ		- 25mm PVC standpipe installed to 7.2m below grade																	
		- no groundwater encountered upon																	
		completion - groundwater measured at 5.6m														•			1
9		below grade on November 18, 2019 - hole backfilled with drill cuttings and	н							•••						: :			'
		sealed with bentonite	~																
10														÷;		· · · ·			1
										••••									
11																•			1
0					1		LOG	GED	BY: H	HL			-		_	MPLETION			
e/k							REV	IEW	ED BY:	: M	A					MPLETION	DATE: 1	0/15/19 Page	

CLIEN	t: B&A F	ME: Wheatland County 2151836 A Planning Group	- 110	[LOCATION: S	: Solid Ste		ıger						-		HOLE NO: ECT NO: 2		3	
		657876.71			EASTING: 3											ATION: 100)5.57 m		
	E TYPE		CORI			SPT SAMPI	LE		GR			LE		_		OVERY			
BACKF	FILL TYP	PE BENTONITE	PEA (GRAV		SLOUGH		•	GR	ROUT						UTTINGS	SAN	D	
Depth (m) Water Level	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE NO	SPT BLOWS /300 mm		&	ONT			100 20 ♦ UN0 100	BLO 40 CONF. S 200 5 x POC	0 3 W COU 0 6 SHEAR 0 3 CKETP	00 JNT 50 STR. 00	400 80 (kPa) • 400 Pa) ●	• D.	THER ATA	SLOTTED	
0		TOPSOIL (200mm)				20	40		00		: :	<u>; 200</u>	<u>;</u>	<u></u>	400				$\frac{1}{2}$
-1		SILT & SAND (fine-grained), trace clay, poorly graded, compact, damp to moist, brown		S1		10					•					· · · · · · · · · · · · · · · · · · ·			1(
-2		CLAY (TILL), silty, some sand, trace gravel (sub-rounded < 15mm), medium plastic, stiff, moist, brown, oxide staining, coal inclusions, occasional sand pockets and seams at 2.3m, % Grain Size of S2, Clay: 19%, Silt: 51%, Sand 30%		SPT1	3-5-5	165 I										REC = 50'	%		1(
3 ▼		below 3m, becoming hard in consistency	X	SPT2	6-16-32	13,11									•••	REC = 80	%		1
4		SAND (fine-grained), silty, trace clay, poorly graded, very dense, moist, brown, possible uncemented bedrock		S3													07		1
5		below 4.6m, increase in clay content (trace to some clay)		SPT3	14-50	12.8					•					REC = 30	70		1
6 6		BEDROCK, siltstone, highly weathered, very weak, light grey	_	SPT4	50						• • • • • • •					REC = 5%	5		
7				S5		84										· · · · · · · · · · · · · · · · · · ·			
.8		End of Borehole due to Practical Auger Refusal - 25mm PVC standpipe installed to 7.3m below grade - no groundwater encountered upon																	
9		completion - groundwater measured at 3.7m below grade - hole backfilled with drill cuttings and sealed with bentonite	d																
10											· · · · ·								
11								GFD	BY: I							DMPLETION	DEDIH.	7.60 m	
Sk									DBY		1					MPLETION			

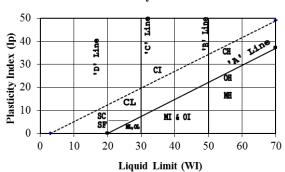
		ME: Wheatland County 2151836 AB Planning Group	Inc		OCATION:	-		per				_		OLE NO: BH-16 CT NO: 2019-468	3	
		657444.55			EASTING: 3			•						ION: 1005.27 m		
	LE TYPE		CORE	E SAM		SPT SAMPL	LE	E	GRAB	SAMPLE				VERY		
BACKF	FILL TYF	PE BENTONITE .	PEA (GRAV	EL []	SLOUGH			_]GROL	IT	Ē		LL CU	TTINGS 🔝 SAN	D	
Depth (m) Water Level	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE NO	SPT BLOWS /300 mm		& JRE CO M.C.		NT QUID	100 20 ♦ UNCC 100 ● 0.5 x	BLOW CC 40 NF. SHEAF 200	300 DUNT ■ 60 R STR. (I 300	400 80 kPa) ◆ 400 a) ●	OTHER DATA	SLOTTED	
0	*****	TOPSOIL (200mm)				20	<u>40 (</u>	<u>60 8</u> : :	30 : :	100	200	300	400 : :			
⊥		CLAY (TILL), silty, sandy, trace gravel (sub-rounded < 30mm), medium plastic, stiff, moist, brown, oxide staining, coal inclusions, occasional sand pockets and seams		S1		12,4										10
-2		below 1.5m, decrease in sand (some sand) below 2.3m, maximum recovered		SPT1 S2	3-5-6	15,1								REC = 70%		10
-3		grain size < 50mm		SPT2	2-5-11	16.4								 REC = 90%		1(
4		below 3.8, increase in sand content (being sandy), no gravel		S3 SPT3	14-50	144					•		*	 REC = 40%		10
6		BEDROCK, sandstone, uncemented, highly weathered, very weak, brown		S4		121								 REC = 7%		10
7				SPT4	50	12.9							>>	• • ••		
8	*****	End of Borehole due to Practical Auger Refusal - 25mm PVC standpipe installed to 7.6m below grade - no groundwater encountered upon														
9		completion - groundwater measured at 0.75m below grade on November 18, 2019 - hole backfilled with drill cuttings and sealed with bentonite														ę
10																
11						: : :			<u>.</u>	: :		<u> </u>			7 60	
SL										1				IPLETION DEPTH:		
2	14						KEVI	=vveD	BY: N	IA			COM	IPLETION DATE: 1	0/15/19 Page	

		ME: Wheatland County 2151836 Planning Group			LOCATION: DRILL TYPE						OLE NO: BH-17 CT NO: 2019-4683		
		656940.32		1	EASTING: 3	18970.18				ELEVAT	ION: 1002.03 m		
SAMPL	E TYPE	SHELBY TUBE	COR	E SAM	IPLE	SPT SAMPL	E	GRA	B SAMPLE	NO RECO	VERY		-
BACKF	ILL TYP	PE BENTONITE	· PEA	GRAV	EL 🎹	SLOUGH		GRO	UT 🛛	DRILL CU	TTINGS 🔝 SANE)	-
Depth (m) Water Level	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE NO	SPT BLOWS /300 mm		BERG LIN & IRE CONT M.C. 40 60		■ BLOW CO 20 40 ◆ UNCONF. SHEAF 100 200 3 ● 0.5 x POCKETP	300 400 UNT	OTHER DATA	SLOTTED PIEZOMETER	
0 2	\$ \$ \$ \$ \$ \$	_TOPSOIL (150mm)					40 00	00		<u>00 400</u>	••	80	
-1		SILT, no sand clay and gravel, loo: to compact, damp to moist, light brown	se	S1		86							10
-2		CLAY (TILL), silty, some sand, trac gravel (sub-angular < 10mm), medium plastic, stiff, moist, dark brown, oxidation staining, coal inclusions, occasional sand pocket and seams	Å	SPT1	5-6-8	163			•		REC = 50% Resistivity: 1800 Ohms-cm (SEVERE)		1(
-3		below 2.3m, increase in sand content (being sandy), increase in gravel size (mrgs < 40mm) from 2.4 to 3.8m, cemented silt layer	- N/	SPT2	50	128				*	SO4: 0.037% Negligible) SO4: 0.037% (Negligible) REC = 5%		ç
-4		at 4.6m, % Grain Size of SPT3, Clay 25%, Silt 48%, Sand 27%	X	SPT3	6-11-14	15 ••••					 REC = 75%		9
6		below 6.1m, becoming very stift hard in consistency	f to	SPT4	7-12-16	17,8					REC = 80%		!
·7		BEDROCK, siltstone, highly weathered, very weak, olive grey		S5 SPT5	5 10-50	17.6			▲ \\	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 REC = 50%		ļ
-9 -9		End of Borehole - 25mm PVC standpipe installed to		S6									ļ
10		8.4m below grade - no groundwater encountered up completion - groundwater measured at 7.7m below grade on November 18, 201 - hole backfilled with drill cuttings a bentonite	on 9								••		9
11				<u> </u>		: : :	LOGGEE	BY: HI	<u> : : : : :</u>		IPLETION DEPTH: 1	0.00 m	_
SL	-						REVIEW				IPLETION DATE: 10		

		ME: Wheatland County 2151836 AB Planning Group			LOCATION: DRILL TYPE			er					DLE NO: BH-18 T NO: 2019-468	3	
		656560.22			EASTING: 3								ON: 1002.25 m		
SAMPL	E TYPE	SHELBY TUBE	CORE	SAN		SPT SAMPL	E		B SAMPLE		NO R				
BACKF	FILL TYP	PE BENTONITE	PEA (GRAV	EL 🛄	SLOUGH		GRC			2		TINGS 💽 SAN	D	
Depth (m) Water Level	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE NO	SPT BLOWS /300 mm		& JRE CO M.C.		100 20 ♦ UNCON 100	BLOW COL	00 40 INT ■ 0 80 STR. (kP 00 40	00 0 Pa) ◆ 00	OTHER DATA	SLOTTED PIEZOMETER	
0	\$ \$ \$ \$ \$ \$ \$ \$	_TOPSOIL (150mm)				20	40 60) <u>80</u> : : :	100	200 3	00 40	00 :	•		
-1		SILT, sandy (fine-grained), trace to some clay, poorly graded, loose, moist, brown		S1											10
-2		CLAY (TILL), silty, some sand, trace gravel (sub-angular < 30mm), medium plastic, stiff, moist, dark brown, oxidation staining, coal inclusions, occasional sand pockets and seams		SPT1	2-4-4	15							REC = 95%		1(
-3				S2 SPT2	2-4-5								REC = 95%		
-4		below 3.8m, increase in sand content (being sandy), increase in gravel content (some gravel, sub-rounded <40mm)		S3		164									
-5 ⊻		4.6m, decrease in sand content (some sand), decrease in gravel content (trace gravel < 20mm), becmoing hard in consistency		SPT3	15-50	17,7			•			~	REC = 25%		
-6		BEDROCK, mudstone, highly		SPT4	8-14-30	24.6					/		REC = 95%		
-7 5 5 5		End of Borehole due to Practical		S5		13/9:									
8		Auger Refusal - 25mm PVC standpipe installed to 6.9m below grade - no groundwater encountered upon completion													5
9		- groundwater measured at 5.45m below grade on November 18, 2019 - hole backfilled with drill cuttings and sealed with bentonite													
10															
11										: :		:			
21	-							ED BY: H					PLETION DEPTH:		
21	•						KEVIE	WED BY:	IVIA		(JOWH	PLETION DATE: 1	0/15/19 Page	

		ME: Wheatland County 2151836 AB Planning Group			LOCATION: DRILL TYPE	-		qer					-			DLE NO: BH-19 CT NO: 2019-4683	3	
		656870.94			EASTING: 3			5					-			ION: 992.86 m	-	
	E TYPE		CORE	E SAM		SPT SAMPL	E	E	GR	AB S	AMPL	E				VERY		
	FILL TYP		PEA	GRAV	EL III	SLOUGH			GR	OUT						TTINGS 🔝 SANI)	
Depth (m) Water Level	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE NO	SPT BLOWS /300 mm	ATTERI MOISTU PLASTIC	&			_	100 20 ONC 100	/ANE SHI 200 BLOW 40 DNF. SHE 200 x POCKE	300 COUN 60 AR S ⁻ 300	0 40 IT ■ 8 TR. (kF 0 40	00 0 2°a) ◆	OTHER DATA	SLOTTED PIEZOMETER	
0	*****	TOPSOIL (200mm)					40	60 · · ·	80		100	200	300	і. (кра) 4(-
·1 ▼1		CLAY (TILL), silty, sandy, medium plastic, stiff, moist, brown, occasional sand pockets and seams		S1		165												
2		SAND, medium-grained, some soilt, trace clay, poorly graded, compact, very moist, brown		SPT1	3-5-8	20.4										REC = 60%		
3		CLAY (TILL), silty, some sand, trace gravel (sub-angular < 10mm), medium plastic, very stiff, damp to moist, brown, oxidation staining, coal inclusions, mica inclusions, occasional sand pockets and seams		SPT2	6-7-11	19.9										 REC = 50%		
5		at 3m, % Grain Size of SPT2, Clay 24%, Silt 45%, Sand 31% below 4.6m, turning olive grey in color		SPT3	5-10-15	20.6										 REC = 40%		
6 7		BEDROCK, sandstone, weathered, very week, grey		SPT4	18-30-50	14.4										 REC = 70%		
8		End of Borehole due to practical Auger Refusal - sloughing encountered at 3m below grade - 25mm PVC standpipe installed to 7.6m below grade	_														KEK.	
9		 - no groundwater encountered upon completion - groundwater measured at 1.5m below grade on November 18, 2019 - hole backfilled with drill cuttings and sealed with bentonite 																
10																		
2	-						LOG									PLETION DEPTH:		
OK							REVI	FWF	BY:	MA					$\sim 0M$	PLETION DATE: 10	1/16/10	

		ME: Wheatland County 2151836 AB Planning Group	Inc		LOCATION:						DLE NO: BH-20 CT NO: 2019-468	3	
CLIENT: B&A Planning GroupDRILL TYPE: Solid StrNORTHING: 5656463.66EASTING: 320248.11							n nuger			PROJECT NO: 2019-4683 ELEVATION: 991.7 m			
			CORE	E SAM		SPT SAMPL	E	GRAB	SAMPLE	NO RECO			
	FILL TYF			GRAV		SLOUGH		GROL				D	
Depth (m) Water Level	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE NO	SPT BLOWS /300 mm		BERG LIN & RE CONT M.C.		BLOW COL 20 40 (UNCONF. SHEAR	00 400 JNT ■ 50 80 STR. (kPa) ◆ 00 400	OTHER DATA	SLOTTED PIEZOMETER	ī
0	*****	_ TOPSOIL (150mm)				20 4	40 <u>60</u>	80 : : :	100 200 3	00 400			
-1		SAND, fine-grained, trace silt, poorly graded, loose to compact, damp to moist, brown		S1		82							ç
-2		below 1.5m, increase in silt and clay contents (becoming some silt, trace clay), becoming moist below 2.3m, increase in silt and clay contents (becoming silty, trace to		SPT1	4-4-5	231					REC = 40%		ę
-3		CLAY (TILL), silty, some sand, medium plastic, stiff to very stiff, moist, brown, oxidation staining, coal	X	SPT2	5-7-7						REC = 80%		ļ
4		inclusions, occasional sand pockets and seams, weathered at 3m, minor seepage encountered below 3.8m, increase in water		S3		15.3							9
5		content (very moist) at 4.5m, increaes in sand content (being sandy), moderate seepage encountered below 4.6m, becoming very stiff to hard in consistency, occasional slough-in encountered		SPT3 S4	4-12-17	15.6					REC = 30%		:
6		below 6.1m, becoming hard in consistency, decrease in sand content (some sand), becoming grey in color	X	SPT4	7-13-18	18.5					 REC = 10%		9
5		BEDROCK, sandstone, weathred, weak, grey End of Borehole due to Practical Auger Refusal		S6		9:8							!
8		- 25mm PVC standpipe installed to 7.6m below grade - no goundwater encountered upon completion - groundwater measured at 2.8m											!
9		 below grade on November 18, 2019 hole backfilled with drill cuttings and sealed with bentonite 											
10													
11													ę
<u> </u>			1		1	<u> </u>	LOGGED	BY: HL		COM	IPLETION DEPTH:	7.60 m	
Ök							REVIEW	ED BY: N	/A	COM	PLETION DATE: 1	0/15/19	



The terms and symbols used on the borehole logs to summarize the results of the field investigation and subsequent laboratory testing are described below. It should be noted that materials, boundaries, and conditions have been established only at the borehole locations at the time of investigation and are not necessarily representative of subsurface conditions elsewhere across the site.

SOIL DESCRIPTIONS

The soils in the borehole logs have been described using the Modified Unified Soil Classification System in conjunction with description guidelines from the Canadian Foundation Engineering Manual, 4th Edition.

Secondary Constituents						
Descriptor	Percentage by Weight					
And	> 35%					
y/ey	20 – 35%					
Some	10 – 20%					
Trace	< 10%					

Consistency of Cohesive Soils								
Classification	Undrained	"N" Blow						
Very Soft	< 12	< 2						
Soft	12 – 25	2 – 4						
Firm	25 – 50	4 – 8						
Stiff	50 – 100	8 – 15						
Very Stiff	100 – 200	15 – 30						
Hard	> 200	> 30						

Relative Density of Non-						
Cohesive Soils						
Classification	SPT – N					
Very Loose	0 – 4					
Loose	4 – 10					
Compact	10 – 30					
Dense	30 – 50					
Very Dense	> 50					

SYMBOLS

						2020202 2020202 2020202 2020202 202		
Asphalt	High- plasticity Clay	Intermediate- plasticity Clay	Low- plasticity Clay	Fill	Poorly- graded Gravel	Well-graded Gravel	High- plasticity Silt	Intermediate- plasticity Silt
					2000 2000 2000 2000 2000 2000 2000 200			
Low- plasticity Silt	Low- plasticity Organics	Clayey Sand	Silty Sand	Poorly- graded Sand	Well-graded Sand	Shale	Sandstone	Measured Water Level

Plasticity Chart

MODIFIED UNIFIED SOIL CLASSIFICATION SYSTEM

	Major Divisi	on	Symbol	Description	Criteria		
		Clean Gravel	GW	Well graded gravels, little or no fines	$C_u = \frac{D_{60}}{D_{10}} > 4 \ C_c = \frac{(D_{30})^2}{D_{10} \times D_{60}} = 1 \ to \ 3$		
	Gravel (More than half coarse grains larger than 4.75 mm)	(little or no fines)	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines	Not meeti	ng above criteria	
oils		Gravel with fines	GM	Silty gravels, gravel-sand-silt mixtures	Fines content	Atterberg Limit below "A" Line, w _p < 4	
Coarse Grained Soils			GC	Clayey gravels, gravel-sand- clay mixtures	> 12%	Atterberg Limit above "A" Line, w _p > 7	
arse G		Clean Sand (little	SW	Well graded sands, gravelly sands, little or no fines	$C_u = \frac{D_{60}}{D_{10}} > 6 C$	$c = \frac{(D_{30})^2}{D_{10} \times D_{60}} = 1 \text{ to } 3$	
Coa	Sand (More than half of coarse grains smaller than 4.75 mm)	or no fines)	SP	Poorly graded sands, little or no fines	Not meeti	ng above criteria	
		Sand with fines	SM	Silty sand, sand-silt mixtures	Fines content	Atterberg Limit below "A" Line, w _p < 4	
			SC	Clayey sand, sand-clay mixtures	> 12%	Atterberg Limit above "A" Line, w _p > 7	
	Silts (Below "A" line, negligible	$W_L < 50$	ML	Inorganic silts and very fine sands, rock flour, silty sands with low plasticity			
oils	organic content)	W _L > 50	MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils			
Fine Grained Soils	Clays (Above "A" line, negligible organic content)	$W_{L} < 30$	CL	Inorganic clays of low plasticity, gravelly, sandy, or silty clays, lean clays	See plasticity chart		
ine G		$30 < W_L < 50$	CI	Inorganic clays of medium plasticity, silty clays			
ш		W _L > 50	СН	Inorganic clays of high plasticity, fat clays]		
	Organic silts and clays (Below "A"	$W_L < 50$	OL	Organic silts and organic silty clays of low plasticity			
	line	$W_{L} > 50$	OH	Organic clays of high plasticity			
	Highly Organic	Soils	Pt	Peat and other highly organic soils	Strong colour or odour, often fibrous texture		

- The soil of each stratum is described using the Unified Soil Classification System modified slightly so that an inorganic clay of "medium plasticity" is recognized

- "REC" denotes percentage sample recovery

- SPT "N" values represent the number of blows by a 63.6 kg hammer dropped 760 mm to drive a 50 mm diameter open sampler a distance of 300 mm after an initial penetration of 150 mm