5759

JOINT REVIEW PANEL PUBLIC HEARING

IN THE MATTER OF Application Nos. 1844520, 1902073, 001-00403427, 001-00403428, 001-00403429, 001-00403430, 001-00403431, MSL160757, MSL160758, and LOC160842 to the Alberta Energy Regulator

GRASSY MOUNTAIN COAL PROJECT - BENGA MINING LIMITED

VOLUME 27

VIA REMOTE VIDEO

November 30, 2020

5760 1 TABLE OF CONTENTS 2 3 Description Page 4 November 30, 2020 Morning Session 5 5762 6 Discussion 5765 7 GARY HOUSTON, MIKE BARTLETT, RANDY RUDOLPH, 5770 JANET BAUMAN, DANE MCCOY, STEVE BILAWCHUK, 8 9 IAN MITCHELL, JOHN KANSAS, LINDSEY MOONEY, 10 DAVID DEFOREST, Previously Affirmed 11 (Dust, air quality, greenhouse gas emissions, 12 noise, and light; wildlife, including migratory birds and species at risk, wildlife health, 13 and human health risk assessment) 14 Joint Review Panel Secretariat Staff 5770 15 Cross-examines Benga Mining Limited 16 17 Alberta Energy Regulator Panel Questions 5812 18 Benga Mining Limited 19 November 30, 2020 20 Afternoon Session 5856 21 GARY HOUSTON, MIKE BARTLETT, RANDY RUDOLPH, 5859 22 JANET BAUMAN, DANE MCCOY, STEVE BILAWCHUK, IAN MITCHELL, JOHN KANSAS, LINDSEY MOONEY, 23 24 DAVID DEFOREST, Previously Affirmed (Dust, air quality, greenhouse gas emissions, 25 26 noise, and light; wildlife, including migratory

1	birds and species at risk, wildlife health,	
2	and human health risk assessment)	
3	Alberta Energy Regulator Panel Questions	5860
4	Benga Mining Limited	
5	Discussion	5967
6	Certificate of Transcript	5970
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		

		5702
1	Proceedings Taken via Re	emote Video
3 4	November 30, 2020	Morning Session
5	A. Bolton	The Chair
6	D. O'Gorman	Hearing Commissioner
7	H. Matthews	Hearing Commissioner
8		
9	M. LaCasse	AER Counsel
10	B. Kapel Holden	AER Counsel
11		
12	K. Lambrecht, QC	Joint Review Panel Secretariat
13		Counsel
14		
15	T. Utting	IAAC Staff
16	E. Arruda	AER Staff
17	D. Campbell	AER Staff
18	T. Turner	AER Staff
19	T. Wheaton	AER Staff
20	A. Shukalkina	AER Staff
21		
22	M. Ignasiak	For Benga Mining Limited
23	C. Brinker	
24		
25	R. Warden	For Ktunaxa Nation
26	T. Howard	
1		

		5763
1	K. Poitras	For Métis Nation of Alberta
2		Region 3
3		
4	Chief B. Cote	For Shuswap Indian Band
5		
б	B. Snow	For Stoney Nakoda Nations
7		
8	R. Drummond	For Government of Canada
9	S. McHugh	
10		
11	A. Gulamhusein	For Municipality of Crowsnest
12		Pass
13		
14	M. Niven, QC	For MD of Ranchland No. 66
15	R. Barata	
16	J. Nijjer (Student-at-La	aw)
17		
18	B. McGillivray	For Town of Pincher Creek
19		
20	D. Yewchuk	For Canadian Parks and
21		Wilderness Society, Southern
22		Alberta Chapter
23		
24	R. Secord	For Coalition of Alberta
25	I. Okoye	Wilderness Association, Grassy
26		Mountain Group, Berdina Farms

		3704
1		Ltd., Donkersgoed Feeder
2		Limited, Sun Cured Alfalfa
3		
		Cubes Inc., and Vern Emard
4		
5	R. Cooke	For Crowsnest Conservation
6		Society
7		
8	G. Fitch, QC	For Livingstone Landowners
9	C. Agudelo	Group
10		
11	M. Sawyer	For Timberwolf Wilderness
12		Society and Mike Judd
13		
14	(No Counsel)	For Barbara Janusz
15		
16	(No Counsel)	For Jim Rennie
17		
18	S. Elmeligi	For Alberta Chapter of the
19	A. Morehouse	Wildlife Society and the
20	S. Milligan	Canadian Section of the
21	M. Boyce	Wilderness Society
22		
23	J. Gourlay-Vallance	For Eco-Elders for Climate
24		Action
25		
26	L. Peterson	For Trout Unlimited Canada
1		

For Coal Association of Canada 1 R. Campbell 2 (No Counsel) 3 For Alistair Des Moulins 4 (No Counsel) 5 For David McIntyre 6 7 (No Counsel) For Fred Bradley 8 For Gail Des Moulins 9 (No Counsel) 10 11 (No Counsel) For Ken Allred 12 (Not Present) 13 14 (No Counsel) For Monica Field 15 S. Frank For Oldman Watershed Council 16 17 A. Hurly 18 C. Longacre, RPR, CSR(A) Official Court Reporter 19 20 21 (PROCEEDINGS COMMENCED AT 9:03 AM) 22 Discussion 23 THE CHAIR: Good morning, everyone. Just a reminder that live audio and video streams 24 25 and video recordings of this proceeding are available 26 to the public through the AER's website and YouTube.

Anyone in the virtual hearing room with their camera or 1 2 microphone turned on will be captured, and images and 3 recordings of you and your surroundings will be 4 broadcast to a publicly available YouTube video. Ιf you have concerns about this, please contact counsel 5 6 well in advance of the time you're scheduled to 7 participate to explain your concerns. We'll make best efforts to try and accommodate your concerns 8 9 considering the need for an open and transparent public 10 process.

11 I have two preliminary matters before we get 12 started, and then I'll open it up for others. First, 13 just, Mr. Drummond, for your benefit, I know you have a 14 witness that was not available this morning. Ι 15 anticipate that we won't get to your panel till this afternoon, so I'm assuming that will resolve that 16 17 issue.

18 The other item is with respect to final argument. 19 Oops, just a minute. So the Panel has considered the 20 submissions from the parties and Benga on the format 21 and timing of final argument. With respect to format, 22 Benga and the participants all expressed an interest in 23 final -- sorry, written final argument, and the Panel 24 supports a written final argument.

With respect to timing, the Panel agrees thatfinal argument should occur in a timely manner. The

Panel also agrees that participants can make use of the 1 time between the end of the hearing and the start of 2 3 the Christmas/New Year period to work on their final 4 However the Panel does not believe it's arqument. appropriate to establish deadlines for written argument 5 6 over the Christmas/New Year period and doesn't believe 7 there's sufficient time to complete the submission of written argument from all participants prior to the 8 9 Christmas break.

10 Further, the Panel does not accept Benga's 11 contention that the participants have had time to and should've been working on their final argument while 12 13 the evidentiary portion of the hearing was in progress. We note that the hearing schedule involved sitting six 14 days a week for a number of weeks, and in addition to 15 participating in or monitoring current hearing 16 17 sessions, participants required time to prepare for 18 upcoming hearing sessions. While they may have started their final argument, I don't think it's reasonable to 19 20 expect that they would've had time to complete a lot of 21 work on it.

The Panel understands Benga's desire for a timely decision on the project; however, completing final argument one or two weeks earlier will not have a material impact on the Panel's decisions and completion of its report. While the Panel will not be able to 1 make final decisions on the applications until final 2 argument is complete, there is other work that the 3 Panel can do during this time, and the time is not 4 lost.

The Panel also recognized that the record for this 5 6 proceeding is large and complex, including over 5,700 7 pages of transcripts as of Friday. For these reasons, the Panel has established the following schedule for 8 9 written final argument: Benga written argument due 10 Friday, December the 11th; participant written argument 11 due Friday, January the 8th; Benga reply submission due 12 Friday, January the 15th.

13 Of course, this schedule is contingent on 14 receiving the ACO hearing report on or before Tuesday, 15 December the 8th, to ensure Benga has sufficient time to review it prior to filing their final argument. 16 Ιf 17 it's not received by that date, then we may need to adjust the schedule, but for the interim, the schedule 18 The Panel will post the schedule or 19 is as outlined. 20 send a note to participants just confirming the dates 21 so everyone is aware.

Those were the two items I had. Are there any other preliminary matters that participants want to raise?

25 Hearing none, Mr. Lambrecht, do you have questions 26 for the Benga panel?

1 MR. LAMBRECHT: Yes, Mr. Chair, the federal 2 analysts do have questions for the -- this panel. 3 MR. BRINKER: Mr. Lambrecht and Mr. Chair, just one minor item before we begin. 4 5 THE CHAIR: Yeah, go ahead. Go ahead, Mr. Brinker. 6 7 MR. BRINKER: Yes, Mr. Chair. Benga advised over the weekend that Mr. David DeForest would be made 8 9 available as a Benga witness today for the purposes of 10 answering questions from the Panel that may touch upon 11 aquatic and fish health. We thought that that might be 12 helpful to make him available. So he is on the -- on the Zoom call this morning. Mr. DeForest previously 13 14 appeared in the water topic block, so it would just be a matter of confirming that he is still under oath or 15 affirmation, and I could do that right now, if you'd 16 17 like, before we continue with the questions from Mr. Lambrecht and the Panel. 18 19 THE CHAIR: Sure. Let's just do that in 20 case it's needed. Sure. 21 MR. BRINKER: Mr. DeForest, can you hear me? MR. DEFOREST: 22 Hello. Yes, I can. 23 MR. BRINKER: Okay. Mr. DeForest, do you 24 confirm you're still bound by your oath or affirmation 25 given in this proceeding? 26 MR. DEFOREST: Yes, I do.

		5770	
1		MR. BRINKER: Tha	ank you.
2		Thank you, Mr. Chair.	
3		And I apologize, Mr. La	ambrecht, for interrupting.
4		THE CHAIR: Oka	ay. Thank you, Mr. Brinker.
5		MR. LAMBRECHT: Tha	nks, Mr. Brinker.
6		THE CHAIR: Oka	ay. Go ahead.
7		MR. LAMBRECHT: Tha	anks, Mr. Brinker. No
8		problem at all.	
9		GARY HOUSTON, MIKE BARTLETT,	RANDY RUDOLPH,
10		JANET BAUMAN, DANE MCCOY, SI	EVE BILAWCHUK, IAN
11		MITCHELL, JOHN KANSAS, LINDS	SEY MOONEY, DAVID DEFOREST,
12		Previously Affirmed	
13		(Dust, air quality, greenhou	use gas emissions, noise,
14		and light; wildlife, includi	ng migratory birds and
15		species at risk, wildlife he	ealth, and human health risk
16		assessment)	
17		Joint Review Panel Secretari	at Staff Cross-examines
18		Benga Mining Limited	
19	Q	MR. LAMBRECHT: Panel	, my name is Kirk
20		Lambrecht. I am one of the	counsel to the Panel, and I
21		am working with the federal	analysts, and there are a
22		few questions on wildlife an	nd air topics that I'd like
23		to pose to you from the fede	eral analysts.
24		And the first of these	is a question that was
25		deferred from the vegetation	n topic, and it relates to
26		the Clark's nutcracker bird.	And I would like to we
1			

1		deferred it from vegetation because the panel of the
2		vegetation topic thought it would be best for the
3		person who knew about the Clark's nutcracker to be
4		available, and I think that person is on this panel
5		today. And I begin my questions by asking who that
6		might be on the panel that I could direct these
7		questions to?
8	A	MR. KANSAS: That's Mr. John Kansas, is the
9		biologist.
10	Q	Good morning, Mr. Kansas.
11		Would you be able to answer a few questions on the
12		nutcracker?
13	A	Good morning.
14		Yes, I I I will do my best.
15	Q	Thank you, sir.
16		Now, I'm going to pose my questions to the panel
17		generally. I would ask the witness with the best
18		evidence to respond, but I leave it in the hands of the
19		panel as to who that might be.
20		And so I begin Mr. Kansas, could I get some
21		idea of your qualifications and just very briefly,
22		your qualifications and role in the EIA as it affects
23		the Clark's nutcracker?
24	A	Yes. I I reviewed the environmental impact
25		assessment or statement, as well as the the
26		supplemental information requests pertaining to Clark's

5771

		5/72
1		nutcracker, and I'm prepared to speak to that.
2	Q	Did you have a role in the preparation of the EIA
3	~	yourself, sir, or
4	A	No, I I did not.
5	Q	All right.
6	~	MR. LAMBRECHT: So, Zoom Host, I'll ask you to
7		pull up CIAR 89. This is the eighth addendum to the
8		EIA, and I'd like to begin at PDF 20, please. And if
9		you could zoom in. It's the second paragraph the
10		first sentence of the second paragraph I'd like to
11		focus on.
12	Q	MR. LAMBRECHT: Panel, are you able to see
13	~	that paragraph there?
14		Panel, are you able to see that, or, Mr. Kansas,
15		are you able to see that on your screen?
16	A	MR. KANSAS: I am able to see that. Thank
17		you.
18	Q	All right. So the sentence that I want to focus on
19	ž	that kind of forms the theme of my presentation is this
20		one: (as read)
21		The Government of Alberta notes that the
22		Clark's nutcracker has a restricted
23		distribution within the province and that its
24		dependency on declining species, such as
25		limber pine and whitebark pine, make it
26		vulnerable to population declines.

		3115
1		MR. LAMBRECHT: If I can ask you, Zoom Host,
2		then, to go to PDF 29, please. And if you could scroll
3		down a little bit, please. Yes. It's the paragraph
4		right there.
5	Q	MR. LAMBRECHT: So, Mr. Kansas, the proponent
6		proposes to cut down some whitebark pines, but proposes
7		also to replant them. And this sentence the first
8		sentence of the final paragraph, I believe, on this
9		page says that: (as read)
10		While successful planting of whitebark pine
11		and limber pine on reclaimed sites would
12		mitigate habitat losses for Clark's
13		nutcracker, benefits to the species would be
14		delayed many years into the future.
15		And it goes on to explain that it takes many decades
16		for the Clark's nutcracker or for the whitebark pine
17		to develop cones that the Clark's nutcracker then
18		accesses.
19		MR. LAMBRECHT: So you can take that down,
20		Zoom Host.
21	Q	MR. LAMBRECHT: Sir, my appreciation is that
22		the re-establishment of the whitebark pine is partly
23		dependent upon the Clark's nutcracker because that bird
24		takes the seeds of the whitebark pine and plants them
25		all over the landscape as a feature of the birds
26		foraging. Is that your understanding as well?
1		

1		
1	A	MR. KANSAS: Yes. The whitebark pine tree
2		is almost fully reliant for plant for seedlings on
3		the Clark's nutcracker.
4	Q	And I understand the proponent did some surveys of the
5		Clark's nutcracker during its preparation of the EIA.
6		Could you summarize just very briefly what the result
7		of those surveys were?
8	A	Yes. The there were there were no specific
9		surveys designed or implemented for Clark's nutcracker;
10		however, 60 or 70 songbird call counts were conducted
11		for other bird species in the area. And in one of
12		those, a Clark's nutcracker call was was detected.
13	Q	Did the EIA conclude anything about the numbers of
14		Clark's nutcracker in the in the local study area or
15		the regional study area for wildlife?
16	A	Well, there's been a series of supplemental information
17		requests on on that topic. Really, there's no
18		there's not enough information right now. The reason
19		being, Mr. Lambrecht, is that the Clark's nutcracker
20		nests and and is in their peak of breeding in
21		late winter, so March-ish kind of thing. And the
22		songbird surveys are in May late May and June. So
23		that is my feeling why the that bird wasn't picked
24		up more than just once.
25		And, also, the just so you know as well, the
26		the bird was picked up I actually saw the bird in

1 one of my field -- field trips. I saw two adults 2 and -- and three fledgling young up and -- at the 3 junction between the montane zone and the subalpine zone in the vicinity of whitebark pine in late July of 4 5 this year. They were clearly a family group. So there 6 is breeding going on up there. 7 But in terms of -- of a relative abundance index or a population index, no, there's not enough 8 9 information to -- to come up with that. All right. Thank you, Mr. Kansas. 10 Q 11 Now, you mentioned just briefly the montane 12 region, I believe. And could I ask you to describe just briefly what the montane region is? 13 14 Α Yes. The montane natural subregion of Alberta is one 15 of 21 -- 20, 21 subregions that frame the province They're a broad -- these subregions 16 ecologically. 17 are -- are broad repeating patterns of -- of topography and climate and land form and, ultimately, vegetation 18 19 and wildlife that occur throughout the province. 20 Half of the project footprint in -- in 21 approximately half of the wildlife local study area, 22 the lower portion, southern portion occur in the The northern half of the -- of the -- of 23 montane zone. 24 the footprint and the study area occur in the subalpine natural subregion. The montane subregion is a -- I 25 26 would say it -- it's an uncommon subregion from a area

1 point of view. It's one of the smaller subregions. 2 It's also a very unique subregion in the province, 3 especially in the -- in the -- in the southwest Alberta area where the natural regions tend to be compressed 4 into a little -- little -- little area. You have 5 6 foothills fescue, montane, subalpine, and alpine in a 7 very short distance, 20, 30 kilometres. So it -- it makes for an interesting dynamic -- diversity dynamic. 8 9 MR. LAMBRECHT: Zoom Host, could I ask you to 10 go back to CIAR 89, the eighth addendum, and display 11 page 761. This should be a map of the whitebark and 12 limber pine occurrence in the regional study area. 13 MR. LAMBRECHT: Are you able to see that, 0 14 Mr. Kansas? 15 MR. KANSAS: Thank you. Α I am. 16 All right. This is one of the maps that we discussed 0 17 during the vegetation section, and it -- in general terms, it displays the distribution of whitebark pine 18 19 in the area. If I can ask the Zoom host to 20 MR. LAMBRECHT: 21 go to PDF page 760, please. And if you could zoom in 22 just a little, Host, please, and down to the legend. Mr. Kansas, while this is 23 0 MR. LAMBRECHT: 24 zooming, I want to draw your attention to the bright-green areas there, which in the legend are 25 indicated as "forestry operations to 2032". 26 And

1		there's also a darker-green colouration in the legend
2		for forestry operations to 2045, all of which I think
3		are within, generally speaking, the span of the mine
4		through operations and decommissioning.
5		MR. LAMBRECHT: So, Zoom Host, if you could
6		just adjust this map so that we could see more
7		generally the area there.
8	Q	MR. LAMBRECHT: Mr. Kansas, my question is
9		this: Assuming that Benga plants whitebark pine during
10		the decommissioning phase phases of its or the
11		reclamation phases of its project, what is the
12		necessity of the Clark's nutcracker to the success of
13		that revegetation, and where is the expected
14		recruitment of Clark's nutcracker to the reclaimed
15		project area to come from?
16		MR. LAMBRECHT: And, Zoom Host, you can take
17		that down.
18	Q	MR. LAMBRECHT: But, Mr. Kansas, if you need
19		to make reference to this, please
20	A	MR. KANSAS: Okay.
21	Q	Please do so.
22	A	I can I can attempt to answer that question. If you
23		could allow me to frame the topic a little bit,
24		Mr. Lambrecht.
25	Q	Of course, sir.
26	А	Yes. So Benga intends to remove 208 hectares of

whitebark pine forest -- open-forest environment. The 208 hectares amounts to 3.4 percent of the 6,019 hectares of whitebark pine that occur in that regional study area that you had just put up. So there's 6,000 hectares in that area. And that's the vegetation RSA, and it's also the grizzly bear RSA, same -- same area.

So 208 hectares really represents the size of a --8 9 of a small fire in this region. An average fire in the 10 southwest Alberta area is around 1,800 hectares. So 11 we're talking about a -- a very small -- almost like an 12 initial attack kind of fire. You've got flames up, 13 they attack it, they kill it, and you're left with a 14 200- or 100-hectare fire.

So Benga, to mitigate, they're replacing the 208 hectares with 305 or something hectares. So 3 to -- 3-to-1 ratio approximately, and they're replacing the 21,000 trees with 63,000 trees.

So nutcracker's have -- like, a number of species 19 20 in the regional study area of southwest Alberta here, 21 the Grassy RSA are -- they've adapted through the 22 millennia to fire. So for Benga to go in and -- and plant trees that they -- that they -- they take away is 23 24 almost like an army of nutcrackers going in and driving 25 their -- their beak into the -- into the ground and -and creating opportunities for -- for seedling 26

regrowth.

1

2		So the the nutcracker, to fight against this
3		this these natural disturbance regimes, like fire
4		and and and insects, they they do things from
5		a life-history point of view. One of them is that
6		they rather than relying on the seeds of whitebark
7		pine, they shift their diet in bad years bad-weather
8		years, bad-climate years, weather mainly and they
9		they switch to an omnivorous diet. They'll be eating
10		benthic terrestrial invertebrates, insects, even
11		small birds and and mammals that they kill. You
12		know, so so the food switching allows them to to
13		fight their way through some bad times.
14		The other thing is that they disperse. Clark's
15		nutcracker dispersal ranges as far as 32 kilometres.
16		So if you centre the the the the regional
17		study area is approximately 25 kilometres from the
18		centre of the of the of the wildlife local study
19		area out in each direction. So these animals are
20		capable of dispersing and finding the remaining
21		6,900 hectares of of whitebark pine forest that
22		occur. Sorry to be so winded longwinded, but that's
23		enough for now.
24		MR. LAMBRECHT: Zoom Host, can I ask you to
25		pull up CIAR 89 at 760 again? That's the map.
26	A	MS. BAUMAN: Mr. Lambrecht, it's Janet

1		Bauman here. I just wanted to jump in there and in
2		response to your question, I think you asked if the
3		Clark's nutcracker was required to re-establish
4		whitebark pine. Am I am I correct?
5	Q	MR. LAMBRECHT: I think the question was: To
6		what extent would the prevalence of the Clark's
7		nutcracker be a factor in the successful establishment
8		of re-establishment of the whitebark pine through
9		the reclamation phases that the proponent has
10		proposed
11	A	Okay. So the
12	Q	given that it given that it may be displaced from
13		the area by deforestation?
14	A	Right. So they they don't have any effect on
15		seedling establishment other than planting the seeds in
16		the ground, and and Benga will be doing well,
17		they won't be planting seeds. They'll be planting the
18		seedlings. So in terms of those seedlings growing and
19		establishing on the reclaimed landscape, the Clark's
20		nutcracker is irrelevant to that.
21		Where the Clark's nutcracker becomes important to
22		whitebark pine perpetuating on the landscape in the
23		long-term is once the trees start producing seeds, is
24		the Clark's nutcracker harvesting those seeds and then
25		planting the seeds in the ground in their caches? And
26		they'll be doing that in other stands. Like John said,

1 they'll be, you know, 32 -- up to 32 kilometres away in 2 other whitebark pine stands that are already producing 3 seeds. But in terms of the actual trees on the reclaimed landscape at the mine site, they -- they will 4 5 have no effect on those seedlings that are planted 6 establishing themselves. 7 Yes, I believe I'd --0 MR. KANSAS: If I could also comment --8 Α 9 -- understood that. 0 10 Oh, sorry, Mr. Lambrecht. Α 11 Sorry, Mr. Kansas. Go ahead. Ο 12 If I could also comment, just helpful for -- for Α Yes. framing again, is that the montane region -- subregion 13 14 is used by Clark's nutcracker during the winter, and 15 then they -- as the summer progresses, they move up into the subalpine where the whitebark pine are. 16 So 17 they're -- they're essentially surviving on a -- on a food source that's not quite as good as the whitebark 18 19 pine seeds, but this seems to be adequate for them to survive in the winter. 20 21 MR. LAMBRECHT: Zoom Host, can I ask you to 22 display CIAR 89 at PDF 30, please? Now, there's a reference here 23 Ο MR. LAMBRECHT: 24 to "monitoring", and I understand that the proponent 25 proposes to monitor use of the reclaimed whitebark and 26 limber pine areas by Clark's nutcracker and other

1 species as a part of its monitoring program. 2 Can I ask you, please, to clarify Benga's 3 commitment to monitoring for Clark's nutcracker use of the reclaimed project area? And without meaning to 4 5 limit your response in any way, can I ask you, please, 6 to include within the scope of your response these two 7 matters: First, when Benga expects to begin monitoring for Clark's nutcracker use of the reclaimed project 8 9 areas, and how long Benga may expect to monitor for? 10 Α MR. HOUSTON: So maybe I'll take that, 11 Mr. Lambrecht. I -- I -- I think I understand the 12 direction of your question here. 13 So Benga would expect to be monitoring the -- the 14 project area through operations and through a few decades after reclamation, and -- and the -- the end 15 point for the monitoring would be that we get 16 reclamation certificates indicating that the -- the 17 reclaimed areas are well-established and on a -- a good 18 trajectory. I am doubtful that -- well, I -- I 19 20 wouldn't think that the whitebark pine would have 21 started producing seeds by that point, being that 22 the -- the seed production is -- is not until after five or six or seven decades. So I wouldn't expect 23 24 that we'd be monitoring for Clark's nutcracker at that 25 point. 26 What we would be doing is we would be monitoring

for songbirds and -- during those first couple of 1 2 decades after reclamation is complete and -- but I -- I 3 wouldn't think that we'd be monitoring seven or eight decades out to see if the Clark's nutcracker had 4 5 returned after the whitebark pine were mature. 6 So where is this expected recruitment of Clark's 0 7 nutcracker to the reclaimed project area expected to 8 come from given that there may be some uncertainty 9 about the extent to which the bird being displaced from 10 the mine area may be able to forage in other areas? 11 MR. KANSAS: I would assume, Mr. Lambrecht, Α 12 that it -- the -- the source of seedlings comes from Benga becomes the -- for a little while, 13 Benga. 14 becomes the Clark's nutcracker. 15 Yes, but where is the bird going to come from in future Ο decades? 16 17 Α Well, the birds will remain plastic with respect to Birds will come from the outer western dispersion. 18 edge of the regional study area; they'll come from the 19 20 north end and work their magic that way. 21 Janet, do you have a comment on that? 22 MS. BAUMAN: No, I didn't have anything to Α add to that. 23 Panel, I'd like to move on. 24 All right. Ο 25 MR. LAMBRECHT: Zoom Host, you can take this 26 page down. Thank you very much.

1 MR. LAMBRECHT: Panel, there has been some 0 2 mention of the importance of this -- of the 3 re-establishment of bison to this area from the Ktunaxa 4 and some of the other Aboriginal groups. I appreciate that some of the landforms are taken up for other uses, 5 6 but I wonder if anyone here on the panel is able to 7 comment about the suitability of montane -- of the montane region for plains bison habitat? 8 9 Α MR. KANSAS: Well, I suppose that lands on 10 me here. I -- I'm -- as for many biologists, I'm --11 I'm not an expert with bison, especially with respect 12 to reintroduction into a very busy ecosystem here. 13 I'll just -- a quick -- a quick anecdote. When I 14 was just a young biologist, 22, in Jasper Park, they -this -- the -- I was there for a few years, and in my 15 first year, Canadian Wildlife Service flew in 35 bison 16 17 into the lower Athabasca River valley of Jasper National Park. Ultimately, they were all -- they were 18 all killed, mainly by train accidents and by vehicle 19 20 accidents. So I -- the montane -- all things being 21 equal without the level of -- of the -- especially the 22 trains and the trucks and the vehicle collision potential, it's good habitat -- well, it was good 23 24 habitat 150 years ago or more, but right now, I -- I 25 think it's a -- it would be a -- what we'd call a 26 "primary sink". It would lead to unnecessary deaths.

Having said that, I -- I love the idea of bison 1 2 in -- in -- in the mountains. They're doing it in 3 Banff right now, and I intend to go into that ecosystem this winter and -- and check to see how it -- how it's 4 5 looking. Anyways, that's -- that's all I can offer, 6 really, in that. 7 Thank you, Mr. Kansas. 0 8 MR. LAMBRECHT: Zoom Host, can I ask you, 9 please, to pull up CIAR 503 and PDF 15. 10 0 MR. LAMBRECHT: Panel, there are two passages 11 from the proponent's documents I'm going to present 12 here, and then I'll pose a question to you regarding 13 And the first one is the second bullet from the them. 14 top. 15 MR. LAMBRECHT: So, Zoom Host, if you can zoom into that a little bit, please. 16 17 MR. LAMBRECHT: All right. This is about 0 pre-disturbance surveys, and this bullet in this 18 document, which is the -- I understand, the hearing 19 20 submission filed by Benga, states that: (as read) 21 Pre-disturbance surveys will be conducted 22 along the edges of all the areas to be cleared during project development to 23 24 determine the occurrence of any important 25 wildlife habitat features. 26 MR. LAMBRECHT: Zoom Host, if I can ask you,

1		then, to pull up CIAR 360. This is, I understand,
2		Benga's response to the Joint Review Panel request for
3		additional information. It's Package 7, reference
4		listed consolidated mitigation tables, Addendum 12, and
5		specifically we're on PDF page 105, Item Number 7. So
6		in the middle column, Item Number 7. If you could zoom
7		into that, Zoom Host.
8	Q	MR. LAMBRECHT: And this document says that:
9		(as read)
10		Pre-disturbance surveys or wildlife sweeps
11		will be conducted in the development area
12		prior to any construction activities during
13		project development to determine the
14		occurrence of any important wildlife habitat
15		features, such as migratory bird nests,
16		et cetera.
17		So my question is
18		MR. LAMBRECHT: And you can take that down,
19		Zoom Host.
20	Q	MR. LAMBRECHT: can I ask this panel to
21		clarify, please, whether the proponent will conduct
22		wildlife surveys along the edges of the areas to be
23		developed or within the the whole of the areas that
24		may be developed during these wildlife sweeps or
25		surveys? Thank you.
26	A	MR. HOUSTON: Just to be clear on on the

question, Mr. Lambrecht. Are you asking whether we would limit our wildlife sweeps to the trees that are actually going to be cut down, the area that's going to be cleared, or are you asking if we would do a survey that extends beyond that immediate area to include maybe an area slightly larger that might be disturbed by noise and activity?

8 Q Let me clarify. Thank you, Mr. Houston. I'm sorry I9 wasn't clearer.

10 The first quote appeared to say that the wildlife 11 surveys would be conducted along the edges of the areas 12 to be cleared, and the second mitigation suggested that 13 the whole of the area might be surveyed. So I'm 14 asking, really, for clarification about the geographic 15 extent of the wildlife survey area. Is it the edge or 16 the area to be cleared?

So -- so I'll -- I'll take that. 17 Α No. We'll -- we'll do a sweep of the entire area to be cleared on a -- on 18 19 a year-by-year basis. So it would be a progressive 20 approach that would be looking ahead to the next batch 21 of clearing and sweeping the entire area that would be 22 cleared. 23

Q Mr. Kansas, can I come back to you for a moment,

24 please?

25 A MR. KANSAS: Sure.

26 Q You may not be in a position to answer this, but a

1		follow-up question on the Clark's nutcracker. Will
2		Benga conduct the surveys for the Clark's nutcracker
3		during its breeding season that is in the late winter?
4	A	I can't speak for Mr. Houston; however, my professional
5		opinion is that it that should be done.
б	Q	Now, let me interrupt you for a moment. I I'm
7		not I I may have confused you because of
8		juxtaposing this question on monitoring with the
9		question about the pre-cleared surveys. So to be
10		clear, this question relates to the monitoring that
11		Benga indicated that it would do to monitor for
12		re-establishment of Clark's nutcracker, and
13	A	I think
14	Q	I'm wondering
15	A	Go ahead. Go ahead. I'm sorry.
16	Q	I'm wondering if these surveys will be conducted during
17		the breeding season for that bird that you described
18		earlier?
19	A	Yes. It would be pointless to go again too late. You
20		know, it needs to be done during the March/April
21		period.
22	Q	And, Mr. Houston, do you know if that would be the
23		intent of Benga in its monitoring program for this
24		specific species?
25	A	MR. HOUSTON: Certainly. Up until now,
26		access during the winter months has been a bit of an

1 Once -- once we're in and especially when we're issue. 2 starting to reclaim areas of the mine, I would expect that we would have monitoring programs that would run 3 year round, and not just for the Clark's nutcracker but 4 other wildlife as well that we would want to be 5 6 monitoring on a year-round basis around the perimeter 7 of the site and -- and on -- on the newly reclaimed parts of the site as well. 8

9 Q Thank you, sir.

Panel, I'd like to move on to a question aboutcarbon sink.

12 MR. LAMBRECHT: And perhaps I could ask the 13 Zoom host to pull up CIAR 70. This is the response 14 package dated April 2018 for additional information 15 requested by the agency on February 28th, 2018. And I 16 need to ask you, please, to go to PDF 527. Now, we 17 have a chart here, and I need to ask you to go to the row for "Proposed Mitigation". And in that column --18 it's the fourth row down. So if you can just scroll up 19 20 a bit. That's great.

Q MR. LAMBRECHT: Toward the bottom of that, panel, the statement is made that: (as read) GHG [or greenhouse gas] sink losses are addressed by amending soil with woody debris or fertilizing and revegetating stockpiled soil and prompt reclamation and reforestation

		5790
1		of the project disturbance and the historical
2		mine disturbance and minimizing lifetime of
3		soil stockpiles.
4		So my question now, I appreciate
5		MR. LAMBRECHT: You can take that Zoom
6		Host, can you scroll over to the left a little bit so
7		that we can see the valued component that is involved
8		here? This is a so this is a proposed mitigation
9		for greenhouse gas emissions. And, Zoom Host, you can
10		take that down.
11	Q	MR. LAMBRECHT: Is Benga able to provide a
12		quantitative estimate of carbon sink loss over the
13		planned duration of project operation prior to
14		reclamation as well as a time estimate to regain the
15		lost carbon sink?
16	A	MR. HOUSTON: Mr. Chair, maybe we'll just
17		take a minute to talk amongst ourselves to see who's
18		best to answer this question. One minute.
19		So, Mr. Lambrecht, I don't think we have an answer
20		for your question. We haven't quantified the the
21		the greenhouse gas sink that would be lost, and I would
22		expect that full recovery would not occur until we had
23		significant progress through the reclamation process.
24		But we don't have a specific answer to your question.
25	Q	All right. And so if I were to ask for an approximate
26		timeline of carbon sink recovery from revegetation and
1		

		5791
1		reforestation, I take it that that your answer would
2		extend to that question as well?
3	A	Yes, that's right.
4	Q	All right.
5	A	Don't don't have a good answer for you.
6		MR. LAMBRECHT: If I can ask the Zoom host to
7		pull up CIAR 251. This is Response Package Addendum
8		10, Package 1, "Air Quality and Noise". And go to
9		PDF page 109.
10	Q	MR. LAMBRECHT: Panel, this is the greenhouse
11		gas management plan that the proponent has put forward,
12		and it does not make any reference to "carbon sink loss
13		or replacement".
14		I would like to ask: How will Benga update the
15		greenhouse gas emission or greenhouse gas management
16		plan to incorporate managing carbon sink loss and
17		measure reclamation efficacy in terms of greenhouse gas
18		sequestration?
19		MR. LAMBRECHT: Zoom Host, you can take that
20		down. Thank you.
21	А	MR. HOUSTON: So your question is how we
22		would estimate the the loss of greenhouse gas sink
23		due to the removal of the vegetation on the site and
24		then how we would evaluate the efficacy of the
25		reclamation in terms of returning the greenhouse gas
26		sink? Is that the question?

1 MR. LAMBRECHT: Yes, sir. The chart that I 0 2 had taken you to did propose a mitigation for the 3 greenhouse gas sink, but the plan doesn't make reference to that. So I'm wondering how you would fit 4 5 that mitigation into your plan, as you've described. 6 Α I -- I think the -- the first -- the first step along 7 those lines would be to evaluate the magnitude of the greenhouse gas sink loss and determine whether it was 8 9 significant compared to the other greenhouse gas 10 impacts of the project and -- and to proceed from 11 there. We could commit to updating the greenhouse gas 12 mitigation plan by -- by doing that, by making an 13 estimation of the sink loss. The -- the recovery of 14 that sink loss, however, I think, would depend on the -- the successful reclamation of the site. 15 All right. I'd like to move on to a question about 16 0 17 diesel -- use of diesel. MR. LAMBRECHT: And, Zoom Host, can I ask you, 18 please, to pull up CIAR 55, Attachment 2. 19 This is the 20 fourth addendum to the environmental impact assessment. 21 And can I ask you to go to PDF page 18. And I believe 22 we're in the second paragraph from the top here. 23 Ο MR. LAMBRECHT: Panel, are you able to see 24 that page on your screens? 25 Α MR. HOUSTON: Yes, we can. 26 Now, the question, really, here is: Can Benga provide 0

an update on the availability of lower carbon diesel 1 2 fuel, as is described in this paragraph? 3 Well, as you know, Mr. Lambrecht, the Sturgeon Refinery Α has -- has progressed and, I believe, is producing --4 5 producing diesel. So that -- these projections have 6 come about in terms of general improvement in diesel 7 availability from -- from other sources. I -- I --I am afraid I can't comment on that. 8 9 I wonder if Mr. Rudolph has any -- anything to add 10 there. I -- I don't have much to add. 11 MR. RUDOLPH: Α 12 I think we're -- you know, we're aware of the new 13 legislation from the federal government that would --14 that would somewhat reduce the carbon content in fuel. 15 I think, though, that the -- the estimate here of, perhaps, a 30 percent reduction in greenhouse gas 16 17 emissions is probably an overstatement, and I think 18 that's been pointed out in -- in more recent material, that this is probably not -- this would be more than an 19 20 upper-end estimate to the improvement that we'd expect on-site as a result of -- of lower carbon fuel becoming 21 22 available. Panel, is the estimate of a potential 900 kilotons of 23 0 24 greenhouse gas emission reduction still valid? 25 Α I believe that's an overestimate of the -- of the 26 reduction from this source.

		5774
1	Q	Would you be able to offer a quantification of the
2	~	reduction that may occur if diesel from this source
3		were utilized?
	7	
4	A	I don't know that I can do that without a bit more
5		effort, but I would I would think it would be
6		less that the fuel economy improvement would be
7		probably less or around 5 percent, not 30 percent
8		from the use of diesel.
9		MR. LAMBRECHT: Can I ask you to scroll down
10		on this same page a little bit more, Zoom Host, please.
11		That's good right there.
12	Q	MR. LAMBRECHT: In the first paragraph, panel,
13		under the heading "Electricity Consumption", the
14		proponent states that: (as read)
15		If all coal were replaced with natural gas
16		and assuming that natural gas emission
17		intensity of GHG is about 55 percent of that
18		of coal, that the overall GHG intensity of
19		the grid and, therefore, Benga's share of
20		that would be reduced by about 28 percent.
21		Does Benga have any updates at all to this assumption
22		or statement?
23	А	MR. HOUSTON: So I think the Alberta
24		government has stated its intention to phase out
25		coal-fired power over I I'm not sure what the
26		the current estimate for a time frame is, but during

		5755
1		the life of the project, we we would expect a
2		migration from coal-fired power in Alberta to natural
3		gas-fired power as an evolution in the in the power
4		sector.
5	Q	All right. Is the proponent in a position to provide
6	×	an estimate of a potential indirect greenhouse gas
7		emission reductions from coal phaseout in comparison to
8		the existing projections of anticipated project
9		greenhouse gas emissions?
10	A	So our our our total emissions from electricity
11		use are 120 kilotons per year. That and that's for
12		the worst year, the 19th year of operations. And so we
13		would suggest that an estimate could be taken by using
14		this 28 percent times the 120 kilotons as an annual
15		reduction.
16	Q	Are you able to provide some definite calculations in
17		that regard, and, if so, when might you be in a
18		position to do so?
19	A	One minute.
20	Q	Thank you, sir.
21	A	A little bit more than 30 kilotons a year,
22		Mr. Lambrecht
23	Q	Thank you
24	A	reduction.
25	Q	Thank you, Mr. Houston.
26		MR. LAMBRECHT: Zoom Host, this page can come

down.

1

I'd like to ask you to pull up CIAR 542 at PDF 63,
under the Heading "Recommendation", 6.3. It might
be ... Yes. There we are.

5 MR. LAMBRECHT: Panel, I'm drawing your 0 6 attention to a recommendation made to Benga by 7 Environment and Climate Change Canada. We are here at Recommendation 6.3, and Benga had recommended what I'm 8 9 going to describe as a "BAT/BEP determination", which I 10 think is "best available technology/best environmental 11 practice". And I know that the Panel would have reviewed this recommendation. 12

13 So I'll ask the Zoom host to take it down and call 14 up CIAR 571 at PDF 16. Under heading 3.9, Benga made some reference that -- to considering the issue of 15 greenhouse gas emissions and reasonable mitigations 16 17 through the life of the project. But from my review of 18 this, I could not locate a specific reference to the Environment Canada -- and Climate Change Canada 19 Recommendation 6.3. 20

21 So can Benga clarify if it is willing to commit to 22 update its greenhouse gas management plan to 23 incorporate the BAT/BEP determination and 24 implementation as recommended by Environment and 25 Canada -- Climate Change Canada in Recommendation 6.3? 26 MR. LAMBRECHT: Zoom Host, you can take this down. Thank you.

1

2 I'm talking to myself. Α MR. HOUSTON: Okay. 3 So, Mr. Chair, the answer is -- the short answer is yes. All of the plans and programs that Benga has 4 5 committed to develop as a part of this project will be 6 maintained in an everyreen state. That means a -- a --7 a -- a program or process for periodic review and -and updating. 8

9 I -- I think in our -- our -- our October 5th 10 response evidence, we went through a number of the 11 technologies that had been proposed or -- or pointed 12 out by ECCC or, more appropriately, by their consultant, who had talked about some of the 13 14 technologies that might be considered. And I think what's important is that we begin this project with 15 what we consider to be the best available technology or 16 17 the -- I -- I'm always confused by that term, whether it includes proven economically feasible, and -- and so 18 those factors will be rolled in. 19

But we've -- we've reviewed a number of the technologies pointed out by ECCC and their consultant and believe that we're starting this project on the right foot. Obviously as technology changes and becomes available, Benga will continue to evaluate and -- and consider how to roll the -- the newer technology in -- into the project through our normal 1

2

But the answer is, yes, that we would continue to maintain a greenhouse gas management plan and -- and keep that up to date.

6 MR. LAMBRECHT: During an earlier panel, I had 0 7 some questions on the mining fleet equipment, and my 8 understanding is that the proponent is proposing to use 9 diesel mining fleet equipment that represents probably 10 the largest single GHG source of emissions for the 11 project at about 40 percent of project emissions. Is 12 that a fair understanding of the proportion of GHG 13 emissions from the project that originate from the 14 diesel-powered mining fleet?

That -- that would be about right. My information for 15 Α Year 19, again -- again, the year where there's the 16 17 most activity on-site, the diesel -- the emissions from the diesel fleet would be about 170 out of about 360. 18 So your number of 40 percent is -- is pretty close. 19 20 Now, Environment and Climate Change Canada had 0 recommended consideration of the replacement of the 21 22 diesel engine equipment with electric or hydrogen fuel cell equipment in order to reduce that amount of 23 emissions. 24

25Does Benga have any plans to consider whether to26utilize mobile off-road non-diesel mining fleet

1		equipment at any point during the life cycle of the
2		project in order to reduce its greenhouse gas emissions
3		from this project?
4	А	Again, Mr. Chair, we have considered those technologies
5		at at this important moment, the initiation of the
6		project, and and we have determined that, either
7		because of the terrain, because of the mine plan where
8		we we're going to have many many faces open at
9		once or or or or because of the state of the
10		technology, we've and we've, again, reviewed this
11		substantially in in our document 571. We've gone
12		through each of those technologies to talk about our
13		our view of the technology at this point. And and,
14		yes, of course, we would continue to follow those
15		technologies through the life of the project and and
16		at from time to time, consider adopting some of them
17		as the technology matures or or as they become more
18		suitable for our project.
19	Q	Thank you, Mr. Houston.
20		MR. LAMBRECHT: Zoom Host, can I ask you to
21		pull up CIAR 571 at page 17, I believe?
22	Q	MR. LAMBRECHT: All right. Panel, are you
23		able to see this on your screens?
24	A	MR. HOUSTON: Yes, we can.
25	Q	All right. What I want to refer you to specifically on
26		this page are the last two bullets in that column of

5799

1 bullets that appears in the first half of this page. 2 This is a document from the proponent. It describes 3 the proponent's greenhouse gas management plan as including many factors, and they're listed, some of 4 them, in the bullets here. And the last two bullets 5 6 are as follows: (as read) 7 Requesting of Canadian Pacific Railway that they dedicate their lowest emitting units to 8 9 the operations at the project to minimize 10 emissions from rail transportation and 11 encouraging the contractor to use large 12 fuel-efficient vessels to minimize emissions 13 from marine transportation. 14 MR. LAMBRECHT: Now, Zoom Host, if I can ask 15 you to pull down that page and go to CIAR 907, please, at page 143. 16 17 MR. LAMBRECHT: This is a transcript from the 0 November 25th testimony, and at the bottom, beginning 18 at line 19, I think -- Mr. Houston, I believe this is 19 20 your response to some of the questioning from Barbara 21 Janusz, and you indicated that -- beginning at line 19 22 and going to 24, that: (as read) Benga will pursue additional greenhouse gas 23 emission reductions associated with rail and 24 25 marine transport by requesting Canadian Pacific Railway to dedicate its lowest 26

		5001
1		emitting unit to the project and encouraging
2		the marine contractor to use fuel-efficient
3		vehicles.
4		So if Benga cannot my question
5		MR. LAMBRECHT: You can take this down, Zoom
6		Host.
7	Q	MR. LAMBRECHT: My question to you, panel, is
8		this: If Benga cannot secure these commitments from
9		the rail and marine shipping contractors, how will the
10		lack of these mitigations affect Benga's ability to
11		meet the goals of its greenhouse gas management plan?
12	A	MR. HOUSTON: So, Mr. Lambrecht, I think we
13		can only manage what we can manage, and that is the
14		greenhouse gas emitted within the project boundaries.
15		Outside of the project boundaries where the coal is
16		being transported by others, possibly not even the
17		coal may not even be in the possession of of Benga
18		at that point at outside of the project, all all
19		we can do is encourage our partners to to use the
20		most sensitive technologies possible to reduce their
21		their contribution to greenhouse gases. But we we
22		have no control over those parts of the transportation
23		chain.
24		MR. LAMBRECHT: Zoom Host, can I ask you,
25		please, to pull up CIAR 251, tenth addendum to the
26		environmental impact assessment, Package 1, "Air

		5002
1		Quality and Noise", at PDF page 116. And the heading
2		"Fugitive Methane" is the heading that I'd like to ask
3		you to zoom in to, please.
4	Q	MR. LAMBRECHT: All right. Panel, I
5		understand this is a part of the greenhouse gas
6		management plan that Benga has prepared. And there's
7		an indication here that Benga does not plan to use
8		fugitive methane emissions or plan to measure
9		I'll I'll I will reread this again for clarity:
10		(as read)
11		Benga does not plan to measure fugitive
12		methane emissions from exposed seams or
13		piles. Benga will continue to use IPCC
14		emission factors based on production.
15		And so my question to you really relates to some of the
16		fugitive methane emissions. Can I ask the panel to
17		describe briefly what the IPCC emission factors based
18		on productions are and how they relate to the
19		measurement of fugitive methane emissions?
20	A	MR. HOUSTON: One minute, Mr. Chair.
21		So, Mr. Lambrecht, the question was: Can we
22		explain the IPCC emission factors? Is that the
23		question?
24	Q	Yes, and how they may relate to the measurement of
25		fugitive methane emissions from exposed seams or coal
26		piles.

1 Α Okay. Mr. Rudolph, can you respond to this one? 2 MR. RUDOLPH: Mr. Lambrecht, I think in --Α 3 in CR 1, that is CIAR 42, the air quality assessment, 4 we've provided what the emission factors are that were used in the calculation. And in CIAR 55 at PDF -- let 5 6 me look that up -- at PDF 16, we talk about the -- the 7 potential ways in which methane is generated from surface mines. 8 9 So I think as -- as we would normally do for 10 diesel emissions, for example, for the project, we 11 would -- we would use an established emission factor and multi -- and -- and activity factor and base --12 13 and -- and track, as part of the greenhouse gas 14 management plan, the volume of diesel used. I think we would do something similar -- or the plan is to do 15 something similar for fugitive methane as well and link 16 17 the potential emissions from fugitive methane from the mine surface and other -- other areas to the production 18 19 of coal using IPCC emission factors. 20 MR. LAMBRECHT: You can take this down, Zoom 21 Host. 22 MR. LAMBRECHT: Mr. Rudolph, is -- are you --Ο 23 or, panel, are you confident that the chosen emission 24 factors are representative of the fugitive methane 25 emissions from the project? Mr. Lambrecht, the -- the IPCC 26 Α MR. RUDOLPH:

emission factors are based on -- on global emission 1 2 factors, but we have no indication at this stage that 3 the potential for emissions at the -- at the Grassy Mountain site is anything but average, let's say. 4 So, Mr. Rudolph, did I understand you to describe the 5 0 6 plan to verify these emission estimates through 7 monitoring or measurements in your prior answer? I -- I don't know that I used the word "verify". 8 Α Ι 9 think I -- I said that we would track emissions from 10 the mine face based on the -- the coal production and 11 a -- an activity factor or an emission factor based on 12 the IPCC values. 13 All right. Thank you. 0 14 MR. LAMBRECHT: Can I ask you to go, Zoom Host, to CIAR 251, Package 1, "Air Quality and Noise", 15 PDF page 42. And if you could scroll down there. 16 17 That's good right there. Just a little bit up under the heading "Decommissioning and Reclamation Phase". 18 And, panel, I want to draw 19 MR. LAMBRECHT: 0 20 your attention to the paragraph that appears under the (as read) 21 heading indicating that: 22 Reclamation activities at the mine occur concurrently with mining activities that have 23 been accounted for in the GHG assessment for 24 peak project's operations and that other 25 closure activities such as deconstruction 26

-		3003
1		of of plant facilities, environmental
2		monitoring, et cetera, may not be included in
3		these estimates but that it is expected that
4		GHG emissions from all sources are expected
5		to be insignificant when compared to those in
6		operations.
7		And I look down at the table that measures some of
8		these emissions, and I see during reclamation, at the
9		bottom of the table there, that it says that it's
10		included in operations.
11		Then, in particular, the on this table, the
12		highest annual emissions appear to come from mine
13		operations. So my question is
14		MR. LAMBRECHT: And you can take this down,
15		Zoom Host.
16	Q	MR. LAMBRECHT: is Benga confident that the
17		predicted operations phase emissions conservatively
18		account for all earth-moving equipment required to
19		achieve the proposed closure landscape?
20	A	MR. HOUSTON: So the the operations
21		estimate include all of the equipment that are planned
22		to be used again, this is Year 19 on the site.
23		So it includes all of the equipment, including the
24		equipment removing rock, the equipment mining coal, and
25		the equipment managing the reclamation activities. So
26		we are confident, yes.

1 Q Thank you, Mr. Houston.

		-
2		Is Benga able to provide any quantification of the
3		greenhouse gas estimates of unaccounted that were
4		not accounted for in reclamation or closure activities?
5	А	I'm not sure what you're referring to, Mr. Lambrecht.
6		And
7	Q	The chart that I had taken to you [sic] earlier
8		indicated that some emissions might not be accounted
9		for in the measurement, and I'm just wondering if you
10		might be in a position to take Benga quantification
11		of those, sir.
12	A	So it would it would involve some equipment, but a
13		fraction of what we're was in place for the
14		operation for one or two years after closure after
15		closure to finalize the reclamation; and from that
16		point forward, it would be mostly electric
17		electricity consumption. All the pumps used for the
18		long-term water management would be electric. And I
19		guess at that point and remember we're talking about
20		2045 and onwards we would hope that the electric
21		the GHG component for electricity would be
22		significantly smaller.
23		We don't have a quantification, Mr. Lambrecht, at
24		this point, but it would be a small fraction of the
25		annual GHGs during operations.
26	Q	Panel, can I ask for clarification this question:

1		How has Benga accounted for the greenhouse gas
2		emissions and re-establishment of carbon sinks for the
3		proposed post-reclamation landscape?
4	А	Is this the same question that we discussed half an
5		hour ago, Mr. Lambrecht? We we we talked about
6		not having an estimate of the the loss of carbon
7		sinks or greenhouse gas sinks, and that could be done
8		as part of the greenhouse gas management plan base
9		based on trees removed or acres cleared, and then
10		re-establishment of those sinks would depend on a
11		successful reclamation program.
12	Q	All right. Thank you.
13		MR. LAMBRECHT: Mr. Chair, I think this might
14		be an appropriate moment for me to take a break. There
15		may be one or two questions I have after the break, but
16		I would like to consult with the federal analysts to
17		see if there's much more that I need to ask. I need to
18		come back to one question on the Clark's nutcracker, I
19		believe.
20		THE CHAIR: Okay. It's excuse me
21		10:20. We'll take a 15-minute break and resume at
22		10:35.
23		MR. LAMBRECHT: Thank you, Mr. Chair.
24		(ADJOURNMENT)
25		THE CHAIR: Okay. Mr. Lambrecht, you can
26		continue.

Г

1 MR. LAMBRECHT: Thank you, Mr. Chair. 2 Panel, I have a few questions 0 MR. LAMBRECHT: 3 remaining, and so I would like to begin by going back to the wildlife topic, and I want to ask you a question 4 about the phrase "wildlife sweeps" and the phrase 5 6 "pre-disturbance surveys". 7 May I ask for clarification if these phrases are 8 synonymous such that they might be used 9 interchangeably? And if not, what is the distinction 10 between them? 11 MR. KANSAS: Okay. I'm sorry. Α I -- I -- I 12 was zoned out for a second. If you could please repeat 13 the question. 14 Yes, Mr. Kansas. No problem at all. 0 15 I want to go back to the wildlife topic and ask a question for clarification about the definition of the 16 17 phrases "wildlife sweeps" and "pre-disturbance These phrases appear in the proponent's 18 surveys". materials, and I'm wondering if we should interpret 19 20 them as being synonymous with one another and interchangeable with one another when --21 22 Yes, they are synonymous. Α All right. 23 0 Thank you, sir. 24 You're welcome. Α 25 For clarification, does the panel -- does Benga expect 0 26 greenhouse gas emissions from some of the closure

1		components, such as the sediment pond and end-pit lake,
2		and if so, has Benga estimated the potential emissions
3		from those closure components?
4	A	MR. HOUSTON: No, we wouldn't expect
5		significant greenhouse gas emissions from either of
6		those. They there is minimal organic material in
7		either structure. They're they're ponds constructed
8		on on mineral material, and so there would be very
9		little organic material in those in those lakes or
10		ponds to generate greenhouse gases.
11	Q	Thank you, Mr. Houston.
12		MR. LAMBRECHT: For the final question, it
13		might be helpful if I could ask the Zoom host to pull
14		up CIAR 251, Package 1, "Air Quality and Noise"
15		appendix, and go to PDF one let's start at PDF 115.
16	Q	MR. LAMBRECHT: And, panel, this is a return
17		to the question of fugitive methane emissions from
18		exposed coal seams. I note in Table 4-1 that a
19		potential source of greenhouse gas emissions is
20		fugitive methane. A mitigation objective would be to
21		reduce these emissions, but the nothing is planned
22		at the moment.
23		MR. LAMBRECHT: And if I could ask the Zoom
24		host to go to the previous page, I believe. Yeah.
25		Just a little bit above, Zoom Host. Yes. Right there.
26		Thank you.

1 MR. LAMBRECHT: And in the sentence above 0 Table 4.1 [sic], panel, the statement of -- is made 2 3 that: (as read) Coal bed methane recovery is not ongoing or 4 5 being considered on the Grassy Mountain site, 6 as the coal is not considered gassy, and, 7 therefore, methane recovery is not practical. 8 And my question for you is: Has Benga identified --9 ruled out any potential mitigation to reduce fugitive 10 methane emissions? 11 MR. LAMBRECHT: And you can take this down, 12 Zoom Host, thank you. 13 So -- so, again, in our Α MR. HOUSTON: 14 submission -- our October 5th submission, we -- we talked about this a little bit more. Based on our --15 the -- the sampling that we've done and our evaluation 16 17 of the deposits, we consider that the -- the rock and -- and the coal seams are already significantly 18 19 exposed and that methane has -- has seeped from the --20 the site over -- over the millennia, and -- and our -our experience is that there is very low methane 21 22 remaining in -- in the coal. Nonetheless -- and -- and so during the handling 23 24 of the coal, the exposure of the seams, and the stockpiling of coal, as -- as Mr. Rudolph mentioned, we 25 26 will be assuming a -- a level of methane emissions

based on the IPCC coefficients. After closure, we will 1 2 be -- we will be -- for -- for the majority of any 3 remaining coal on-site, we will be reclaiming the site. So we will be covering the -- the seams and putting 4 reclamation materials back. So that would be the final 5 6 closure of the site to -- to reduce any long-term 7 emissions from the remaining exposed coal seams. MR. LAMBRECHT: Does Benga have any views, 8 0 9 were the project to go forward, on a condition 10 requiring Benga to develop and implement a plan to 11 mitigate and minimize methane -- fugitive methane 12 emissions? 13 I -- I think the plan that we would propose would be, Α 14 more or less, what I have just mentioned, Mr. Chair, that we could document that in a greenhouse gas 15 management plan that -- absolutely we could do that. 16 17 Well, now, panel, I think I'm completed my questions. 0 18 I'll just confer with the federal analysts for one 19 moment. 20 All right. It appears that I have no further 21 questions for you, panel. I'd like to thank you for 22 your patience in responding to my questions and for your evidence to the Panel and your participation in 23 24 the Joint Review Panel process. Thank you. 25 THE CHAIR: Okay. Thank you, 26 Mr. Lambrecht.

So we'll now turn to Panel questions. We're going 1 2 to switch it up a little bit. I've been working with 3 the subject matter expert on questions related to the 4 wildlife and human health risk assessment areas, so I'm going to ask my questions first, and then I'll turn to 5 6 Mr. O'Gorman and Mr. Matthews to see if they have any 7 further questions once I'm done. 8 Alberta Energy Regulator Panel Questions Benga Mining Limited 9 10 0 THE CHAIR: So my questions will focus on 11 the wildlife health risk and human health risk 12 assessments, and really the purpose is just to try and 13 ensure the Panel understands what's been done and to --14 so it can understand the level of conservatism in those 15 two assessments. I anticipate that the majority of my questions 16 17 will be for Mr. Mitchell or Ms. Mooney, but, obviously, anyone on the panel who has something to contribute can 18 speak to them if needed. 19 20 In the interest of time, I don't plan to pull up 21 every reference. I'm going to put certain statements 22 to you from your evidence, but I do have the reference, 23 so if at any point something doesn't sound right or you 24 want to see the actual reference, please let me know, 25 and I'll make sure it's brought up, and there are other 26 exhibits that I will pull up so you can have a closer

1 look at them.

2 Just before I get -- kind of get to my questions, 3 though, I just wanted to follow up on the one question 4 Mr. Lambrecht asked and, Mr. Houston, you answered, and it had to do with, kind of, custody of the coal along 5 6 its journey from the mine to the customer. And, you 7 know, I think the Panel understands that, you know, it'll first get loaded onto railcars, and then it'll 8 9 get unloaded at the port, and then it'll get loaded on 10 a ship, and you don't fully control some of those 11 activities. 12 But what I was curious about was: At what point 13 in the journey does the ownership of the coal transfer 14 from Benga to someone else? Is that when it's delivered at the far end, or is there some intermediate 15 point where custody may be transferred? 16 17 Α MR. HOUSTON: So thank you for that question, Mr. Chair. 18 The current business plan is that custody would 19 20 transfer in -- at the port in Vancouver, that Benga 21 would maintain custody through the train journey to the 22 port, and that the end customer would contract the -the ship that would pick up the coal at the port. 23 24 That's the current business plan. We don't envision it 25 changing from that, but, of course, 25 years of 26 operations is a long time, and -- and things can

change.

1

3

4

5

6

2 Q Okay. Thank you for that, Mr. Houston.

Okay. Turning to -- first, to human health risk, and the first series of questions deal with some of the calculations that were done and just trying to improve our understanding of some of those.

7 So in CIAR 360, Addendum 12, on pages PDF 10 and 11, Benga acknowledged that there were errors in 8 arsenic input variables which were discovered while 9 10 producing the worked examples of risk calculations 11 resulting in changes to estimates of the incremental So this raises a concern about 12 lifetime cancer risks. 13 the potential for other errors which may have occurred 14 in the calculation of hazard quotients for other contaminants or chemicals of potential concern. 15 THE CHAIR: 16 So, Zoom Host, if you could 17 pull up CIAR 360 and PDF page 174. Thank you. THE CHAIR: So this work example includes 18 0 19 equations such as Equation 7 which Benga describes as: 20 (as read) 21 The equation or contaminants of concern from 22 air and surface water pathways were 23 integrated to predict total surface water 24 concentrations. 25 The worked example calculation for arsenic shown 26 here using Equation 7 produced a concentration of

-		
1		0.248 micrograms per litre in surface water.
2		Benga then presents surface water arsenic
3		concentrations in CIAR 360, Table 7.1-2, on PDF
4		page 13. So could we go to page 13 of this document?
5		And these documents are described elsewhere as:
6		(as read)
7		The 95th percentile monthly concentrations
8		from an upper case modelling scenario.
9		That reference is on page 10 if anybody wants to look
10		at it, but I don't think we need to go there.
11		These same concentrations also appear in CIAR 313
12		on PDF page 1310, which is a table of concentrations of
13		contaminants of potential concern used in the human and
14		wildlife health risk assessments.
15		So the question is: Could Benga confirm that
16		Equation 7 on PDF page 174 that we previously looked at
17		is for calculation of concentrations in surface water
18		resulting from air deposition to a lake?
19	A	MR. MITCHELL: I believe that is the
20		sorry. Excuse me for a moment. Ian Mitchell here. I
21		cannot hear what he says.
22		Mr. Chair, I believe that is accurate. I will
23		just quickly confirm with the person that did those
24		calculations. It'll just take me one moment here.
25	Q	Sure.
26	A	Yes. The short answer is: Yes, that equation is
1		

1		related to the deposition from air to a lake.
2	Q	Okay. So I think we're still on page 13 of CIAR 360.
3		So could Benga confirm that the concentrations of
4		contaminants of potential concern, including arsenic,
5		used for the human health risk estimates are the ones
б		presented in this table?
7	А	Yes, I believe those that table incorporated not
8		just the deposition from air but other sources as well.
9	Q	Okay. So that kind of gets to my next question. Could
10		Benga clarify whether the concentrations shown in
11		Table 7.1-2 that we're looking at are a result of the
12		combination of air deposition and waterborne pathways
13		or if they are, instead, 95th percentile mean monthly
14		concentrations produced by the SRK GoldSim water and
15		load balance surface water quality model only without
16		inclusion of air deposition?
17	A	Give me one moment on that one.
18	Q	Okay.
19	A	So that includes the air deposition added to the the
20		surface water calculations.
21	Q	Okay. So let me carry on with a few follow-up
22		questions. Could Benga confirm that if Benga's
23		calculated surface water concentrations were, indeed,
24		derived from the integrated air and surface pathways
25		surface water pathways, the concentration in
26		Table 7.1-2 logically would be greater than that for
1		

1		the air or water pathways alone?
2	A	That seems logical.
3	Q	Okay. That doesn't necessarily seem to be the case,
4		but we'll get back to that in a future question.
5		Were the calculations for contaminants of
6		potential concern, other than fluoranthene and arsenic,
7		checked for errors and required adjustments in input
8		parameters sorry, checked for errors and required
9		adjustments in input parameters, and if they were, were
10		these errors corrected?
11	А	So when the issue with arsenic was discovered, a check
12		was done of all the other chemicals to make sure that
13		all the inputs were correct for those as well, and
14		other than the ones that were identified, no other
15		issues were noted.
16	Q	Okay. So no adjustments were required to any of the
17		others?
18	A	No.
19	Q	Okay. So if we could go to CIAR 313. And we're
20		starting with Table 7-1, which appears on PDF 1258.
21		And there's a series of tables here: 7-1, 7-2, 7-3, and
22		7-4.
23		So the question is: Why are the hazard quotients
24		for aluminum, cadmium, lead, manganese, and thallium
25		identical or very close to identical for Blairmore
26		Creek, Gold Creek, the Oldman reservoir, and the

end-pit lake, and the hazard quotients for cobalt 1 2 within 0.01 of each other in all but the end-pit lake 3 despite distinctly different concentrations of these 4 contaminants of potential concern in the four receiving 5 environments, as shown in these tables -- sorry, as 6 shown in CIAR -- on PDF 1310? 7 Again, just give me a moment to caucus. Α I wasn't verv involved in the water calculations myself. 8 9 0 Sure. And if you need me to repeat any of the 10 question, let me know. 11 So it -- the hazards that were presented in Α Okay. 12 those tables relate to the full multimedia assessment, 13 so they -- it [sic] include not just the water but 14 other exposure as well, and I think a lot of the hazards were actually driven by the vegetation 15 16 ingestion as opposed to the water ingestion, which is 17 why they're similar across the water bodies. 18 Thank you. Okay. 0 I'm just waiting for my subject matter 19 Sorry. 20 expert. 21 So my subject matter expert tells me that the 22 water concentrations are higher than in vegetation. So 23 why the identical hazard quotients? 24 May need a moment more here, unless you want to come Α 25 back to this one. Waiting to get an answer from the 26 people that ran the multimedia model.

1	Q	I can do either. If you want another moment, that's
2		fine. If you want to carry on until they get back to
3		you, that's also fine. What would you prefer?
4	A	Give me one more minute to try to get some answers.
5	Q	Okay.
6	A	I think it would be better to move on, and we'll come
7		back to this
8	Q	Okay.
9	A	once I can get that
10	Q	Okay.
11	А	information.
12	Q	Okay. Thank you.
13		So the next set of questions relates to the level
14		of conservatism used in the calculation of risk from
15		exposure to concentrations of contaminants of potential
16		concern in water. So I'm going to start by walking you
17		through portions of Benga's evidence which are relevant
18		for this topic, and we'll start with the predicted
19		concentrations of contaminants of potential concern in
20		Blairmore Creek and Gold Creek.
21		In CIAR 360, on page 8, Benga states that the risk
22		assessment was based on the 95th percentile monthly
23		water concentrations of the 23-year operations period
24		and a 57-year postclosure period from the upper case
25		model scenario. Benga states that the upper case model
26		scenario for the GoldSim model used geochemical source
1		

terms which were analogous to a boundary condition that is considered highly unlikely to be exceeded. Flow inputs to the GoldSim model were monthly averages.

4 In CIAR 313, on PDF page 250, in response to an -to Information Request 6.25, Benga stated that updated 5 6 hydrology and modelled concentrations of contaminants 7 of potential concern was conducted for Gold Creek and Blairmore Creek in order to reflect seasonal 8 9 variability in flow and the effects of climate change 10 in the postclosure period. Benga provided detailed 11 results of the modelling in Appendix 6.25 of CIAR 313.

12 Appendix 6.25 of CIAR 313 includes a series of 13 figures of predicted concentrations of contaminants of 14 potential concern. For example, mean monthly arsenic concentrations are shown in Figure 3 on PDF page 1170. 15 The results of this figure indicate that the maximum 16 17 modelled mean monthly arsenic concentration in Blairmore Creek is about 0.65 micrograms per litre. 18 The concentrations of contaminants of potential concern 19 used in the human and wildlife health risk assessments 20 21 are presented in CIAR 313, PDF page 1310, which is 22 Appendix A to Addendum 1. 23 THE CHAIR: You can just leave Sorry. 24 that up, Zoom Host. Don't try and follow all of these.

25 Q THE CHAIR: The Panel is interested in

26 further clarification regarding the level of

1

2

3

conservatism in the assumed concentration of 1 2 contaminants of potential concern which were used to 3 estimate risk to human health. 4 So could Benga confirm that the primary difference between the original GoldSim modelling and the updated 5 6 modelling in CIAR 313 is the use of monthly hydrographs 7 which incorporate climate change and that both models used upper case geochemical source terms? 8 9 Just -- we'll need one minute Α MR. HOUSTON: 10 on that, Mr. Chair. 11 Sure. Ο 12 MS. MOONEY: Hello, Mr. Chairman. Lindsey Α 13 Mooney here. 14 Yeah. 0 So I'm aware that an older data set was presented in 15 Α Appendix A that you have -- that's shown on the screen 16 17 now for Blairmore Creek and Gold Creek. Notably, the concentrations for Blairmore Creek increased. 18 We reevaluated with this updated data set. For eco we 19 20 rescreened. It didn't change the conclusions -- the 21 exposure ratios for eco. They went up very slightly, 22 but there were no changes to conclusions. And the 23 values that we have run in that reevaluation were the 24 95th percentile of the upper case for Gold Creek. I don't know if that answers part of your 25 26 question, maybe.

Well, it anticipated where I was going with some of the 1 0 2 But a couple comments. We're currently questions. 3 asking questions about the human health risk assessment and the -- seems to be a different set of chemicals of 4 5 potential concern in the health risk than for eco risk, 6 so I'm not sure that answer totally addresses the 7 question. The question I just asked was really about the 8 9 difference between the GoldSim modelling and the 10 updated modelling, but I am kind of headed towards what 11 you anticipated, which is: Was the updated modelling 12 used in both the wildlife health and human health risk 13 That's kind of where I'm headed with my assessments? 14 questions. So I think what I heard you tell me is that it was 15 used in the wildlife health risk assessment --16 17 Α So ---- the updated modelling? 18 0 -- the updated -- what is presented in the most recent 19 Α 20 version is relying on the concentrations that are shown on the screen at the moment for eco. We recognized 21 22 that that was on older data set and reevaluated with 23 the updated data set, and it made a marginal change to 24 exposure ratio and no change to conclusions. For -- for human, I'll let -- I'll let Ian speak 25 26 to that.

	_	
1	A	MR. MITCHELL: Yeah. I don't believe the
2		human health numbers were rerun afterwards, but similar
3		to the wildlife, our expected results would be, you
4		know, fairly small changes in in the risk levels and
5		no no really anticipated changes in the conclusions.
6	Q	Okay. So it wasn't it wasn't used for the human
7		health assessment?
8	A	No, I don't believe the human health numbers were
9		updated after that.
10	Q	Okay. I'm going to carry on with my questions just to
11		probe this issue a bit more. But, Ms. Mooney, to go
12		back to your point, the updated calculations were not
13		provided in any of Benga's submissions?
14	А	MS. MOONEY: That's correct.
15	Q	Okay. So we might be looking for an undertaking to
16		provide those, but I'll circle back to that a little
17		farther on.
18		Okay. So just kind of carrying on with this line
19		of questioning, then, and, again, this is specific to
20		the health risk assessment at this point, but could
21		Benga explain the apparent discrepancies between the
22		concentrations of contaminants of potential concern in
23		Blairmore Creek used for the human health risk
24		assessment as summarized by CIAR 313 on PDF page 1310
25		and the results of the modelled mean monthly
26		concentrations in the creek presented in CIAR 313,

Appendix 6.25-1, Figures 1 to 54, with emphasis on 1 issues where the concentrations used in the risk 2 3 assessment are lower than what would be surmised as the 4 likely 95th percentiles from the modelling results in Appendix 6.25-1? And so examples of this would be 5 6 arsenic, copper, manganese, nickel, nitrite, silver, 7 sulphate, and zinc concentrations in Blairmore Creek. And I realize there's quite a few figures that I 8 There's 54 in total for each of the 9 referenced there. 10 COPs. So I'm going to just give you an example to make 11 it clear what the concern is and what we're talking 12 about. 13 So if you -- if we turn to CIAR 313, page 1170. 14 So this is an example of one of the figures. And 15 according to Appendix A, Benga used an arsenic concentration of 0.437 micrograms per litre in 16 Blairmore Creek for the assessment. 17 This concentration 18 is lower than the maximum mean monthly arsenic concentration of what appears to be about 19 20 0.65 micrograms per litre illustrated in this figure. So in similar -- our inability to reconcile the 21 22 use of 95th percentile concentrations from the figures 23 with the human health risk assessment occurs for other parameters. And, Mr. Mitchell, I think you've 24 25 acknowledged that the human health assessment was not 26 updated to reflect the more recent modelling, so that

1 perhaps explains some of the issues? 2 Α MR. MITCHELL: Yeah. That's my 3 understanding, is that the -- the modelling was updated and the concentrations were updated, but the human 4 5 health risk assessment hasn't been updated since then. 6 Okav. So I'm just waiting on a message from my subject 0 7 matter expert.

So one of the concerns the Panel has about not 8 9 using the updated model results relates to arsenic 10 because the incremental cancer risk using the old model 11 was already 2.7 times the Health Canada target for 12 incremental lifetime cancer risk, and if it has 13 increased more, it may be even more -- even higher than 14 that. So that's a potential concern. And that was 15 specific to the end-pit lake.

So given some of the issues we've just talked 16 17 about, so the identical hazard quotients for several contaminants of potential concern despite distinctly 18 19 different concentrations in water, the current question 20 we've just been talking about about the potential lack of conservatism in the concentrations of the COPs that 21 22 were used in the water pathway, the Panel is wondering if Benga could provide an updated summary table of the 23 24 recalculated hazard quotients for the contaminants of 25 potential concern which have identical or near 26 identical hazard quotients approaching or greater

1		than 1. So that would include aluminum, cadmium,
2		cobalt, lead, manganese, thallium, zinc, and vanadium,
3		as well as arsenic.
4		And in doing so, would Benga use the application
5		case concentrations predicted by the updated modelling
6		presented in CIAR Appendix 6.25-1 and ensure that both
7		air deposition to the modelled water concentrations is
8		included to produce the total concentrations?
9		And I guess, although I wasn't specifically
10		talking about the wildlife health risk assessment at
11		this point, if updated hazard quotients were not
12		provided in any of Benga's submissions based on the
13		updated water modelling, we would like a summary table
14		of those as well.
15	A	MR. HOUSTON: Can we just have a moment,
16		Mr. Chair?
17	Q	Sure.
18	A	So, Mr. Chair, we've discussed what you've asked for,
19		and I I think it's clear that some of the numbers
20		used in the analyses are pulled from different points
21		in time. The both the human health risk assessment
22		and the wildlife risk assessment are based on very
23		conservative assumptions in terms of consumptive
24		habits, i.e., we've assumed that the individual or the
25		animal involved is exclusively sourcing food or air
26		from from the same location for an extended period

of time, which, of -- of course, is -- is very 1 2 conservative. 3 We can rerun the models based on a -- that the -the numbers in 6.25 -- the response to 6.25, but it's 4 not going to be a quick -- it's not going to be a quick 5 6 process that -- the rerunning of the models takes 7 considerable effort and time. And so I -- I'm not quite sure how to deal with that. 8 9 What -- what we can say is that, you know, we're 10 very confident that with all the conservatism built in 11 the model that the results will not change, but we 12 recognize the Panel's desire to have a consistent set 13 of numbers based on the last hydraulic model results. 14 So I'm not sure -- we're willing to do the work, but I think it's unreasonable to expect that the 15 revised numbers would be available within the next few 16 17 days. It would be more likely January, that -- that kind of time frame. 18 So the issue for the Panel is not so much the other 19 0 20 conservative functions; it's really about -- it appears 21 to us that the updated water modelling was not used in 22 the assessment. It appears that the numbers are 23 So it's not clear to us how conservative the higher. assessment is without kind of having the most recent 24 25 updated numbers. 26 M-hm. Α

1	Q	So it makes it difficult for the Panel to assess that.
2		And, you know, I think the Panel would agree that for
3		some parameters that are you know, where the hazard
4		quotient is well below .2 or 1, you know, we're not so
5		concerned about those. It's the parameters where the
6		hazard quotient is within that range of, you know, .2
7		to 1, and if we were to increase further, does that
8		have implications for the assessment of risk to health?
9		That's the, kind of, Panel's concern.
10	А	M-hm. Yeah. Understood. I I I think it I
11		agree with you. It would be clearer for everybody if
12		we had one consistent set of numbers that were run
13		through to the end. The yeah. The running of the
14		models just takes time. That's that's the that's
15		the only concern we have.
16	Q	Okay. Let's maybe park that momentarily, and I'll
17		confer with my colleagues at the break.
18	A	Okay.
19	Q	But just flag that this we do see this as an issue
20		in terms of our ability to interpret the human health
21		risk assessment.
22	A	Okay.
23	Q	Okay. I'm going to carry on, then, with the next one.
24		So now I'd like to turn to the level of
25		conservatism in the derivation of concentrations of
26		contaminants of potential concern in the Oldman

1 reservoir. So in CIAR 360, PDF 8, Benga states: 2 (as read) 3 The risk assessment was based on the 95th percentile monthly water -- monthly 4 5 water concentrations of the 23-year 6 operations period and a 57-year postclosure 7 period from the upper case model scenario. Could Benga confirm that the concentrations in the 8 9 Oldman reservoir in Appendix A to Addendum 1 of 10 CIAR 313, which were used in the estimate of risk to 11 human health, were produced by the GoldSim model 12 described in CIAR 42, Appendix 10? So, again, we're 13 thinking about the human health risk assessment here, 14 and this is not unrelated to the discussion we just 15 had. So -- so, Mr. Chair, I believe we discussed this during 16 Α 17 the water panel, and those concentrations in the Oldman reservoir were, indeed, generated through the GoldSim 18 19 model. 20 Thank you. 0 Okay. 21 So given the discussion we've just had with respect to the level of conservatism in the GoldSim 22 23 model compared to the updated model for Blairmore and 24 Gold Creeks, and given that the project-related loading 25 of the COPCs to the Oldman reservoir is from Blairmore 26 and Gold Creeks, will the use of the updated model

1		results for Blairmore and Gold Creeks presented in
2		CIAR 313, Appendix 6.25 change the predicted
3		concentrations of contaminants of potential concern in
4		the Oldman reservoir, and, if so, by how much?
5	A	Mr. Chair, the the revised modelling of Blairmore
6		and Gold Creek and the modelling for the Oldman
7		reservoir concentrations were done at the same time;
8		in in other words, the the model was the
9		GoldSim model was revised to produce the outputs for
10		6.25 and, at the same time, are are using the same
11		values the estimations for the Oldman reservoir
12		were were done. So I'm I'm saying it's it's
13		the same model.
14	Q	Okay. Just a moment.
15		Okay. Thanks.
16		So what is Benga's confidence that the predicted
17		concentrations of contaminants of potential concern in
18		the Oldman reservoir reflect hydrologic variability and
19		climate change and are conservative?
20	А	I I wish you had asked that question a week ago,
21		Mr. Chair.
22	Q	M-hm.
23	А	It's really a question for Soren Jensen, who did the
24		modelling. However, I I think the response he would
25		give is that the seasonal variability that we we
26		noted in our model was based on I I call it a
1		

5830

1 "Monte Carlo", but it's a -- it's a modelling technique 2 that -- that looks at dry years, wet years, and -- and 3 looks at the natural range of variability and inflows, and over the life of the project, we -- we would expect 4 5 that that would encompass the marginal changes due to 6 climate change. 7 Okay. Thanks for that, Mr. Houston. 0 I'm going to shift gears a little bit and 8 Okay. 9 ask some questions about predictions of concentration 10 of contaminants of potential concern in the end-pit 11 lake. There are several references related to the 12 derivation of concentrations of selenium and other contaminants of potential concern in the end-pit lake. 13 14 In CIAR 42, Consultant Report 5, Benga states 15 that: (as read) The concentrations of contaminants of 16 17 potential concern in the end-pit lake were derived using data collected from three 18 historic pit lakes. 19 20 That reference is on PDF page 58. And Benga presents 21 these historic pit lake concentrations in Table 13 on 22 PDF page 61. These concentrations are for winter only and range 23 24 from 0.23 to 1.79 micrograms per litre. No details 25 were provided with respect to how predicted 26 concentrations in the end-pit lake were derived using

1 the historic pit lake data.

In CIAR 42, Appendix 10, Figure 7-16 to 7-20 on PDF pages 269 to 271, Benga presents sulphate, nitrate, cobalt, selenium, and zinc concentrations in the end-pit lake for the duration of the modelling period. There were no predicted concentrations of other contaminants of potential concern in the end-pit lake in Appendix 10B.

9 Benga presents the concentrations used for the 10 assessment of risk to human health and wildlife health, 11 including estimated concentrations in the end-pit lake 12 in CIAR 313, Appendix A to Addendum 1, PDF page 1310. 13 Some example concentrations of COPs in the Appendix A 14 table include a selenium concentration of 30 micrograms 15 per litre, and sulphate concentration of 190 milligrams per litre, and nitrate concentration of 16 17 0.107 milligrams per litre, a cobalt concentration of 18 0.045 milligrams per litre, and a zinc concentration of

19 0.177 milligrams per litre.

20 Could Benga confirm the basis for prediction of 21 the concentrations of contaminants of potential concern 22 in the end-pit lake? Specifically what we're 23 interested in is knowing if historic pit lake data were 24 used and, if so, how they were used, and if modelling 25 was used, whether the GoldSim modelling reported in 26 CIAR 42, Appendix 10B was the basis for all of the

5832

1		concentrations presented in CIAR 313, Appendix A, or	
2		whether another model was used.	
3	A	Just one minute, Mr. Chair.	
4	Q	Thank you.	
5	A	So so, Mr. Chair, the the estimates in Document	
6		Number 313, the most recent ones, were made using the	
7		GoldSim model, and they were made using the upper case	
8		values, so values that are boundary case. The intent	
9		of that exercise was to provide a screening-level	
10		assessment of of risk to to wildlife. And so	
11		our our interest was in generating numbers that were	
12		on the high end.	
13		The modelling is not based on design of the	
14		end-pit lake. It's based on some assumptions around	
15		what the end end-pit lake might look like. And the	
16		idea was to identify where there is a potential risk to	
17		inform the future design of the end-pit lake and and	
18		any mitigation measures that need to be incorporated	
19		into that design.	
20	Q	Okay. Thank you, Mr. Houston. Just one minute.	
21		Are you able to tell us whether or not the GoldSim	
22		modelling of the end-pit lake considered varying	
23		volumes of the lake with an emphasis on, kind of,	
24		dry/wet years?	
25	A	The current current thinking is that the end-pit	
26		lake, as we've discussed, will will maintain a	

Dicta Court Reporting Inc. 403-531-0590

1		fairly steady volume because it will be designed to
2		decant into the saturated backfill zone. I don't
3		believe we've allowed for the end-pit lake to decrease
4		in volume below that kind of maintenance elevation
5		in in our modelling.
6	Q	Okay. Thank you, Mr. Houston. One minute.
7		So can Benga provide and discuss the various
8		conservative assumptions used in the prediction of
9		end-pit lake water quality?
10	А	So, Mr. Chair, that that would primarily relate to
11		the use of the upper case source terms and a
12		presumption around the ability of or the incoming
13		water to contain to to have been in contact
14		with with rock that is leaching the contaminants of
15		concern. So some some high-level assumptions were
16		made on both of those in both of those cases. I
17		I'm it's most easy to talk about the the upper
18		case, that that being the highly unlikely case in
19		terms of leaching values. In terms of how much water
20		going into the end-pit lake is exposed to rock that has
21		the potential to leach, I'm I'm less able to talk to
22		that. But I I could reach out to Mr. Jensen to get
23		a little bit more background on on that, if that is
24		helpful.
25	Q	So just to confirm what I think I heard you said, that
26		the 95th percentile values were really related to the

1		geochemistry source terms, that those 95th percentile	
2		values are not related to the hydrology because you	
3		assumed that the lake would have, kind of, a constant	
4		volume. Do I have that correct?	
5	А	That's correct. And there would also be an assumption	
6		around how much of the water that arrives in the	
7		end-pit lake is subject to is exposed to rock that	
8		could leach the chemicals of potential concern and how	
9		much arrives directly as overland runoff.	
10	Q	Okay.	
11	A	All all of those things are based on a design that	
12		hasn't really happened yet as well, Mr. Chair. So	
13		there there's a lot of lot of assumptions in	
14		in the model. And as we highlighted, the intent was to	
15		derive values that, you know, are conservative so that	
16		we could identify which chemicals of potential concern	
17		present risk and and use that as an input into the	
18		final end-pit lake design.	
19	Q	Okay. So given your answer with respect to the	
20		conservatism inherent in the derivation of	
21		concentrations of COPs in the end-pit lake, can you	
22		explain or justify why Benga considers the incremental	
23		lifetime cancer risk from arsenic exposure of 2.7 in	
24		10,000, which is 27 times the Health Canada target of	
25		1 in 100,000 to be conservative?	
26	A	MR. MITCHELL: There is a couple aspects	

with -- with arsenic, and what -- one of those is a 1 2 certain amount of conservatism built into that toxicity 3 value to -- to -- to start with. The -- it's based on 4 the assumption that there's basically a linear 5 relationship between concentration and cancer risk. 6 And there are quite a few researchers in the arsenic 7 world that actually don't believe that's the case and there is actually a threshold below which those risks 8 9 don't occur. But, you know, in the absence of 10 conclusive information and, you know, regulatory 11 acceptance, we -- we sort of work on that assumption. 12 The second is that the background risks on the --13 on the -- or the background concentrations of arsenic 14 are already sort of in that 10 to the minus 4 range. Again, background concentrations of arsenic in water 15 and food are already at that kind of level. 16 So I believe there is a discussion of that. Just let me 17 18 find the right place. So in CIAR 313 -- I'll pull that 19 one up myself -- page 1063 PDF, I believe there is a 20 discussion of that. Sorry. That doesn't look like the 21 right PDF page. Just give me a moment to find where 22 that is. 23 Mr. Mitchell, you might want Α MR. HOUSTON: 24 to look at Document 360, PDF 11. 25 Α MR. MITCHELL: Thanks, Mr. Houston. 26 So -- so we do have a discussion of that issue

> Dicta Court Reporting Inc. 403-531-0590

1 in -- in our report, and as there are quite a few 2 locations, the risk -- the predicted risk was less than 3 1 times 10 to the minus 5. Again, a lot of these concentrations, either where a risk above 1 times 10 to 4 the minus 5 is predicted, the concentrations were 5 6 actually below the drinking water guidelines, and that 7 also base -- is built on some conservative assumptions that include that, you know, essentially, 100 percent 8 9 of somebody's drinking water over their lifetime comes 10 from that source, which, again, we believe, 11 particularly for a source such as the end-pit lake, is 12 an extremely conservative assumption. 13 Thank you, Mr. Mitchell. 0 Okay. 14 Moving on to another question. In CIAR 313, 15 Tables 7-1 to 7-4, which appear on pages 1259 to 1263, Benga presents hazard quotients and incremental 16 17 lifetime cancer risks for the end-pit lake, Blairmore Creek, Gold Creek, and the Oldman reservoir. 18 Hazard 19 quotients greater than the target -- greater than the target HQ of 0.2 were noted for several contaminants of 20 21 potential concern, including aluminum, barium, cadmium, 22 cobalt, copper, lead, manganese, methylmercury, 23 selenium, thallium, and zinc. 24 Benga then makes several statements with respect 25 to the contribution of background concentrations of the 26 COPCs which exceed an HQ of 0.2. On PDF page 1264 of

1	CIAR 313, last paragraph, Benga states that: (as read)		
2	Due to low inherent toxicity of aluminum and		
3	the fact that measured concentrations are		
4	consistent with what would be expected to		
5	naturally occur in the background, aluminum		
6	is not considered to be a human health		
7	concern for the project.		
8	On PDF page 1265, Section 7.2.1.2 of CIAR 313, Benga		
9	states that: (as read)		
10	Antimony HQ results are driven primarily		
11	through background exposure estimates which		
12	are considered an artifact of the		
13	conservatism built into the human health		
14	exposure model.		
15	On PDF page 1265, Section 7.2.1.3 of CIAR 313, Benga		
16	states that: (as read)		
17	The HQ values for barium, cadmium, copper,		
18	lead, manganese, thallium, and zinc are a		
19	result of background measured concentrations		
20	and that in all cases project-case		
21	contribution predictions were less than 0.2.		
22	[Benga goes on to state that] The additional		
23	consideration of groundwater contribution to		
24	the human health risk model has had no		
25	material effects on the conclusions of the		
26	updated human health risk assessment.		
1			

1 In CIAR 313, Appendix A, PDF 1310, background and project-related concentrations of the contaminants of 2 3 potential concern used in the risk assessment are 4 presented. 5 So the question is: Can Benga explain why 6 project-related concentrations of the contaminants of 7 potential concern with hazard quotients greater than 0.2 for exposure to Blairmore Creek in the application 8 9 case are an order of magnitude above background for all 10 but zinc despite Benga's statements which attribute 11 hazard quotients greater than 0.2 to background 12 exposure? 13 Could you repeat that question? Α Sorry. 14 Sure. Can Benga explain why project-related 0 concentrations of the contaminants of potential concern 15 with hazard quotients greater than 0.2 for exposure to 16 Blairmore Creek in the application case are an order of 17 18 magnitude above background for all but zinc, despite Benga's statements which attribute hazard quotients 19 20 greater than 0.2 to background exposure? Again, that relates to, Mr. Chair, the exposures and 21 Α 22 hazards that were calculated for the full multimedia 23 So those concentrations in the last table you model. 24 referenced are just the surface water concentration, 25 but where those hazards are actually coming from is --26 is the rest of the multimedia assessment and, in

		5640	
1		particular, the exposure through vegetation.	
2	Q	Okay. Just a moment.	
3		So in that case, could you provide an explanation	
4		for a specific example? And so I'm thinking about	
5		lead. So you're suggesting that vegetation rather than	
6		drinking water is deriving is deriving those	
7		concentrations? And would that apply to something like	
8		lead?	
9	A	Yes, that's correct.	
10	Q	Okay. Thank you, Mr. Mitchell.	
11	A	We can't confirm specifically about lead, but in in	
12		general, that is the trend. We'd have to look at the	
13		detailed modelling results to talk about a specific	
14		chemical. But I could certainly ask the team to do	
15		that for lead.	
16	Q	No, that's fine, Mr. Mitchell. I think that's	
17		satisfactory.	
18		So given that the relative contribution of the	
19		project to the hazard quotients in that multimedia	
20		assessment is greater than 0.2, what mitigation	
21		measures does Benga think are appropriate to reduce its	
22		contribution to risk to human health from these	
23		contaminants of potential concern? Or maybe a better	
24		way to ask it is: What mitigation measures, if any,	
25		has Benga proposed to reduce its contribution to	
26		incremental risk from these contaminants of concern?	
1			

1 Α MR. HOUSTON: One minute, Mr. Chair. 2 So, Mr. Chair, the mitigations are primarily 3 related to the things we've been talking about in terms of air -- air contaminant reduction and treatment of 4 5 water through the water management system of the 6 project. Those are the primary mitigations. 7 When it comes to the end-pit lake, of course, we -- we still have a detailed design process to go 8 9 through, and as we -- as we do that, that detailed 10 design will be informed by learnings through the first 11 years of operation and water treatment in terms of 12 source -- source terms, in terms of our -- our ability to treat, and -- and especially, as we develop the mine 13 14 plan in more detail, the -- the configuration of the 15 end-pit lake. So there are mitigations to -- to come 16 with respect to the end-pit lake. With respect to 17 water that may be in Gold Creek or Blairmore Creek, we've talked extensively about the capture and 18 19 treatment programs that we have put in place for the 20 project or proposed for the project. And in terms of 21 air contaminants, we've talked extensively about our 22 modelling of contaminants of concern through the air models. 23 24 Does that answer your question, Mr. Chair?

Does that answer your question, Mr. Chair? 25 Q It does.

26

Maybe just one follow-up with regard to that.

1		Would Benga expect to have to restrict access to the
2		end-pit lake for a prolonged period into the
3		postclosure phase to manage the potential for exposure
4		to human health?
5	A	Certainly that wouldn't be our objective as we go
6		through the design, Mr. Chair, and and and we'd
7		be looking for mitigations and alternatives through
8		that end-pit lake design to avoid that that kind of
9		mitigation, the the the restricted access need
10		for restricted access.
11		However, I think we do recognize that there may be
12		a situation where the initial filling of the end-pit
13		lake could could result in water quality that is not
14		what we would like and the potential to have to take
15		some post-filling measures to to treat the water
16		down to a a sustainable and and acceptable water
17		quality. So there may be some temporary measures
18		required in terms of restricted access.
19	Q	Okay. Thank you, Mr. Houston.
20		Okay. I'm going to shift gears a little bit here
21		and talk ask some questions about the groundwater
22		pathway. So human consumption of groundwater by way of
23		a domestic use water well was not considered as a
24		component of the human health risk assessment update
25		provided in CIAR 313, Appendix 6.27-1, Addendum 1.
26		Benga stated: (as read)

5842

There are no confirmed domestic wells within 1 the proposed mine permit boundary and the 2 3 potential for domestic wells to be drilled and completed within the mine permit boundary 4 5 is low because the underlying bedrock units 6 are not very permeable. Surficial deposits associated with Gold Creek or Blairmore Creek 7 were identified as the primary unit to be 8 9 considered regarding domestic water wells; 10 however, Benga stated that groundwater 11 quality in those aquifers would be similar to 12 the quality of the associated surface water. 13 Benga's baseline groundwater data indicates 14 some exceedances of drinking water guidelines for aluminum, barium, chromium, iron, and 15 manganese in samples of groundwater taken 16 17 from surficial deposits; shallow, mid-depth, and deep-monitoring wells; springs and 18 groundwater-dependent ponds in the local and 19 20 regional study area. 21 THE CHAIR: So, Zoom Host, if you could 22 pull up CIAR 42, Consultant's Report Number 3. And I'm interested in Table B8, which appears on PDF 137 and 23 So we'll start with 137. 24 138. 25 THE CHAIR: So I just want to, first of 0 26 all, draw Benga's attention to the concentrations of

aluminum and manganese in the samples from surficial deposits from the well MW15-12-7 which appears near the bottom of page 137. The geology of MW15-12-7 is described as "surficial deposits" in CIAR 42, Consultant's Report Number 3, PDF page 194.

6 And if we can turn to the next page, one page 7 down, 138. If Benga could then also look at the concentrations for the springs which appear, and, 8 9 again, particularly aluminum and manganese. And then 10 if Benga could compare these values to the predicted 11 concentrations in surface water bodies considered in the human health risk assessment, CIAR 313, PDF 12 13 page 1310. And maybe we can pull that up.

14 So the question is: Could Benga confirm that the aluminum concentrations used in the risk assessment for 15 Blairmore and Gold Creeks which range from 0.005 to 16 17 0.03 milligrams per litre do not reflect the range of aluminum concentrations from the well in surficial 18 deposits with the site location code MW15-12-7, which 19 20 had a concentration of 8.83 milligrams per litre or the 21 two concentrations measured in Spring 1, which were 22 0.11 and 0.14 milligrams per litre? 23 MR. HOUSTON: So, Mr. Chair, if I understand Α 24 the question, you're asking us to confirm that the --25 the table in -- I think this came from 313, the one 26 that's on the screen now, does not reflect the values

1		from Consultant Report Number 3 in those wells and	
2		springs that you identified? Do you	
3	Q	That's correct, yeah.	
4	A	Just just one minute.	
5		That that that's correct, Mr. Chair. The	
б		the human health and wildlife health models are are	
7		reflecting values that are representative of of	
8		of a larger spatial area and do not necessarily reflect	
9		specific samples that are taken from from the wells	
10		that were identified in Consultant Report Number 3.	
11	Q	Okay. Thank you, Mr. Houston. Just a similar	
12		question, then, for manganese. Could you confirm that	
13		the manganese concentrations used in the risk	
14		assessment, which range from 0.005 to 0.03 milligrams	
15		per litre oh, sorry. I might be reading the same	
16		question again. No, I'm not. Sorry. I'm going to	
17		start again.	
18		Could you confirm that the manganese	
19		concentrations used in the risk assessment, which range	
20		from 0.005 to 0.03 milligrams per litre, do not reflect	
21		the range of manganese concentrations from the spring	
22		samples which range from less than 0.005 to 2.69 milligrams	
23		per litre?	
24	A	That that is correct, Mr. Chair.	
25	Q	Okay. So could Benga then comment on the potential for	
26		risk to human health from drinking water obtained from	

5845

1		surficial deposits in springs given the above results	
2		and given that the surface water concentrations in the	
3		two creeks do not reflect the range of groundwater	
4		quality in surficial deposits?	
5	A	MR. MITCHELL: A couple of things, Mr. Chair.	
6		One is, obviously, when you're looking at individual	
7		samples for manganese, for example, you you've done	
8		that at a range of, you know, less than .005 up to	
9		2.61, so it does vary both, you know, spatially and	
10		over time. And I I can't speak to how those samples	
11		were collected and whether they were filtered or not.	
12		I wasn't involved at all in the hydrogeology	
13		assessment.	
14		But, also, a lot of those drinking water	
15		guidelines, for example, for and I don't have the	
16		the supporting documents in front of me, but for	
17		manganese, I'm pretty sure, off the top of my head,	
18		it's actually not based on a on a human health end	
19		point. So I could be wrong. That's just off the top	
20		of my head. But so so, again, these	
21		concentrations that have been measured in in these	
22		baseline samples don't necessarily indicate a human	
23		health risk even if they do exceed the drinking	
24		guidelines.	
25	Q	Okay. Thank you, Mr. Mitchell. Just one moment.	
26		If one were to drink water from a well or a spring	

Dicta Court Reporting Inc. 403-531-0590

1		in the location that had those concentrations that were		
2		identified in Table B8, would there potentially be a		
3		risk to human health given that the concentrations are		
4		well well above		
5	A	MR. HOUSTON: And to be clear		
6	Q	(INDISCERNIBLE - OVERLAPPING SPEAKERS)		
7	A	Sorry, Mr. Chair.		
8		To be clear, you're you're you're talking		
9		about an occasional drink of water, or you're talking		
10		about a lifetime supply from from those locations?		
11		I think you're talking about an occasional drink as		
12		opposed to a long-term usage of the water.		
13	Q	Potentially, I suppose. I'm going to ask you a		
14		question about Ms. Gilmar shortly that might fall into		
15		a category. But however you want to answer it,		
16		temporary		
17	A	Okay.		
18	Q	or long-term.		
19	A	Okay. And that was specifically around aluminum and		
20		<pre>manganese; right?</pre>		
21	Q	Yeah.		
22	A	Okay. So, Mr. Mitchell, do you have		
23	A	MR. MITCHELL: Yeah.		
24	A	MR. HOUSTON: a response?		
25	A	MR. MITCHELL: Could you potentially call up		
26		the table that actually had those numbers in it again?		

1	Q	Okay. Let me just back up a bit here. Sorry. I'm
2		just trying to find the right reference.
3		THE CHAIR: CIAR 42, Consultant Report
4		Number 3, PDF 137, and then 138 as well, but let's look
5		at 137 first. Scroll to the bottom of that.
б	A	MR. MITCHELL: So those concentrations, you
7		know, they were the ones that really get flagged
8		are, again, the aluminum, see some pyrene in some
9		locations, be some some manganese, that are
10		primarily based on aesthetic objectives. Again, I
11		think the the manganese in particular, I know, is
12		based on aesthetic objective. Aluminum and iron, we
13		see high concentrations in groundwater all the time
14		for for various reasons. And, again, not a lot of
15		really stringent health health end points on those,
16		and, you know, without having done a formal assessment
17		on these particular groundwater sampling locations,
18		the the numbers don't raise a whole lot of concern
19		to me. And I think if concentrations in the actual
20		springs, I think, were a bit lower, if I recall, on the
21		next page.
22	Q	Yeah, if you go to one next page.
23	A	Yeah. So, again, in the springs, we see that manganese
24		again that's above an aesthetic objective. And, again,
25		I don't have the supporting document in in front of
26		me. Just from the recollection, I think it might be

1 related to -- something related to -- to laundry stains 2 or something like that, but don't -- I -- I can't say 3 that for sure because I don't have that document in 4 front of me.

5 Again, one sample with some low iron that we see, 6 again, guite often. And, again, I don't know whether 7 these samples have been filtered or whether that reflects a -- a total concentration or not. 8 But those 9 sort of numbers don't give me a whole lot of concern. 10 0 Okay. My risk assessment expert tells me that the 11 aluminum objective is not based on esthetics only and 12 that at higher concentrations, there may be a risk. 13 Are these the kind of levels you would be concerned 14 about?

It -- it depends on whether -- whether the -- whether 15 Α that's reflecting a dissolved concentration or a total 16 17 concentration. Again, I don't know the background 18 around these numbers. It's slightly above the -- the 19 drinking water quideline within the same general 20 magnitude. It's -- you're probably not a yield 21 drinking water source, if it's -- if it's above that, 22 but I -- I can't, without actually doing a proper 23 assessment on it, you know, confirm what the level of 24 health risk is.

Q Okay. I think that's -- that's good enough. I'm going
to move on to the next question.

1 Is it possible that seepage from waste rock areas 2 could affect groundwater in surficial deposits, 3 springs, and bedrock deposits resulting in increases in concentrations of contaminants of potential concern, 4 5 notably selenium but also other metals such as aluminum 6 and manganese? 7 MR. HOUSTON: So we have put in place a Α

8 groundwater monitoring program, and we've identified 9 that we're going to be monitoring water adjacent to 10 the -- the ex-pit rock dumps and other structures and 11 also adjacent to the -- the -- the creeks. And the 12 idea would be to identify any -- any levels of 13 contamination that are concerning and to use that to 14 inform additional mitigation measures. So our --15 our -- our plan would be to -- to -- to mitigate to avoid that situation. 16

17 Q Okay. Thank you, Mr. Houston.

Does Benga expect that people will not use water from surface -- surficial deposits or bedrock in the postclosure period, and if so, what's the basis for that opinion?

A So we -- we -- again, we expect that mitigation measures will be in place as required postclosure to ensure that water quality is -- is adequate in -- in the vicinity of the -- the creeks. We -- in terms of postclosure of the mine site itself, I would expect that we would have to deal with that based on -- based on the final circumstance of the site.

We -- we do expect to have to treat through the saturated backfill zone, for example, for an extended period of time, as we've discussed, and so within the -- the area of the mine pit itself, yes, we -- we would not expect to have folks drilling wells or doing something else that would disrupt that area.

9 Outside of that, we would continue with our -- our 10 water monitoring program and continue with mitigation 11 measures required to ensure that groundwater outside of 12 the -- the mine site itself remains at acceptable 13 quality standards.

14 Q Okay. Thank you, Mr. Houston.

1

2

So we heard during the first week of the hearing 15 that Fran Gilmar, whose lands are located on the east 16 17 side of the project and within the currently proposed mine permit boundary, uses a spring on her property as 18 a source of drinking water, and we heard other property 19 20 owners on the east side of the project, across the 21 creek may also use springs as a source of drinking 22 water.

Has this been considered within Benga's human
health risk assessment, and if not, why not?
A Maybe I'll just start on that, Mr. Chair, and then we
can -- we can let Mr. Mitchell add on, if -- if he

1 will -- if he wishes.

2 The -- the springs that Ms. Gilmar is talking 3 about are points where seepage surfaces very close --4 in very close proximity to Gold Creek. And so we -- we would consider those to be essentially part of the base 5 6 flow going into Gold Creek. We -- we do -- we will 7 continue to monitor that -- that base flow for water quality, and we will continue to monitor at other 8 9 points closer to the -- to the mine to ensure that the 10 water is -- is of suitable quality, essentially, a 11 quality that's suitable for entering into the creek 12 itself.

Mr. Mitchell, is there anything to add to that?
A MR. MITCHELL: I -- I think you captured it
fairly well, Mr. Houston.

We -- we did assess, based on the drinking water 16 and based on the -- out of -- out of the -- the streams 17 and the assumption that that would essentially provide 18 a permanent, you know, long -- long-term drinking water 19 20 supply for somebody, which I don't know how -- I don't 21 know how these springs are used, but, you know, if the 22 springs are associated with a surface water, then we would expect the risk to be generally similar. 23 24 Okay. Just a moment, please. 0

25 So just for clarity, then, Fran Gilmar's spring 26 that she uses wasn't explicitly considered within the 1

human health risk assessment?

I don't think we had any information about that 2 Α No. 3 when we were doing the human health risk assessment. 4 So it wasn't explicitly considered separately from the surface water. Again, we did also assume a lifetime 5 6 exposure there, and I -- my understanding is that 7 that's not a full-time drinking water source. Okay. Thank you, Mr. Mitchell. Just one moment. 8 0

9 If the project did result in elevated 10 concentrations within groundwater, what are the 11 mechanisms that would cause the project-related 12 concentrations to diminish with time, and how much time 13 would be needed to return to something resembling 14 baseline?

15 MR. HOUSTON: Of course, that's a question Α we've tried to wrestle with a few times during this --16 17 this hearing, Mr. Chair, and the -- the mechanisms for 18 long-term reduction of seepage in -- into -- or into the water, whether it be groundwater or water that we 19 20 extract from the ex-pit dumps, is -- is difficult to 21 prescribe with any -- any precision.

We do hope to -- through the reclamation, through the structure of the dumps, through other mitigations to minimize the amount of water that is -- that -- that percolates through the -- the ex-pit dumps in -- in the first place and -- and then escapes to groundwater, and

we do anticipate operating seepage capture wells 1 adjacent to those facilities for some time. 2 3 The -- the time frame to predict that the -- the 4 ambient concentrations reduce below acceptable levels is -- is just something we -- we are not confident 5 6 in -- in predicting at this moment, and so the best we 7 can do there is to indicate that we will commit to maintaining all of those mitigations for -- for the 8 9 long -- long term until they're no longer required. 10 Q Okay. Thank you, Mr. Houston. 11 So just a final question on this topic. So having 12 regard for that discussion, what is Benga's level of 13 confidence that drinking water obtained from 14 groundwater sources would not be affected by the

project, including during the postclosure period? 15 So the groundwater source is bounded by Gold Creek and 16 Α Blairmore Creek on either side of the project and --17 and Bluff Mountain in the -- in the south. 18 Within those confines, we will be monitoring and testing 19 20 groundwater quality, and we will have, as I've just 21 mentioned, mitigation in place to capture that 22 groundwater that does not meet drinking water -- or --23 or groundwater quality parameters.

24 So based on those factors, we have a high 25 confidence that there won't be users of groundwater 26 within the confines of the project that would be

		5855
1		exposed to a a health risk.
2	Q	Okay. And just a moment, Mr. Houston.
3	×	Is your high confidence driven by your ability to
4		control the source and capture contaminants, or is it
5		based on monitoring?
6	A	Both, Mr. Chair. We would be monitoring to ensure that
7	21	the controls we put in place are are functioning
8		properly and and to inform any additional mitigation
9		measures that may be required.
10	Q	Okay. Thank you, Mr. Houston.
11	×	THE CHAIR: I do have more questions, but
12		I'm going to suggest we take our lunch break now. It's
13		just about 12:15, so we'll resume at 1 PM. Thank you.
14		Juse about 12.13, so we if resume at i in. mank you.
15		PROCEEDINGS ADJOURNED UNTIL 1:00 PM
16		IROCHIDINGD ADOORAND ONTIL I'OU IM
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
20		

		3830
1	Proceedings Taken via Re	emote Video
3	November 30, 2020	Afternoon Session
4		
5	A. Bolton	The Chair
6	D. O'Gorman	Hearing Commissioner
7	H. Matthews	Hearing Commissioner
8		
9	M. LaCasse	AER Counsel
10	B. Kapel Holden	AER Counsel
11		
12	K. Lambrecht, QC	Joint Review Panel Secretariat
13		Counsel
14		
15	T. Utting	IAAC Staff
16	E. Arruda	AER Staff
17	D. Campbell	AER Staff
18	T. Turner	AER Staff
19	T. Wheaton	AER Staff
20	A. Shukalkina	AER Staff
21		
22	M. Ignasiak	For Benga Mining Limited
23	C. Brinker	
24		
25	R. Warden	For Ktunaxa Nation
26	T. Howard	

		5857
1	K. Poitras	For Métis Nation of Alberta
2		Region 3
3		
4	Chief B. Cote	For Shuswap Indian Band
5		
6	B. Snow	For Stoney Nakoda Nations
7		
8	R. Drummond	For Government of Canada
9	S. McHugh	
10		
11	A. Gulamhusein	For Municipality of Crowsnest
12		Pass
13		
14	M. Niven, QC	For MD of Ranchland No. 66
15	R. Barata	
16	J. Nijjer (Student-at-La	aw)
17		
18	B. McGillivray	For Town of Pincher Creek
19		
20	D. Yewchuk	For Canadian Parks and
21		Wilderness Society, Southern
22		Alberta Chapter
23		
24	R. Secord	For Coalition of Alberta
25	I. Okoye	Wilderness Association, Grassy
26		Mountain Group, Berdina Farms
1		

Ltd., Donkersgoed Feeder 1 Limited, Sun Cured Alfalfa 2 3 Cubes Inc., and Vern Emard 4 R. Cooke For Crowsnest Conservation 5 6 Society 7 G. Fitch, QC For Livingstone Landowners 8 9 C. Agudelo Group 10 For Timberwolf Wilderness 11 M. Sawyer 12 Society and Mike Judd 13 14 (No Counsel) For Barbara Janusz 15 (No Counsel) For Jim Rennie 16 17 S. Elmeligi For Alberta Chapter of the 18 A. Morehouse Wildlife Society and the 19 Canadian Section of the 20 S. Milligan 21 Wilderness Society M. Boyce 22 J. Gourlay-Vallance For Eco-Elders for Climate 23 24 Action 25 For Trout Unlimited Canada 26 L. Peterson

For Coal Association of Canada 1 R. Campbell 2 3 (No Counsel) For Alistair Des Moulins 4 5 (No Counsel) For David McIntyre 6 7 (No Counsel) For Fred Bradley 8 9 (No Counsel) For Gail Des Moulins 10 11 (No Counsel) For Ken Allred 12 (Not Present) 13 14 (No Counsel) For Monica Field 15 S. Frank For Oldman Watershed Council 16 17 A. Hurly 18 19 C. Longacre, RPR, CSR(A) Official Court Reporter 20 21 (PROCEEDINGS COMMENCED AT 1:02 PM) 22 GARY HOUSTON, MIKE BARTLETT, RANDY RUDOLPH, 23 JANET BAUMAN, DANE MCCOY, STEVE BILAWCHUK, IAN MITCHELL, JOHN KANSAS, LINDSEY MOONEY, DAVID DEFOREST, 24 25 Previously Affirmed 26 (Dust, air quality, greenhouse gas emissions, noise,

-		5000
1		and light; wildlife, including migratory birds and
2		species at risk, wildlife health, and human health risk
3		assessment)
4		Alberta Energy Regulator Panel Questions Benga Mining
5		Limited
6	Q	THE CHAIR: Okay. Welcome back, everyone.
7		Before moving on to my next set of questions, I
8		just wanted to kind of revisit that issue or that
9		discussion we were having about the fact that the
10		health risk assessment was not updated to include the
11		updated water quality modelling, and I had kind of put
12		a potential undertaking to you, and I think what I
13		heard was it would require a significant amount of
14		effort and work to do that, so
15	A	MR. HOUSTON: Mr. Chair.
16	Q	Yeah. Yeah?
17	A	So we we've also been discussing that during
18		during the lunch break, and I I think Mr. Mitchell,
19		perhaps, has another pathway that we'd like to
20		suggest
21	Q	Okay.
22	A	for your consideration.
23	Q	Sure. Go ahead, Mr. Mitchell.
24	А	MR. MITCHELL: Yeah. So we took a look at
25		the updated predictions for Blairmore Creek, and what
26		we found is that almost all of those concentrations, at
1		

least for the -- sort of the key contaminants that we were really looking at, were higher in the end-pit lake than they are in the revised Blairmore Creek numbers. So the risk predictions that were done for the end-pit lake are, therefore, you know, protective of Blairmore Creek.

7 So what we would propose is using those end-pit lake results to demonstrate kind of the -- you know, 8 the worst-case for Blair Creek -- Blairmore Creek that 9 10 we know -- we know Blairmore Creek will be lower than 11 And, you know, again, we also do want to stress that. 12 that these calculations are all based on these water 13 bodies being a -- you know, sole source of water for 14 somebody over a chronic period of time or -- or a So there's that conservatism built in. 15 lifetime. But 16 we did determine that the end-pit lake results are 17 protective of Blairmore.

18 Q Okay. Just hold on a second.

So in thinking about that, did you look at the concentrations of the different COPCs, and can you confirm that all of the end-pit lake concentrations were greater than the concentrations in Blairmore Creek -A Right.

25 Q -- for those that exceeded an HQ of 0.2?
26 A Not -- not all. There were a small number, and --

1 and -- and -- of the ones that came up of note, I think 2 the -- the exception was aluminum, which I think had a 3 concentration that was slightly higher in Blairmore 4 Creek than predicted in the end-put -- pit lake. You know, if the Panel did want an updated result for 5 6 aluminum, I -- I think we could probably have that 7 available for, perhaps, tomorrow. 8 There were a couple others that were also higher 9 in Blairmore Creek, but they were substances like 10 calcium and lithium and sodium, ones that haven't --11 they're not necessarily the -- the higher risk -- or 12 those that were the higher risk for predicted. 13 And when you say that the concentrations in the 0 Okav. 14 end-pit lake were protective of Blairmore Creek, what 15 do you mean by that? By that, I mean that we can take the results that we 16 Α 17 did for those risk calculations for the end-pit lake and, you know, essentially apply those to Blairmore 18 Creek, and we know that the actual hazards for 19 Blairmore Creek would be lower than that. 20 21 It was my understanding from our earlier Q Okay. 22 conversation that the end-pit lake concentrations weren't derived using, kind of, the updated water 23 24 quality modelling, or am I mistaken? Do I have that 25 wrong? What I stated is the concentrations that we used for 26 Α

-		5005
1		the calculations for end the end-pit lake are higher
2		than the concentrations
3	Q	Oh, okay.
4	A	for revised modelling in Blairmore Creek so that we
5		know that those calculations, therefore, are protective
6		of Blairmore Creek, like I said, with the exception of
7		aluminum.
8	Q	Okay.
9	A	MR. HOUSTON: So what we're proposing,
10		Mr. Chair, if if this is acceptable, is we could
11		rerun the human health evaluation for aluminum, and we
12		could do that in short order, based on the aluminum
13		concentration in 6.25. And we we could provide that
14		to the Panel, you know, before the end of the
15		evidentiary session section of this hearing.
16	Q	Okay. Just hold on a minute.
17	А	While I'm saying that, Mr. Chair, our eyeball
18		evaluation is that there will be no essential
19		difference, but we do recognize the numbers are are
20		different, so that that will just close off the
21		loop.
22	Q	Okay. So we also gave some thought to maybe a
23		different way to get at this issue over the lunch
24		break, and so I'll kind of put that to you and see what
25		you think about that.
26		So the concern, of course, is understanding the
1		

hazard quotients for exposure to Blairmore Creek, and 1 2 the concern is that by not using the updated modelling, 3 you know, they might increase with the updated 4 modelling, but we don't know by how much. That's kind of the issue. And we're not concerned about increases 5 6 in HOs that are, you know, an order of magnitude below 7 We're most concerned about those ones that 1 or more. approach 1 and how much they might exceed the hazard 8 9 quotients of 1 by.

10 So let me run this by you and see if this would be 11 doable in a reasonable amount of time. So could Benga 12 provide the results of recalculated incremental 13 lifetime cancer risk from arsenic exposure for 14 Blairmore Creek using the updated water quality modelling results and ensuring that air deposition is 15 added to the modelled water concentrations to produce a 16 17 total water concentration and using -- if there are any 18 corrections of errors that you need to incorporate from that earlier calculation, those would be incorporated 19 20 as well.

And then could you -- so doing that for arsenic, and then recalculating the hazard quotient for one other contaminant of potential concern which had the greatest increase in predicted concentrations in water relative to the original model predictions? And that might be aluminum. I'm not sure whether it would be or not.

1

2 So, essentially, what we're saying is rather than 3 doing it for a whole suite, could we do it for arsenic 4 and one other that is likely to have the greatest potential increase? Is that an amount of work that 5 6 would be doable in a short period of time? 7 So to be clear, Mr. Chair, you're -- you're asking us Α if we could redo arsenic including a air deposition 8 9 component and redo one other, and I -- I would suggest 10 aluminum would be a good case study because we've --11 we've already discussed that it's -- it's higher in 12 Blairmore Creek than the end-pit lake. 13 So let me just check with my team and see if that 14 is something that we could do. And I think you're thinking of a time frame like tomorrow; right? 15 That --16 Yeah, soon, so that it won't delay final argument. 0 So 17 whether it's tomorrow or, you know, the day after. 18 Α Okay. 19 We are still waiting for the ACO report, so the record 0 20 will remain open for a brief period of time, of course. 21 Okay. Let -- let me just check with my team and --Α 22 Oh, sorry. Sorry. I just got a note from my risk Ο assessment specialist. Just let me read it. 23 24 So the suggestion was not to use aluminum Okay. 25 as the other, so we still want arsenic, but to use the 26 COPC that had the greatest increase between the

			5800
	1		original modelling results and the revised modelling
	2		results for Blairmore Creek. That would help us
	3		understand the magnitude of a potential increase to the
	4		HQs.
	5	A	Okay. Let let me check with my team, Mr. Chair.
	6		One moment.
	7	Q	Okay. Thank you.
	8	~	MR. IGNASIAK: Mr. Chair, it's Martin
	9		Ignasiak here. Just while Mr. Houston's checking that.
1	0		Ms. Bauman has a previously scheduled appointment at
1	1		1:30 she can't move. We didn't expect her to still be
1	2		on, so to the extent there's questions for her I
1	3		know it's only 20 minutes' notice, but Mr. Kansas will
1	4		still be on the panel. But if we could have your
1	5		leave, if she could depart for that appointment, that
1	б		would be appreciated.
1	7		THE CHAIR: I think that should be fine.
1	8		I think most of my questions will be either for
1	9		Mr. Mitchell or Ms. Mooney or Mr. Houston.
2	0		MR. IGNASIAK: Thank you, sir.
2	1	A	MR. HOUSTON: So, Mr. Chair, we we've
2	2		been discussing, and that that should be doable. We
2	3		should be able to get you something tomorrow or, at the
2	4		latest, on on Wednesday. Yeah. That that works.
2	5	Q	THE CHAIR: Okay. Yeah. So let me just
2	6		kind of make sure we're all clear on what the
1			

1 undertaking is.

26

2 So you'll conduct -- I'm going to kind of reread 3 it, just because we've had a bit of back-and-forth, and try and capture what we discussed. So Benga will 4 conduct a recalculation of the incremental lifetime 5 6 cancer risk for arsenic exposure for Blairmore Creek 7 using the updated water quality modelling results and ensure that both the air deposition and the water-based 8 pathways are both included in the calculation -- 'cause 9 10 there was a discussion about whether that had happened or not -- and using the same correction of the input 11 12 error to the arsenic calculations that was previously 13 identified by Benga if needed, and then recalculation 14 of the hazard quotient for the contaminant of potential concern which had the greatest increase in predicted 15 concentrations in water relative to the original 16 GoldSim modelling, and was one of the ones that 17 exceeded the risk quotient of 0.2, so if you could pick 18 one from that. I think -- I think that captures it. 19 20 That -- that's agreeable, sir. Α 21 0 Okay. So --22 MR. MITCHELL: I just have one more Α clarification just to a question that we kind of left 23 24 hanging a bit this morning, and that was your -- your 25 question about the hazard quotients for certain

> Dicta Court Reporting Inc. 403-531-0590

metals -- I think thallium was an example -- being the

1 same for the --

2 Q Right.

3 A -- three different water bodies.

4 So I did go back and -- and check our multimedia 5 model, the original calculations, and confirmed that 6 the reason for that -- and I -- I looked at thallium in 7 particular and -- and lead as well. And in the case of 8 thallium, the predicted exposures was -- were almost 9 entirely arising from fruit and berry ingestion; in the 10 case of lead, it was dominated by the soil ingestion. 11 And that's why the hazards weren't different between the different water bodies for these substances. 12 13 Thank you for that clarification, Mr. Mitchell. Okav. 0 14 THE CHAIR: So let's get an undertaking 15 number for that previous undertaking we were just discussing. 16 17 MS. UTTING: Mr. Chair, Tracy Utting, Panel That would be Undertaking Number 27. 18 manager. 19 THE CHAIR: Okay. Thank you. 20 THE CHAIR: Okay. And thank you for your 0 21 cooperation on that, Mr. Houston and Mr. Mitchell. Thank you, Mr. Chair. 22 MR. HOUSTON: Α So now we're going to change topics a little 23 0 Okay. 24 bit, and I'm going to be asking some questions about 25 coal dust. 26 So risk from chronic exposure to coal dust was

assessed using a toxicity reference value for PM 4. 1 2 All three locations where the hazard quotients were 3 greater than 0.2 were within or at the mine permit 4 Benga concluded that the potential risk of boundary. adverse health effects caused by chronic exposures to 5 6 coal dust was negligible. This conclusion was based 7 upon the use of a toxicity reference value for PM 4, restricted access to locations where predicted hazard 8 quotients were greater than 0.2, and the fact that all 9 10 predicted hazard quotients were less than 1, except for 11 a location at the pit boundary. And I do have 12 references for all those if you want to check any of 13 them. 14 Benga states that: (as read) 15 Changes in particulate matter, including PM 10, PM 2.5, and total suspended 16 17 particulates can result in effects which include nuisance effects. Sources include 18 fugitive dust emissions from mine vehicles, 19 20 coal processing, and soil and coal handling. 21 Benga is committed to a number of dust 22 mitigation measures which are summarized in 23 CIAR 360, Table 2-1, on PDF page 85. These 24 measures focus on mitigation of road dust as 25 well as dust generation from coal handling 26 and rail loadout. Benga also commits to

> Dicta Court Reporting Inc. 403-531-0590

progressive reclamation and revegetation to 1 2 reduce windblown fugitive dust. 3 So the question -- first question is: Given that coal dust is a complex mixture of contaminants of potential 4 5 concern associated with a wide range of particle sizes, 6 how is the use of PM 10 as a surrogate for exposure and 7 a toxicity reference value for PM 4 justified? Well, to be clear, while we --8 Α MR. MITCHELL: 9 while we -- while we looked at coal dust using the --10 the PM 4 toxicity value and the PM 10 concentrations, 11 we did also look at the individual constituents of the 12 coal dust, including the polycyclic aromatic 13 hydrocarbons and the metals, as well as looking at 14 the -- you know, the PM 2.5 and the PM 10 data. So we 15 kind of used multiple different lines of approach to look at coal dust rather than just treating it as a 16 17 single number. Thank you. 18 Okay. 0 What is Benga's understanding of the current 19 20 scientific opinion expressed in the peer-reviewed 21 scientific literature regarding the appropriate 22 surrogates for coal dust toxicity and risk, 23 particularly to sensitive subpopulations? 24 Just give me a moment. I'll talk with one of our Α toxicologists on that. 25 26 Ο Sure.

So we -- we didn't take a -- a surrogate on the --1 Α 2 approach on the basis that a single surrogate was 3 unlikely to capture the complexity of the -- of the 4 So, again, we used a value that was, you know, matter. the best available number we could get for coal dust 5 6 itself, but we also did look at all the individual 7 constituents, including the polycyclic aromatic hydrocarbons, and, you know, we do -- we do have data 8 to suggest that some of those constituents are likely 9 10 to be of low bioavailability when associated with coal 11 specifically, but, you know, we still looked at the calculations without trying to adjust that 12 13 bioavailability down. 14 So the -- and the -- you know, again, for reference, there -- there is a tox profile for coal 15 16 dust that was put into this report. It was in CIAR 17 251, PDF page 665. Sorry, Mr. Mitchell, did you want to pull that up or 18 0 was that -- was that the end? 19 (INDISCERNIBLE - OVERLAPPING SPEAKERS) I don't think I 20 Α 21 I was really just pointing out that there is need to. 22 a -- an -- an assessment that sort of summarized the --23 the state of the data as -- as we understood it when we 24 were doing this risk assessment, but, again, we didn't use a single surrogate but, rather, looked at the coal 25 26 dust as a single substance but also considered the

1

other constituents as well.

2 Q Okay. Thank you for that, Mr. Mitchell.

3 So I think this just follows on from what you were just telling me, but is Benga confident that the 4 toxicological risk associated with chronic exposure to 5 6 coal dust has not been underestimated, and, if so, why? 7 Again, I think to the -- you know, the -- the current Α state of the science and what -- and, in particular, 8 the -- sort of the authoritative reviews and the 9 10 regulatory reviews, we think we have assessed this 11 conservatively, and, again, not -- because we did not 12 just assess coal dust as a single substance but also 13 looked at the pH, the metals, the smaller particulates, 14 and got that -- got that big picture, so -- and -- and when you sort of combine in -- you know, the 15 conservatism in the air modelling and the assumptions 16 17 that go into that, I think we're confident that we've been protective. 18 19 Okay. Thank you, Mr. Mitchell. Just a minute. 0

Is your confidence based at all upon reviews of epidemiological evidence, such as that presented or referenced by the Livingstone Landowners Group? A We -- we did look at epidemiological evidence, and that -- that feeds into all -- I mean, the -- the actual toxicity limits that we select are ones that have been, you know, developed or approved by -- by

> Dicta Court Reporting Inc. 403-531-0590

5872

regulators, but, you know, in the -- in the case of the 1 2 epidemiological study that had been presented earlier, 3 that -- that study actually concluded that they couldn't conclusively establish any health effects. 4 The challenge with the epidemiological studies is 5 6 that there are, you know, often a lack -- a lack of 7 controls, lack of accurate measurement of exposure. Different circumstances are different for different 8 9 people, and the populations themselves are different, 10 so there's things like differences in diet and genetics 11 and the like that also affect a lot of the end points. 12 So, you know, the -- the conclusion of the 13 particular study that had been referenced earlier was 14 really that they -- they couldn't actually come up with a conclusive determination of -- of health effects 15 because of those compounders and biases in the data, 16 17 but we certainly do look at that as well. 18 Thank you, Mr. Mitchell. Okay. 0 Why did Benga not include an assessment of the 19 nuisance effects of coal dust on health? 20 MR. HOUSTON: 21 Mr. Chair, nuisance effects of Α 22 coal dust, are -- are -- are you referring to -- I 23 don't know -- some kind of psychological effect on --24 on health? So let me -- let me -- I'll put that in my 25 Yeah. 0 26 follow-up question to you, and that might help as well.

So is Benga aware of any published scientific
 literature on the nuisance effects of coal dust on
 human health?

4

5

6

7

8

26

And as you were kind of getting into, Mr. Houston, that could be a range of things that could be, you know, mental effects related to, you know, anxiety and -- and all of that that potentially manifest into physical effects as well.

9 So I was just curious as to what Benga -- first of 10 all, why Benga didn't really talk about this issue in 11 their assessment and, secondarily, what you know about 12 what the literature currently says about these kinds of 13 effects.

14 Α So I'm not a human health specialist, Mr. Chair, but we 15 did talk about a report that was done in Sparwood. Ι think it was Friday. Anyway, late last week we talked 16 17 about a -- a kind of follow-up study that had been done by the community of Sparwood, funded by Teck, after 18 having built four mines in -- in the region. 19 And I 20 recall in that study that qualitatively, coal dust or 21 dust was a primary concern for the residents. And --22 and I'm not -- not sure of the psychological value of that, but certainly from a social concern level, 23 24 that -- that was top of mind for the people in that 25 community.

What we have offered, first of all, is a suite of

1 mitigation measures to -- to keep dust and coal dust 2 down to levels that are acceptable, but, also, we've --3 we've committed to a community committee that would try 4 to address these issues up front and -- and get them on the table early in the project so that if -- if there 5 6 are impacts or perceived impacts due to coal dust, that 7 those would be addressed between the company and -- and the community, and -- and we would also look to the 8 9 community to help us identify potential solutions to 10 some of those issues.

11 So I -- I think it is an issue in Sparwood. Ι 12 don't know to what extent that affects health, but I --13 I can imagine that there is some impact at some level. 14 Our -- our intent is to mitigate and to keep an open dialogue with the community to -- to identify if 15 we're -- if we're going offtrack in that area. 16 17 Okay. Thanks for that, Mr. Houston. 0

Mr. Mitchell, are you aware of any kind of 18 19 published scientific literature on this topic? 20 MR. MITCHELL: I haven't personally looked at Α 21 I can certainly talk to some of our dust that topic. 22 experts what -- what their familiarity is, but --That's fine. I was just interested in your 23 0 24 perspective. 25 No. I mean, I -- I think our -- our risk assessment Α was focused on the -- the -- the -- sort of the 26

> Dicta Court Reporting Inc. 403-531-0590

physical toxicity side of things, and when it comes to nuisance, I don't claim expertise on nuisance, but I think nuisance can vary between different people, so it's a little bit trickier to assess, aside from looking at is dust concentration going to increase substantially over background based on the air modelling.

8 Q Okay. Thank you.

9 This is probably more for you, Mr. Houston, but 10 what are the primary causes of conditions which may 11 cause coal dust incidents and community complaints? 12 And when you're providing your response, maybe you can 13 think about operational conditions as well as 14 weather-related conditions.

15 MR. HOUSTON: Well, as you know, Mr. Chair, Α we've proposed -- and when we talk about the community, 16 17 I'm thinking primarily of the -- the townsite. So in terms of the operation, we've proposed a cladded 18 19 rail-loading structure. We've proposed a covered 20 We've proposed to top the railcars with a conveyer. 21 lacquer to keep dust from blowing about. And -- and so those -- those are some of the primary mitigations in 22 the coal-handling, directly, facility. 23

24 So outside of an upset, and -- and by that, I mean 25 coal, for some reason, spilling outside of that 26 contained system, I would think those -- those measures should be fairly -- fairly suitable and -- and should deliver the results. If there were an upset, of course, it would depend upon our emergency response procedures to get in there early, clean it up, and -and get back to normal operation.

6 Aside from all of that, my understanding is that 7 one of the primary causes of spread of coal dust is vehicular traffic that is on the mine and off the mine 8 and -- and tracking dust down the road, which 9 10 eventually gets everywhere. And -- and so we've 11 proposed two measures to mitigate that. One -- one is 12 that we'll try to keep vehicles in the mine, in the 13 mine and vehicles not in the mine parked off-site. So 14 that -- that will help to minimize, to -- to a large 15 extent, any dust being tracked down the road.

16 The other is we'll have a wash bay at the site, at 17 the mine, and the intent there would be to wash 18 equipment before it comes out of there to ensure that 19 not only coal dust but weed seeds aren't -- aren't 20 spread into the community.

Q So in addition to traffic tracking from vehicles, are there other, kind of, operational issues that might require an unusually high amount of dust, or -- or is the tracking of vehicles the only one that you can kind of think of?

26 A The only normal part of the operation that -- that I

1		can think of, Mr. Chair, that would would tend to
2		track dust into the community. That that's yeah,
3		I can't think of others.
4	Q	Okay. Based on the experience of operating mines that
5		you may be familiar with, do dust complaints received
6		from the public generally correlate well with PM 2.5 or
7		PM 10 monitoring data?
8	A	I I can't really comment on that, Mr. Chair. I
9		don't know.
10		Mr. Rudolph, do you have any thoughts on on
11		that one?
12	A	MR. RUDOLPH: I I've had some experience
13		in other northern mines, I guess, in Alberta not
14		northern mines, but mountain mines. And there, I
15		think, complaints correlate relatively well with
16		with PM 10 monitoring which is conducted in there. I
17		don't remember if TSP was is actually measured there
18		or not. They do also correlate with with dustfall
19		measurements as well. In my experience, though, PM 2.5
20		isn't always the the right parameter for comparing
21		monitor data to to community complaints.
22	Q	Okay. Thank you, Mr. Rudolph.
23		Okay. I'm going to change topics a little bit
24		away from dust. Again, back to this issue of
25		conservatism in the health risk assessment. So Benga
26		concluded that emissions from the project are not

predicted to pose a risk of adverse health effects at 1 2 locations accessible to the general public. Benqa 3 acknowledged that hazard quotients greater than 1 were 4 predicted; however, Benga noted that the hazard quotients greater than 1 typically occur within the 5 6 mine permit boundary in an area with restricted road 7 access and low likelihood of continuous public presence during construction and operations of the mine or were 8 due to pre-existing baseline emissions or background 9 concentrations with minimal contributions from the 10 11 project or were a result of the conservatism built into 12 the assessment, air-dispersion models, and derivation 13 of water concentrations.

Benga stated that the predicted risks to human health from exposure to the end-pit lake were within acceptable limits in most cases; however, hazard quotients associated with the project's contributions from the end-pit high walls to surface water were a substantial contributor to the application hazard quotients results.

Benga stated that given consideration of apportionment to drinking water and the margins of safety built into the human health risk assessment, the results of the human health risk assessment are not considered indicative of a human health concern; however, management considerations of the EPL are warranted, and actual measured concentrations at the time of EPL creation should be used to revisit the human health risk assessment.

1

2

3

4 So the first question: Could Benga comment on the 5 overall level of conservatism and accompanying margins 6 of safety in the health risk assessment having regard 7 for the issues we've discussed so far, including some of the earlier calculation errors in the derivation of 8 water concentrations of contaminants of potential 9 10 concern, the use of predicted water concentrations 11 produced by earlier modelling which are lower than 12 produced by updated modelling, the degree to which 13 predicted project air and water concentrations may 14 exceed baseline concentrations for some contaminants of 15 potential concern, the screening out of the 16 groundwater -- some groundwater pathways, and the 17 uncertainty inherent in the assessment of health 18 effects of coal dust as a complex mixture, including consideration of the effects of nuisance dust levels on 19 health? 20

So, again, looking for a comment on your confidence in the overall level of conservatism in the health risk assessment having regard for those things. A MR. HOUSTON: That was a really long question, Mr. Chair.

26 Q It was. I apologize for that.

1 So I -- I may be able to speak for a minute here, and Α 2 then I'll ask Mr. Mitchell to -- to chime in. 3 To a large extent, we've used conservative modelling to predict the presence of chemicals of 4 5 potential concern or contaminants of potential concern 6 in both the water and the air. We were talking about 7 the end-pit lake earlier and -- and the concentrations. 8 I've found out over the lunch hour, Mr. Chair, that the level of selenium and other chemicals in the 9 10 end-pit lake, for example, were based on an assumption that 2 metres of the wall that forms the end-pit lake 11 12 is -- is actively leaching. And, you know, that -- as 13 an example, that -- that evidently is not true. It's 14 not broken rock. It's solid rock. And so it won't 15 have the surface area that rock in the ex-pit dumps 16 does, for example. 17 And so when we look at the end-pit lake and the concentrations that we've predicted there, we clearly 18 19 have taken a very conservative approach. We don't expect to -- to see that level of contaminant in the 20 21 Nonetheless, we've run our human health end-pit lake. 22 risk assessment on that end-pit lake. We've assumed that somebody drinks water out of the end-pit lake 23 24 every day. Again, that is super conservative -- I -- I 25 can understand somebody camping beside the lake and 26 drinking water for a week, for example, but -- but to

drink water every day out of the end-pit lake, that's 1 2 clearly a very, very conservative assumption. 3 And those are the same assumptions we've made for Blairmore Creek or Gold Creek, that somebody is 4 drinking water untreated out of one of those creeks 5 6 every day of their life. 7 The -- the same is true for the air vectors. And as Mr. Mitchell has pointed out, air -- we're -- we're 8 9 assuming that somebody's breathing that air 10 consistently over a long period of time or somebody is eating vegetation that the dust has fallen on, for 11 12 example, from an area next to the -- the mining 13 operation, and they're doing that repeatedly over a 14 consistent period of time. 15 Those are all really conservative assumptions, not even realistic assumptions, in -- in my opinion. 16 And 17 so it's -- it's that kind of conservatism that gives us a high degree of confidence in what we've done. 18 So, Mr. Mitchell, I'd -- I'd invite you to chip in 19 20 here, and if I've misconstrued anything, be -- be sure to correct me on the record. 21 22 MR. MITCHELL: Thank you, Mr. Houston. Α I -- Mr. Chair, I think Mr. Houston has 23 24 summarized, you know, at least a few of the key areas where conservatism is built into the process, such as 25 26 on -- on the water side, for example, assuming that the

water is somebody's, you know, sole source of drinking 1 2 water over a chronic or possibly lifetime period of 3 time. And, you know, another element is we -- we 4 really tried to closely follow approved regulatory 5 procedures or -- or approved -- or Health Canada 6 methodologies that, again, we know have defensibility 7 and conservatism built into them specifically for that -- that -- that same purpose. 8

9 Again, we've assumed for inhalation -- we looked 10 at both short-term and long-term exposures. And those 11 long-term exposures assume that somebody has been 12 breathing air from a certain location over a very long 13 period of time, years to -- to a lifetime. The acute 14 exposures are assessed and using toxicity reference values that are protective of sensitive populations. 15 For example, some of them have considered things like 16 17 effects on an asthmatic who's undertaking heavy exercise and having, you know, effects on their lung --18 19 lung capacity. They are reversible and temporary, but 20 we still want to make sure that we protect against that level of effect. 21

22 So there is -- there's sort of multiple levels of 23 conservatism that are built into the risk assessment 24 process throughout it, particularly following the 25 methodologies that have been established by Health 26 Canada and other -- other regulatory agencies and using

the toxicity limits that have been developed or 1 2 endorsed by these agencies, which, again, are -- are 3 levels at which -- you know, when we have exposure that's exceeding one of these -- these levels, it 4 doesn't mean that there will be adverse effects, 5 6 rather, there's conservatism built into these so that 7 we're confident where we're under them, there won't be an adverse effect. So there's multiple levels of 8 9 conservatism throughout.

10 And, you know, sometimes in risk assessment, we 11 actually talk about a -- a -- a snowballing effect of 12 conservatism where you have a conservatism -- a 13 conservative assumption on one piece of the risk 14 assessment that, in and of itself, is not unreasonable if it's within the realms of possibility, but then you 15 16 add on another similar assumption on another aspect and 17 a third aspect and a fourth aspect, and by the time you sort of combine all of these levels of conservatism 18 in -- in some elements of the risk assessment, 19 20 particularly around the multimedia model, we get 21 conservatism on top of conservatism on top of 22 conservatism. And a really high level of -- of protection gives us confidence that these levels are 23 24 that these predictions are conservative. Okay. Thank you for that, Mr. -- Mr. Mitchell. 25 0 26 So having regard for those various levels of

1 conservatism that, as you say, can snowball, if you are 2 approaching a hazard quotient of 0.2 or 1, what would 3 your view be as to the overall level of conservatism, you know, in terms of magnitude? Like, are we talking, 4 you know, those risk calculations are, you know, ten 5 6 times, you know, what it's likely to be, five times, or 7 is it a question you can even answer? 8 It really depends on what aspect of the risk assessment Α 9 we're talking about because some aspects have more 10 levels of conservatism built in than others. And, you 11 know, some of the water pathways or the multimedia 12 exposure pathways, for example, have, you know, 13 multiple calculations that have conservatism built into 14 them, and, you know, the -- you know, a -- a predicted 15 hazard of .2 or point -- or 1 would trigger us to more look at, you know, just how much conservatism is built 16 17 into there. Is it -- is it a -- is it reasonable or But I don't think you can put a -- you know, a 18 not? universal number that it's always five times or ten 19 20 times.

21 When we get to the air side, you know the -- the 22 side that's done on the risk assessment is maybe a 23 little bit more straightforward 'cause it's really just 24 based on toxicity limits and the air modelling. And, 25 perhaps, you know, Mr. Rudolph can comment more on the 26 level of conservatism that's built into the -- the air

1 But it -- but, again, we know that as long modelling. 2 as we have a concentration in air that we're starting 3 with that's a -- that's an upper bound and we're using a toxicity limit that has protection built into it to 4 ensure that we're confident there won't be an adverse 5 6 effect as long as we're under that, that we've got a --7 we've got a high level of conservatism. Again, I can't put a number on it -- is it -- is it five times, or is 8 9 it ten times -- because some of these limits have 10 uncertainty associated with them, and that's why we have these safety levels built into them, is to make 11 12 sure that we're protective of that uncertainty. 13 Thank you, Mr. Mitchell. 0 Okay. 14 Okay. Going to move on to something we did talk 15 about briefly already. So in CIAR 313, PDF page 1275, 16 Benga states that: (as read) 17 Management considerations for the end-pit lake are warranted, and actual measured 18 concentrations at the time of EPL creation 19 should be used to revisit the human health 20 21 risk assessment. 22 And, Mr. Houston, you spoke to this a little bit 23 earlier. 24 But what specific types of management 25 considerations or actions might be necessary to manage risk to human or wildlife health? 26

5886

1 Α MR. HOUSTON: I -- I think that, you know, 2 the key here is the leaching of chemical -- chemicals 3 of potential concern in -- into the end-pit lake water. And I -- I think, first of all, we're going to learn a 4 lot as we go through the mining based on our experience 5 6 with the ex-pit dumps and based on a better 7 understanding of the -- the -- the quality of the rocks that we're -- we're working with. 8

9 As I mentioned just now, the end-pit lake 10 concentrations are based on leaching from 2 metres' 11 thick of pit wall -- end -- end-pit lake wall in --12 into the water, which -- which is not really -- which 13 is a very conservative assumption, considering that 14 that would generally not be fractured rock.

Some of the things that we -- we may want to 15 consider when we do the end-pit lake design is -- is, 16 17 first of all, what is the quality of the rock where the end-pit lake will be? And if there are areas that 18 19 potentially have a higher propensity to -- to leach 20 into the water, is there something we can do to provide a -- a sealing surface or something to -- to minimize 21 22 Or can we physically move the end-pit lake to -that? to a slightly different location to avoid some of 23 24 those -- those things? So I -- I -- I -- again, 25 it's -- it's difficult to provide specific answers until we understand what the specific concern is with a 26

> Dicta Court Reporting Inc. 403-531-0590

1		design of the end-pit lake.
2	Q	Okay. Thank you, Mr. Houston.
3		So your overall conclusion regarding no adverse
4		effects on health on human health is for the
5		construction and operation periods. What is your
6		overall conclusion regarding the risk of adverse
7		effects on health in the postclosure period, including
8		but not limited to the exposure to the end-pit lake,
9		and what's the basis for that conclusion?
10	A	Again, we're we're going to have to defer, to a
11		certain extent, a discussion around the end-pit lake.
12		I think we were talking in a previous session that
13		designing the end-pit lake a decade or 15 years out
14		from when it's actually going to be formed is is
15		probably of the appropriate time frame. And doing
16		that design based on experience that we've gained
17		through a pilot project, for example, to to assess
18		in more detail the the potential for leaching of
19		of chemicals of potential concern into the end-pit
20		lake.
21		So our intent would be to design an end-pit lake
22		that eventually could be given over to multiple
23		unsupervised uses, let me say. And and that would
24		be the intent of that design process. A suboptimal
25		solution, I would say, is is if somehow the use of
26		the end-pit lake had to be restricted post

postclosure, but that -- that is another alternative. 1 2 Thank you, Mr. Houston. I might have narrowed Ο Okay. 3 your answer a little unnecessarily there by my reference to the end-pit lake. 4 The water quality of Blairmore Creek is also 5 6 expected to not return to baseline for a prolonged 7 period after the project ends. With respect to human health risk associated with Blairmore Creek, are you 8 9 similarly confident that -- that there won't be an 10 unacceptable risk to human health? So the evaluation we've done for the operating phase 11 Α 12 would -- would apply through to the post --13 post-operation phase. We would be monitoring water 14 quality in Blairmore Creek, and we would be responsible for treating water through the SBZ and the other water 15 management structures until it was demonstrated that 16 17 the site was able to be -- be left to -- to manage itself. 18 So monitoring would continue for the long-term. 19 20 The health effects that we've analyzed for the 21 operating phase would -- would also apply in the 22 long-term if the water quality was -- remained the same 23 or -- or better than during the operations phase. 24 Okay. Thank you. 0 25 So I do have some questions on monitoring in 26 follow-up, so I'll kind of turn to those now.

1 So Benga's proposed aquatic monitoring plan 2 doesn't make explicit reference to inclusion of 3 contaminants of potential concern to human health nor 4 does it include reference to drinking water quality 5 guidelines.

6 Benga's proposed air quality monitoring and 7 adaptive management plan references several 8 regulations, many of which do incorporate protection of 9 human health. Benga's proposed monitoring program 10 focuses on fugitive dust, nitrogen oxides emissions, 11 and PM 2.5 emissions.

Benga has committed to continuous monitoring of ambient air quality near the eastern edge of the mine lease and in Blairmore near the loadout facility and recommends the use of indicative monitoring rather than traditional regulatory monitoring at both sites.

17 Benga's proposed groundwater monitoring program will focus on the shallow to intermediate groundwater 18 systems that have the potential to discharge near or 19 20 into surface water receptors, including Blairmore Creek and Gold Creek. One set of monitoring wells to be 21 22 installed have proposed locations which are similar to 23 those proposed for the surface water monitoring plan as 24 part of an integrated groundwater and surface water 25 monitoring program. Water samples will be collected 26 from toe springs associated with drainage from rock

dump areas as well.

1

2 So just a couple of questions. What is Benga's 3 view of a potential condition of approval to monitor 4 contaminants of potential concern in country foods if concentrations in air and water are shown to be 5 6 increasing and approaching air or water quality 7 quidelines related to human health? I -- I think that would be reasonable, Mr. Chair. 8 Α 9 Our -- our expectation, because of the conservative 10 nature of our modelling to date, is that when we 11 monitor the air quality and the -- the water quality, 12 that we're going to be within the envelope we've --13 we've -- we've drawn in our application. 14 If -- if that were not the case, we -- we would expect that additional investigation into the source on 15 the one hand to identify additional mitigation but also 16 additional work on the monitoring side or the -- and, 17 as you suggested, country foods monitoring, that --18 that would also be appropriate. 19 I -- I'm not quite 20 sure what that looks like, to be honest, Mr. Chair, 21 and -- and how frequently it would be done. I would 22 expect something like an annual program based on 23 seasons, but I -- I think that would be appropriate. 24 Okay. And what constraints and challenges might Benga 0 25 face if such a condition were included? 26 Α To monitor country foods if we exceeded our air quality

		5672
1		guideline, that's
2	Q	Yeah.
3	A	Yeah.
4	Q	If contaminant levels were approaching health-based
5		limits.
б	A	Again, I I I'm not sure what constraints there
7		would be on monitoring. We would need access to the
8		the the food the country-based foods that we were
9		monitoring. So access on the land to gather would be a
10		constraint, I I suppose. I can't think of anything
11		else, Mr. Chair. Our our I I can tell you
12		our our primary focus would be on additional
13		mitigative measures to get us out of that situation
14		if if we found ourselves there.
15	Q	Okay. Thank you.
16		And would Indigenous communities be invited to
17		participate in that type of monitoring, and would Benga
18		pay for their participation well, pay for that
19		monitoring?
20	A	We we've already committed to pay for an
21		Indigenous-based monitoring program, and and that
22		would be directed by the Indigenous communities, but
23		I I think it would be natural to include a component
24		in that program to monitor country-based foods.
25	Q	Okay. And what is Benga's view of a potential
26		condition to increase the frequency and/or spatial
1		

extent of monitoring when contaminants of potential 1 2 concern are found at levels approaching or exceeding 3 federal or provincial drinking water or air quality quidelines or risk-based benchmarks in order to confirm 4 5 exceedances and in support of adaptive management? 6 Α Would we agree to a condition that required us to 7 double down on our monitoring or add to our monitoring program should we find ourselves close to limits? 8 9 0 Yes.

10 A Again, it's not very specific, but I can understand 11 that additional monitoring might be a reasonable thing 12 to do under those circumstances.

13 Q Okay. Thank you.

14 Given that background concentrations of some contaminants of potential concern already exceed 15 drinking water quality or air quality guidelines, is 16 Benga confident that there is a sufficient 17 18 understanding of natural variability of background concentrations to distinguish project-related 19 contributions from background contributions? 20 When we're discussing water, Mr. Chair, I -- I would 21 Α 22 think that we would distinguish background from -- from 23 project-related contributions simply by looking 24 upstream of the project-affected zone and looking at 25 water quality upstream as compared to water quality 26 downstream of the project. I -- I would think that

1		would be the best way to differentiate between natural
2		variability and and project-affected contamination.
3	Q	And what about for air?
4	А	Again, I I think that looking outside of of the
5		immediate area of the project and and comparing air
6		quality at some distance to air quality closer to the
7		project would give us a good reference point.
8	Q	Does Benga intend to collect additional baseline data
9		before construction and operations commence to increase
10		knowledge of air, surface, water, and groundwater
11		baseline conditions and natural variability?
12	A	We are we are continuing our air-monitoring program
13		at Blairmore, and so that will continue, and continue
14		right through the construction and into operations,
15		that that particular station. We have done some
16		dust collection monitoring closer to the site, and
17		that's that's provided us with some baseline, but
18		we'll continue to do to do that work.
19		In terms of water quality, we have taken spot
20		samples, and we will continue to take spot samples of
21		water quality up to and and right through operations
22		and construction. So we we are collecting data,
23		Mr. Chair, and we will continue to do so.
24	Q	Okay. Thank you.
25	A	MR. RUDOLPH: Mr. Chair, it's Mr. Rudolph.
26		Perhaps I could just add to what what

1 Mr. Houston said and specifically with respect to 2 background monitoring. We -- we -- we are collecting 3 continuous data at the -- at the monitoring site in Blairmore at this time, and I think the -- frankly, the 4 easiest way and the best way to look at the effect of 5 6 the project differentiated from background is simply to 7 look at the data by wind direction. So at that current site, if that's what's chosen, you know, when winds are 8 9 coming from the westerly portion, that will include a 10 project effect. If it's coming from the southeast up the valley, that would be indicative of background at 11 12 that location. So I don't think a -- a separate site is necessary to collect background data. 13 14 Okay. Thank you, Mr. Rudolph. 0 15 Maybe just a follow-up question for you, Mr. Rudolph. Can you comment on the available methods 16 17 for monitoring levels of nuisance dust that don't rely on PM 10 or PM 2.5? I think earlier you spoke about 18 19 dustfall monitoring. Does that serve that purpose, or 20 is there -- are there other methods? 21 Well, it's -- it's definitely a low-tech method, but it Α 22 is, actually, I think, the most reflective of nuisance dust that is currently done. I -- I don't believe that 23 24 PM 2.5 or PM 10 or even TSP really are -- collect large 25 enough particle sizes that -- that reflect on the 26 nuisance portion of the -- of the dust.

> Dicta Court Reporting Inc. 403-531-0590

All of those -- all of the dust that we see -- the 1 2 TSP is about 30 microns or so and smaller, and that is, 3 you know, essentially invisible and perhaps would be 4 visible if it collected on a surface, but it's pretty small to be termed "nuisance dust". I think dustfall 5 6 is probably a better way of measuring it, actually. 7 Thank you. Okav. 0 So just returning to something I asked about 8 9 earlier. Does Benga think there is merit in attempting 10 to correlate community dust complaints with 11 dust-monitoring data, whether it's PM 10, 2.5, total 12 suspended particulates, or dustfall, total dustfall? 13 And if not, why not? I -- I -- I think there is 14 Α MR. HOUSTON: 15 merit, Mr. Chair, and -- and we have been collecting dustfall data at various points for some years now. 16 So 17 we would continue to do that, and -- and certainly it would be an interesting point of reference if there 18 were complaints to -- to try to understand why those 19 20 complaints are arising and if -- if they're based on 21 actual increases in dust or just a perception of 22 increase in dust. So I -- I think it's important to 23 have that bit of evidence when you're -- when you're 24 dealing with a complaint. 25 Okay. Thank you, Mr. Houston. 0 26 Okav. I'm going to turn to some questions around

cumulative effects related to health. 1 So Benga stated 2 that people are potentially exposed to both individual 3 chemicals and chemical mixtures originating from 4 chronic inhalation exposure as well as multimedia exposure, so oral and dermal exposure. Benga goes on 5 6 to state that additive risk is more -- is more than a 7 chemical-by-chemical evaluation and specifically evaluates the potential for human health risk due to 8 9 cumulative exposure to all COPCs from all pathways, 10 including water-based pathways.

11 Benga stated that HO and cumulative incremental lifetime cancer risk results were calculated assuming 12 13 Indigenous receptor characteristics because they 14 represent the most sensitive receptor group based on their assumed lifetime exposure within the LSA and RSA, 15 and a higher assumed ingestion rate of traditional and 16 17 country foods, such as local fish, wild game, and 18 vegetation, than other receptor groups.

Benga explained that HQs and cumulative 19 incremental lifetime cancer risk values for all other 20 21 receptors at the same locations would inherently be 22 lower. It was conservatively assumed that an 23 Indigenous person would live and harvest food from all 24 the human health risk assessment receptor locations, 25 including the locations along the edge of the pit. In CIAR 313 on PDF page 1272, Benga concluded that 26

when combined hazard quotients results for 1 multimedia -- i.e., oral and dermal -- and chronic 2 3 inhalation exposure routes with similar critical 4 effects pathways, such as liver and kidney, were assessed, no change in predicted risks was predicted. 5 6 The Piikani Nation stated that Elders have been 7 experiencing lung problems recently, with many resulting health issues. They said they are already 8 experiencing this from other projects, including Turner 9 10 Valley and the gas wells, related to the westerly wind 11 from the mountains to the plains.

Jillian Lawson stated that inversions can trap 12 13 contaminants for several days, allowing for the 14 accumulation of particulate matter, sulphur oxides, nitrogen oxides, and other coal dust pollutants. 15 Ms. Lawson expressed skepticism regarding coal dust 16 17 being effectively mitigated, given limited water supplies for dust mitigation, low rainfall, limited 18 snow cover, and drying winds. 19

20 So the question is: Given the naturally high 21 background concentrations of some contaminants of 22 potential concern, such as nitrogen oxides and dust in 23 air, and aluminum, barium, cadmium, copper, lead, 24 manganese, thallium, and zinc in water, the prevailing 25 wind directions and other anthropogenic sources of 26 contaminants, what is the likelihood that

1		simultaneously multimedia exposure to multiple
2		contaminants will result in a measurable increase and
3		risks to human health, particularly in sensitive
4		subpopulations?
5		So, again, apology for the long question. I can
б		repeat it if needed.
7	A	MR. MITCHELL: A a complicated question,
8		and, if you don't mind, I'll maybe take a quick moment
9		to caucus with a couple of my peers, Mr. Chair.
10	Q	Sure.
11	A	MR. RUDOLPH: Mr. Chair, it's Mr. Rudolph.
12		Perhaps I could start off just by talking about
13		some of the the issues relating to the air quality
14		side. And, again, to you know, the the
15		information that we present in the air quality
16		assessment is based on the a combination of the
17		you know, the worst-case worst-case emissions and
18		the worst-cased worst-case meteorology.
19		So to the extent that in our five-year data set
20		those conditions occur simultaneously, they've been
21		captured in our air quality assessment. And those are
22		the that's the information that gets fed into the
23		health risk assessment. So, again, to the extent that
24		they occur at any time and not necessarily the dust at
25		the same time as the NO2, for example, and to the
26		extent that we've captured any upwind sources in our

5899

background concentrations that we add to our modelling 1 2 results, that -- that information is already captured 3 in our assessment and in the information that goes into the health risk assessment. 4 5 Okay. Thank you, Mr. Rudolph. 0 6 Mr. Mitchell? 7 MR. MTTCHELL: Yeah. Α So -- and hopefully I didn't lose the thread of your question, but I -- I 8 9 think a lot of what we spoke to on the conservatism 10 still applies here. And, you know, you referenced the 11 high -- high background levels, and in a lot of cases, 12 we predicted hazard quotients exceeding 0.2 or even 1 13 from background levels. That doesn't always actually 14 mean that a background level is high. Again, it's a -an indication of the conservatism that's built into 15 some of these calculations and -- and assumptions. 16 17 And, again, where we're showing that the concentrations that are predicted are, you know, often 18 19 small compared to background, again, that supports 20 the -- you know, the -- the minimal effects of -- of 21 the project. So, again, we look at these -- these --22 these multiple lines of conservatism, and then, you know, and you sort of refer to the -- I guess the 23 cumulative effect of -- of multiple chemicals. 24 And --25 and, again, we take the assumption that if the end 26 point of the chemical is even similar -- not

necessarily the same, but even similar, that we -- that we add the effects together to, again, add another level of -- of conservatism, even -- even though, in reality, it may be, you know, a less than additive effect. So I think we're -- we're quite confident in the level of conservatism that was built into this -this risk assessment.

8 Q Okay. Thank you, Mr. Mitchell.

9 So I'd now like to ask some questions about the 10 circumstances where airborne contaminants of potential concern would be most likely to approach or exceed 11 12 human health risk thresholds, particularly with respect 13 to more sensitive subsets of people, such as people 14 with preexisting respiratory conditions that could be downwind of the mine but beyond the mine permit 15 boundary. 16

17 So probably for you, Mr. Rudolph, but what 18 specific meteorological conditions would create maximum exposure of sensitive individuals to nitrogen dioxide, 19 20 total suspended particulates, PM 10, or PM 2.5? 21 In our -- in our modelling study, it was generally the Α 22 light wind conditions that allowed -- and -- and 23 certainly it -- it may depend a bit on the location of the individual, but if -- individuals in the community 24 25 of Blairmore, for example, that would be under the conditions of relatively light winds, stable 26

conditions, the kinds of conditions that might allow the emissions to flow down the mountain toward the -toward the community. There will -- there will be emissions -- high emissions -- higher emissions as well of dust during windy conditions, but that will also be diluted by the higher wind speeds.

7 Q Okay. Thank you.

The follow-up's probably more for Mr. Mitchell. 8 So we note that Benga did not predict a risk of adverse 9 10 health effects via chronic inhalation through additive 11 contaminants of potential concern. Would any 12 combination of contaminants of potential concern 13 predicted to individually exceed a hazard quotient of 14 0.2 for multimedia exposure be expected to produce synergistic effects on human health when sensitive 15 16 subpopulations of people are exposed to a combination 17 of contaminants, such as nitrogen dioxide, coal dust, PM 10, and diesel particulate matter due to a 18 combination of project and nonproject sources? 19 20 MR. MITCHELL: Yeah. So the -- the Health Α Canada recommendation is to look at these combined 21 22 effects through an additive approach. There have been various studies done on when synergistic effects occur. 23 24 And by "synergistic", we mean, you know, really, I guess the -- a greater than additive effect. 25 I -- you 26 know, I've read study -- or reviews that have been put

1		together by the European Commission and the and the
2		OECD, for example, and generally the conclusion has
3		been that at these sort of environmentally relevant
4		levels of exposure that the that treated them
5		additively additively as is is reasonable,
6		that we're not really seeing, in most studies,
7		synergistic effects that are much greater and additive
8		at that sort of relatively low level of exposure.
9		And
10	Q	Are there
11	A	the the additional factors, like using the target
12		hazard quotient of 0.2 to start with as well as well
13		as the the conservative way that we treat things
14		additively when they're even similar or not necessarily
15		the same.
16	Q	Okay. Do you think there are plausible mechanisms for
17		synergistic effects of this combination of airborne
18		COPCs?
19	A	I'm I I don't know if a lot of these combinations
20		have been studied in enough detail in terms of the
21		mechanism. A lot a lot of the mechanisms that we're
22		dealing with for the particulate and the nitrogen
23		dioxide, for example, I I don't think so, but, you
24		know, often where we see the synergistic effects is
25		where the effects are not the you know, those
26		those lung effects or or respiratory effects, but,

Dicta Court Reporting Inc. 403-531-0590

rather, when they're actually absorbed into the body 1 2 and being metabolized and interfering with metabolic 3 So you -- you might expect to see that more pathways. 4 from, for example, organic chemical exposures. But from the -- from the main drivers here, I don't think 5 6 there's a lot of indication that I'm aware of of 7 mechanisms for synergistic effects.

8 Q Okay. Thank you, Mr. Mitchell.

9 Turning now to waterborne multimedia exposure 10 pathways where additive contaminants of potential 11 concern would be most likely to approach or exceed 12 human health risk thresholds. I'm going to ask you a 13 few questions.

In CIAR 313 on PDF page 1256, Benga presented the toxicity end point groups, which are COP -- the COPCs which act upon the same organ groups. These include several metals, as well as polycyclic aromatic hydrocarbons, such as fluoranthene, pyrene, and the benzoate pyrene group.

20 Benga stated that: (as read)

21All contaminants of potential concern within22a toxicity group were assumed to have23additive toxicity irrespective of their24exposure route, inhalation, oral, or dermal.25In Table 7.5 to 7.8 in CIAR 313, PDF pages 1270 to261271, Benga presented predictive additive hazard

1		quotients and incremental lifetime cancer risk results
2		by toxicity groups for oral and dermal exposure.
3		On PDF page 1271 of CIAR 313, Benga states that:
4		(as read)
5		No additive results for the project were
6		greater than 1.
7		Could Benga explain the basis for this statement, given
8		that and this is a long question given that the
9		application case hazard quotients for oral and dermal
10		exposure to end-pit lake water presented in CIAR
11		Table 7.5, CIAR PDF page 1270, not only exceeds 0.2 but
12		also exceeded 1 for the liver, kidney, and reproductive
13		toxicity groups, and that these HQs were greater than
14		the baseline case, albeit by a small margin.
15		And the application case hazard quotients for oral
16		and dermal exposure to Blairmore Creek and Gold Creek
17		water I'll dispense with the reference unless you
18		want it also exceed 1 for the liver, kidney, and
19		reproductive toxicity groups, and that these HQs were
20		greater than the baseline case, albeit by a small
21		margin?
22		So I don't know if you followed that, but I can
23		distill it down for you if if you need me to.
24	A	I I think I I I followed that, and I I
25		believe what our statement was that the combined HQ
26		results for the project, so that would be that that

1		first column in those Tables 77 and 78, did not exceed
2		1, and for the application case where there were hazard
3		quotients greater than 1, they are almost entirely a
4		result of the of the background multimedia exposure,
5		so a relatively small contribution to the project.
6		And, again, I think we're dealing we're dealing with
7		hazard quotients of 3, 4, or 5 based on background. A
8		lot of it is probably reflective of the conservatism
9		that's built into these multimedia calculations.
10	Q	Okay. So if I think I understood your answer. It's
11		if I added if we added the two together, they would
12		exceed 1, but you're attributing the exceedance
13		primarily to background concentrations? Is that what I
14		heard?
15	A	Yes.
16	Q	Okay. Okay. So that leads to the follow-up question.
17		On PDF page 1271, CIAR 313, Benga states that:
18		(as read)
19		Application case exceedances were driven
20		almost entirely as a result of the baseline
21		case and therefore were driven by background
22		concentrations through oral (multimedia)
23		exposure.
24		Given that predicted project-related concentrations of
25		contaminants of potential concern in CIAR 313, PDF
26		page 1310 are substantially higher than background

5906

r		5561
1		concentrations, including for toxicity group
2		contaminants, does Benga consider that a change to its
3		statement regarding exposure being driven by background
4		is required?
5	A	Just to make sure I understand your question,
6		Mr. Chair, you're talking about because the water
7		concentrations to the project case were significantly
8		higher than background, does that change our
9		interpretation?
10	Q	Well, you just you previously said in the in
11		Benga's submissions it says that, you know, a lot of
12		those exceedances are driven by baseline
13		concentrations, but when we look at that that table
14		in CIAR 313 on page 1310, if I got my numbers right,
15		what we see are concentrations that sometimes are up to
16		an order of magnitude higher than background. So we're
17		kind of asking about the statement that the application
18		case exceedances are driven almost entirely by baseline
19		concentrations. It seems like that may not be correct.
20		But that's what we're asking your opinion on.
21	A	Yeah. And and that's because the the water
22		concentrations are very small contributed to the
23		contributor to those hazards. It's it's the same as
24		the the question we had this morning that I answered
25		after lunch
26	Q	Okay.

5907

-- within the thallium, for example, and found out that 1 Α 2 the exposure was almost entirely predicted to be 3 through, you know, vegetation ingestion. And similarly with the -- some of the others, it's due to baseline 4 concentrations in soil. 5 6 So the -- the concentrations in water are having a 7 relatively small contribution to the total predicted 8 risk, and that's, you know, why those project-related risks and hazards are -- are less than 1. 9 10 0 Yeah. One minute, please. 11 So the guestion is whether the calculation of 12 water-based pathway contributions to additive risk and 13 the conclusion related to that would change. So you 14 talked about vegetation -- the vegetation pathway. Is 15 that pathway dominated by airborne deposition or 16 exposure? 17 Α I -- I think the -- the reason why that -- that -- the baseline hazards are so high is just based on the 18 actual concentrations that have either been measured or 19 20 predicted in vegetation and soil and other media. In the existing --21 Q Okay. 22 Yeah. So -- so the actual --Α 23 0 Okay. The -- the -- again, if -- if the contribution from air 24 Α 25 from the project was high, that would show up in 26 those -- in those project hazards. But, again, those

are relatively small compared to the baseline. 1 So 2 it's -- it's the background concentrations that are 3 generating these -- these high hazards, not contributions from the project, whether they be in --4 through air or water or other. 5 6 Okav. Okay. So just a follow-up question. Would any 0 7 combination of contaminants of potential concern predicted to individually exceed hazard quotients of 8 9 0.2 for multimedia exposure be expected to produce 10 synergistic effects on human health when sensitive 11 subpopulations of people are exposed? 12 I think the answer is similar to air, that -- I -- I Α 13 certainly haven't seen any compelling evidence of 14 synergistic effects of the types of contaminants of concern that we have at this site at this type of 15 16 exposure level. Again, where we typically see those 17 synergistic effects from contaminants like this is when we have really high exposures that are much higher than 18 what we see -- than what we're seeing here. 19 20 0 Okay. Thank you. 21 So Benga provided separate assessments of risks of 22 additive effects to contaminants within toxicity groups 23 for inhalation and for oral and dermal exposure. Benqa 24 did not provide an assessment of total additive risk 25 from additive effects from inhalation plus oral and 26 dermal exposure.

Could Benga comment on the potential for the total 1 2 additive risk from inhalation, oral, and dermal 3 exposure from all contaminants of potential concern in 4 the liver and kidney toxicity groups in terms of how much higher the total risk might be? 5 6 Α Again, that -- that's part of why we use that target 7 hazard quotient of 0.2. It's meant to reflect -- you do have potential exposure through different exposure 8 9 routes. 10 I don't think we've done the -- the math and tried 11 to add up, you know, inhalation hazard quotients and 12 oral hazard quotients, and the end points might not be 13 the same for those -- those types of exposure. But 14 using that hazard quotients of 0.2 -- oh, I just got a message from one of our risk assessors that we did add 15 them all. 16 Could you just tell us where that is? 17 Okay. Q I will ask and find out. 18 Α 19 I just found them. It's again in CIAR 313, PDF 20 page 1272. There's predicted hazard -- hazard 21 quotients, including oral plus dermal and inhalation, 22 where there's similar critical effects. 23 We'll take a look at that. Ο Okay. Thank you. 24 So that brings me to the end of my Okay. questions on human health risk assessment. You'll be 25 26 happy about that. I do have some questions about the

1 wildlife health risk assessment. Ms. Mooney, you'll be 2 happy to know I have fewer questions than I did for 3 Mr. Mitchell. But I'm going to propose we take our break now and pick this up when we come back from the 4 So it's 2:23, so let's come back at 2:40. 5 break. 6 (ADJOURNMENT) 7 THE CHAIR: Welcome back, Okav. 8 everybody. 9 Apologies, Madam Court Reporter. I understand I 10 was going a bit fast, and none of my colleagues were 11 brave enough to jump in and stop me. So if I -- I will 12 try and do better. If I start going too fast, I'll 13 deputize Mr. O'Gorman to intervene on your behalf 14 should it become necessary. 15 THE CHAIR: Okay. So some questions 0 around the wildlife health risk assessment. 16 So Benga 17 states that it used highly conservative or very 18 conservative assumptions in its wildlife health risk assessment, and it lists them in CIAR 313, PDF 19 20 page 1301 and also in CIAR 360, PDF page 17: (as read) 21 The conservative assumptions include the use 22 of maximum predicted air, soil, and surface 23 water concentrations, and assumptions that 24 wildlife would obtain 100 percent of food 25 sources from habitat affected by the mine. 26 Benga initially concluded, on the basis of a

screening-level health risk assessment which did not include water-based exposure pathways except for atmospheric deposition to water bodies, that there is no potential risk of adverse effects associated with project emissions on the health of wildlife in the study areas.

7 Benga stated that because of the highly conservative assumptions used, the prediction 8 9 confidence was high. A reassessment of risk to wildlife health, which included all water-based 10 11 pathways, not just atmospheric deposition, concluded 12 that except for selenium, the calculated exposure 13 ratios for all contaminants of potential concern for 14 all surrogate aquatic wildlife species in all habitats evaluated were below 1. Selenium exposure ratios of 15 1.7 and 3.8 were calculated for insectivorous and 16 17 omnivorous birds in the end-pit lake, respectively.

18 In CIAR 360, on PDF page 15, Benga indicated that in the course of providing worked examples of the 19 calculation of risk from selenium and zinc, Benga 20 discovered that corrections had to be made relative to 21 22 sediment ingestion. The results of reworked examples 23 of calculation of risk from selenium and zinc produced exposure ratios from 0.03 to 4.1 for all habitats. 24 25 Benga stated that these results indicate that the 26 prediction -- that the predicted exposures are lower or slightly higher than acceptable.

1

2 So the question is: Issues associated with the 3 level of conservatism associated with predicted 4 concentrations of contaminants of potential concern in water have already been discussed during the human 5 6 health risk questions. Given these issues, as well as 7 the need to use corrected sediment ingestion parameters, which was identified when worked 8 calculation of wildlife risk estimates were provided 9 10 for selenium and zinc, what is Benga's level of 11 confidence that the overall conclusion regarding low 12 risk to wildlife health is still consistently and 13 reliably conservative? 14 Α MS. MOONEY: That was a long question. 15 It was. 0 I'm going to do my best. 16 Α I think those levels that were listed -- the 17 points that were listed in CIAR 313 are still 18 applicable, despite the bulk density conversion change 19 20 that was made in the edit, that we have applied what we 21 believe to be are the upper bounds of possible 22 exposure. We have assumed highly conservative receptor 23 characteristics, assuming that receptors would receive 24 all of their exposure from that higher nodal model 25 output, as well as their food sources -- their food 26 sources would exclusively be from those higher

concentration areas -- that those receptors don't forage in other parts of the range, that they stay there, and that they don't migrate. They get -- you know, they receive exposure daily, 365 days a year.

We know that some of the species evaluated -- like 5 6 the great blue heron, they have very large home ranges. 7 They're not going to be staying in the small nodal spatial area that's been evaluated -- evaluated and --8 9 so I -- I feel that we do have a pretty high level 10 of -- of confidence in the conservative -- conservatism 11 with respect to the receptor parameters that have been 12 applied and the concentrations representing the upper 13 possible distribution.

14 Okay. Kind of a follow-up question, then. The bulk 0 density adjustment that you did that you had to 15 correct, how big of a difference does that make in the 16 results? And would the exposure ratios for the other 17 18 parameters increase to a similar extent, as they did for selenium and zinc, or would it be different? 19 It would be a -- a same relative change across 20 Α 21 compounds, but with respect to how the multimedia model 22 accounts for the uptake into tissues is different, 23 depending on the chemical-specific parameters. But the actual change in the sediment calculation would be 24 25 relative across compounds.

26 Q Okay. Thank you.

1

2

3

4

1 In order to understand the consequences of 2 assumptions used for predicted water quality more 3 fully, could Benga confirm whether your overall conclusion that there would be low adverse health risks 4 5 on wildlife health would still apply, given the 6 exposure ratios for selenium exposure to Blairmore 7 Creek water would increase if contact water capture is less than 95 percent and if the target selenium 8 9 concentration of 15 micrograms per litre was not 10 achieved?

11 And maybe just as a reminder -- sorry to add to 12 the question, but -- so the predicted selenium exposure 13 ratios for Blairmore Creek currently are 1 for northern 14 river otter and 1.4 for great blue heron. So the 15 concern is: If you didn't get the capture you're expected, how much might those increase? 16 17 Α MR. HOUSTON: I -- I just want to jump in here for a minute, Mr. Chair. I -- 'cause it seems to 18 me that we have other problems if we -- if we fail on 19 20 the issues that you're talking about. So it -- it is a 21 bit hypothetical. And I -- I think the answer's going 22 to be, yes, the risk goes up, but, you know, we -we've -- we've been conservative to get to those 23 24 numbers that we were talking about for our water quality calculations, and we've put in some -- we've 25 26 committed to a number of backup plans, you know, to

1 increase the probability of that happening or -- or 2 to -- well, to increase the probability of that 3 happening. So, you know, I -- I -- I don't really 4 think it's an option to miss those targets, I quess, is 5 what I'm getting to. 6 Α MS. MOONEY: If I could just add to that. 7 If the release -- the relative proportion of sulphate and selenium didn't change, it wouldn't have a 8 9 significant change on the outputs for selenium due to 10 the mitigating effect of sulphate. So it -- it 11 would -- that -- that could influence the results as 12 well. 13 Okay. Thank you. 0 14 What is the justification for Benga's statement that trophic transfer values used in the exposure 15 modelling are thought to be very conservative? 16 And 17 does this statement apply to all contaminants of potential concern or just specific ones? 18 So this would specifically apply to selenium. 19 So I can Α 20 start by giving the example in the lotic system, the 21 trophic transfer factor that was applied for fish. So 22 a value of 1.48 was applied. Notably, the trophic transfer factor for westslope cutthroat trout that's 23 24 been published by the USEPA is 1.12. So the value that 25 we have applied is quite a bit higher. And -- and it's 26 important to remember that when you're compounding

> Dicta Court Reporting Inc. 403-531-0590

concentrations, a small change in the trophic transfer 1 2 factor makes a relatively large change in the output. 3 So that's one example. I don't know if that satisfies the question 4 5 enough. 6 Well, so I think the concern potentially -- so there's 0 7 been a lot of discussion around selenium. I think we understand your evidence pretty well on selenium. 8 It's 9 more about the other contaminants of potential concern. 10 How confident are you with respect to those trophic transfer values, that they're conservative? 11 12 So the bioconcentration factors that have been applied Α 13 within the multimedia model are generated from the 14 quidance that the model was derived from, which is the office of special waste from the USEPA, and they are 15 based on going from water into tissue, and they are 16 17 chemical-specific. There -- there would be some, you 18 know, small changes from a site-specific chemistry perspective that could modify those, but that model is 19 20 pretty well-established, has been used in numerous EIAs, and is -- is well-known. 21 22 Okay. Thank you. 0 23 What's the likelihood that site-specific trophic transfer factors for Blairmore Creek, Gold Creek, the 24 25 Oldman reservoir, or the end-pit lake could be higher 26 than those used in the assessment, and what would

1 contribute to this occurring?

2 There is always a -- a distribution within species of Α 3 potential uptake. Our approach has been to review the 4 available trophic transfer factors and apply a value 5 that represents, you know, between the 80th and the 6 95th confidence limit of those values. So we've tried 7 to be very conservative in that application, but, you know, there is a distribution on either end. 8 We feel 9 that we've captured the conservative end of that 10 distribution. Does that mean you've captured every 11 single species? That -- that is a question I can't 12 answer.

And the second part of your question, I think, was -- if I have it right -- what could influence the trophic transfer factors to be higher; is that correct?
Q Yes, that's right.

17 A So the site-specific water chemistry could have an 18 influence, particularly at the base of the food chain. 19 So, you know, small changes in the chemistry could 20 modify the uptake. Also, the -- the speciation of the 21 compound itself could also influence the uptake. 22 0 Okay. Thanks.

Did you use different trophic transfer factors for lentic, i.e., the Oldman reservoir and the end-pit lake, versus lotic, Blairmore and Gold Creek environments?

What we applied for the lotic environment was 1 Α We did. 2 based on some site-specific data or as close to it as 3 we could get. So, for instance, for invertebrates, we 4 applied a regression equation that's been developed 5 by -- in the Elk Valley, so that population was felt to 6 be relatively similar in its invertebrate community 7 assemblage. But the -- in the end-pit lake, we didn't apply 8 that because it was based on a lotic environment, and 9 10 we -- I think there is some uncertainty with respect to 11 the invertebrate community that would be present there, 12 and so we have applied a more conservative value. 13 And that answer would apply to species other than 0 14 selenium or just selenium, so other COPCs? Just for selenium. 15 Α 16 Can you explain how the assumption that 0 Okay. 17 aquatic-dependent wildlife receptors were assumed to 18 obtain 100 percent of food sources from the habitat 19 evaluated is conservative for small home-range species, 20 such as benthic invertebrates, or for individual or 21 breeding pairs of a listed species which may occupy a 22 specific habitat for the entire breeding season? 23 So the American dipper was the avian species evaluated Α 24 that had the smallest range, and it still has a range 25 of .2 hectares. I think what -- one of the things 26 that's noted about a bird like the American dipper is

> Dicta Court Reporting Inc. 403-531-0590

that they will forage depending on habitat 1 2 availability. So moving up and down within the system is noted in the literature for that receptor depending 3 on, you know, ice cover and -- and what might happen. 4 So although the .22 is their -- their listed range, 5 6 they're going to be adapting to the changing conditions 7 of the environment. So to assume that they would spend, you know, 100 percent of their time only in one 8 9 area, I think, is relatively conservative. They might 10 return to that area for parts of their -- you know, their life cycle, but that they would only be eating 11 12 food sources exclusively from that small spatial area 13 is pretty conservative. 14 For a species, though, like a -- let's say a benthic 0 invertebrate that lives in a small area the whole time, 15 that wouldn't really be a conservative assumption; it 16 17 would just be the way it is. Is that not correct? That's correct, yeah. And that's how we've assumed the 18 Α 19 model is set up --20 0 Okay. 21 -- so that they would receive those consistent --Α 22 consistently high concentrations. 23 0 Okay. Thank you. 24 Were the -- sorry. We may have covered this 25 already, but I'll ask it again 'cause I can't recall. Were the risk calculations for contaminants of 26

potential concern, other than selenium and zinc, redone 1 2 with the same adjustment to sediment ingestion made, 3 and were the checks made for other errors? 4 We did a reevaluation of the exposure ratios that were Α relatively higher in magnitude, and because that --5 6 that change is proportional, it -- it was determined 7 that it wouldn't have a -- you know, make a change to the conclusions. But we didn't rerun all the 8 9 compounds. 10 As I noted earlier this morning, we had

11 reevaluated with the -- for our own purposes, the --12 updated data set, and that would have applied the 13 correction that was made for bulk density, and there 14 were no change to conclusions.

15 Q Okay. One moment.

So you indicated you kind of did a check with the new modelling data. Is that available in a format that could be provided to the Panel in terms of, you know, a summary table of the updated HQs?

20 A Just one moment, please.

21 Q Yeah.

A Yeah. We can -- we -- we can provide -- provide that.
Just wanted to give some expectations on timeline. You
know, would one to two days be sufficient?
Q I think that's probably workable, yeah.

26 A Okay.

1	Q	Yeah. So just for clarity, then, we're looking for,
2		you know, those recalculated HQs, you know, using the
3		new modelling and incorporating any error checks you
4		may have done. And if that is acceptable, we'll get a
5		number.
6	A	That's acceptable.
7	Q	Okay.
8		THE CHAIR: And can we get a number for
9		that?
10		MS. ARRUDA: Mr. Chair, Elaine Arruda. It
11		would be Undertaking Number 28.
12		THE CHAIR: 28. Okay.
13	Q	THE CHAIR: And my subject matter expert
14		just wanted to clarify, those recalculated HQs would
15		include both the air deposition pathway and the
16		waterborne pathways; correct?
17	A	Correct.
18	Q	Okay. Thank you.
19		Okay. Okay. That eliminates a few questions, so
20		I just need to figure out where to go next.
21		Okay. I'm going to ask a few questions just about
22		migratory birds and listed species. So Benga
23		identifies listed amphibian species, including the
24		Columbia spotted frog, the long-toed salamander, and
25		the western toad as being confirmed as present in the
26		local study area. And Benga notes that these species

are rated as "sensitive" in the Alberta -- sorry, are 1 rated as "sensitive" in Alberta and that the western 2 3 toad is rated by the Committee on the Status of 4 Endangered Wildlife in Canada, or COSEWIC, as "special 5 concern". 6 In CIAR 334, the Canadian Parks and Wilderness 7 Society stated that: (as read) 8 Risks to amphibians are not properly 9 considered by the use of only mammalian or 10 avian surrogates. 11 Benga identifies three listed bird species which feed 12 on insects with aquatic egg larval, pupae, or nymph 13 stages as being confirmed as present in the local study 14 area. These species are barn swallows, common nighthawk, and olive-sided flycatcher. 15 Barn swallows and common nighthawk are listed as 16 17 "sensitive" in Alberta, rated as Schedule 1 under the Species at Risk Act, and are rated as "threatened" by 18 19 COSEWIC. 20 The olive-sided flycatcher is a Schedule 1 Species 21 at Risk Act species and rated as "threatened" by 22 COSEWIC. 23 Teck monitoring data provided in CIAR 313, Addendum 11, Appendix 6.19-3, page 1083 showed that of 24 46 mine-exposed areas in 2018, five had mayfly, stone 25 26 fly, or caddis fly abundances less than the normal

range observed in reference or non-mine exposed tributaries.

1

2

3 In CIAR 360, Table 7.1-5, PDF page 17, selenium exposure ratios greater than 1 were recorded for 4 5 American dipper and mallard exposed to the end-pit lake 6 and for mallard exposed to Gold Creek. American dipper 7 and mallard can both be assumed to consume the aquatic forms of the same insect species which later emerge and 8 9 are consumed as adults by barn swallows, common 10 nighthawk, and olive-sided flycatcher.

Finally, Benga states that it will rely on the recovery strategies for species at risk that are developed by Environment and Climate Change Canada and departmental advice to develop mitigations and monitoring programs.

Benga notes that federal recovery strategies exist for olive-sided flycatcher and common nighthawk and that these strategies plus any future federal action plans will form the basis for project mitigation and monitoring plans.

So with that background, I'm going to ask a series
of questions regarding the implications for Species At
Risk and the Migratory Birds Convention Act.
THE CHAIR: So, Zoom Host, could we go to
CIAR 89, PDF page 602? PDF 602.

25 CIAR 89, PDF page 602? PDF 602.

26 Q THE CHAIR: So the first two paragraphs on

this page includes information based on literature citations regarding the potential of selenium, nitrate, and nitrite concentrations to negatively affect the Columbia spotted frogs and other amphibians, including larval deformities, hormonal abnormalities, increased mortality, reduced feeding, and increased susceptibility to predation.

If we could turn to page 604. 8 In Section 9 11.2.2.3, under the heading "Change in Mortality Risk", 10 Benga includes information based on literature 11 citations that includes -- that indicates that 12 increased concentrations of selenium, nitrates, and 13 nitrites in waterways downstream from the mine have the 14 potential to cause mortality or deformities in western toad larvae. 15

THE CHAIR: And, finally, can we go to 16 17 CIAR 313, PDF 1088? Looking for PDF 1088. Thank you. THE CHAIR: And the information on this 18 0 19 page includes information from Teck regarding recent 20 studies of nitrate, sulphate, and selenium toxicity to 21 amphibians.

So in light of the information that we just looked at, why did Benga feel it was not necessary to conduct an assessment of risk to amphibian species? A MS. MOONEY: So guidance in the literature, including the USEPA's 2016 surface water criteria and

BC's 2014 water quality criteria for selenium, indicate 1 2 that for wildlife, egg-laying vertebrates are the most 3 sensitive receptor and, of those, birds. Amphibians are important and certainly a receptor. 4 5 Often, data limitations, specifically the daily 6 threshold exposure dose that is required to quantify 7 risk, are lacking for amphibians. And in this case, because the literature recognized that birds are the 8 most sensitive, if birds are sufficiently protected, so 9 10 too are amphibians, not to say that amphibians aren't 11 receptors and -- and wouldn't be receiving exposure, 12 but if -- if birds are protected, then so too are 13 amphibians. 14 Okay. Thank you. One moment. 0 15 So the sensitivity is one thing. Then, of course, 16 there's the degree of exposure. So would amphibians 17 not be expected to have higher levels of exposure than birds? 18 I think it would depend on their diet. So if the 19 Α 20 amphibian is consuming a large proportion of fish, they 21 would receive higher levels of exposure, but so are the 22 pescavorian birds. So -- and because the -- the daily threshold exposure dose for avians is well-studied and 23 24 supported over numerous regulatory documents, and there just isn't that data right now to understand the -- the 25 26 analogous daily threshold exposure dose for amphibians,

1		they they weren't able to be evaluated. And if
2		and if that data, you know, was generated or comes
3		becomes available in the future, I think it it could
4		be something that definitely adds value to the risk
5		assessment.
6	Q	Okay. Given that there is, apparently, from the
7		record, available information for selenium, sulphate,
8		nitrate, and nitrite, why did Benga not at least assess
9		those specific COPCs for amphibians?
10	А	Again, because birds for selenium are defined as the
11		critical receptor, and in recognized in the guidance
12		as the most sensitive, they they were evaluated, and
13		if they are protected, so too are amphibians.
14	Q	Okay. Just one moment.
15		Okay. So just to clarify. What I think I heard
16		you say was that, you know, it's your opinion that even
17		though amphibians may have potentially higher exposure
18		than birds, if birds are protected, amphibians are
19		are protected as well. Is that what I heard?
20	A	Sorry. I was on mute.
21	Q	Yeah.
22	A	Based on our understanding currently of birds being the
23		critical receptor, yes.
24	Q	Okay. Thank you.
25		So I'm going to move on to a different topic. So
26		can we pull up CIAR 313, and I'm looking for page 1342.

1 So there are two tables here that I just want to Okay. 2 Before I ask my questions, I want to ask about. 3 clarify whether there might be a mislabelling of the 4 two tables. And so this is Table D4, and it indicates that 5 6 it's "Predicted Exposure Ratio for the Multimedia 7 Assessment for Gold Creek". 8 And if we go to the next page, 1343, there's 9 Table D5, and it indicates it's "Predicted Exposure 10 Ratios for the Multimedia Assessment for Blairmore 11 Creek". 12 So my first question is: Should the table caption 13 for D4 actually be "Blairmore Creek" and the table 14 caption for D5 be "Gold Creek"? And the reason I ask is that it would seem that Blairmore Creek would have 15 16 more hazard quotients greater than 1 than Gold Creek. 17 But that's not the way the tables appear. We're going to check on that and get back to you. 18 Α 19 So my question will depend on that, so I won't 0 Okav. 20 I'll just move on till you confirm that. ask it. 21 Let's move to a different topic, then --Okay. 22 or related topic. So in CIAR 42, Appendix 10, PDF pages 266 to 268, Benga indicates that three surge 23 24 ponds that receive runoff from waste rock are predicted 25 to have elevated water quality parameters and presents 26 results for sulphate, nitrate, cobalt, selenium, and

zinc.

1

2		Could Benga confirm that the predicted
3		concentrations of all five of these parameters, as
4		illustrated in CIAR 42, Appendix 10, PDF pages 266 to
5		268, are above water Alberta water quality
6		guidelines and, if so, by how much for each parameter?
7		And if you want to pull up that reference again,
8		it's CIAR 42, Appendix 10, pages 266 to 268.
9	A	MR. HOUSTON: So, Mr. Chair, I can confirm
10		that, and and they're orders of magnitude
11		difference. For example, selenium, in some cases, is
12		in in the order of 1 milligram per litre, so that
13		would be a thousand or 500 times the the two
14		micrograms or several hundred times the the
15		site-specific limits we're talking about for Blairmore
16		Creek. So these these are quite high numbers.
17	Q	Okay. Thank you, Mr. Houston.
18		And so this relates to a matter that Mr. Yewchuk
19		raised the other day, and we did talk a little bit
20		about it when he was cross-examining you, but could
21		Benga comment on the potential risk to amphibians from
22		exposure to the surge ponds during operation as well as
23		long-term exposure in the postclosure period?
24	А	Yeah. So we we did discuss this with Mr. Yewchuk,
25		and and absolutely exposure to these ponds would not
26		be healthy for amphibians, and so we talked about
1		

Dicta Court Reporting Inc. 403-531-0590

	5750
	putting in place traps for the amphibians and and
	relocating them away from these these sites.
	Mr. Kansas, can can you just talk a little bit
	more about that? You're on mute, John.
A	MR. KANSAS: I I think I think we
	covered it with with Mr. Yewchuk. I I can't add
	to that.
Q	Maybe just a follow-up question, then. You know, when
	you think about trapping, how would long-trap how
	would long-term trapping and relocating work?
A	MR. HOUSTON: So we
A	MR. KANSAS: The oh, sorry. Go ahead,
	Gary.
A	MR. HOUSTON: Yeah. No. We talked about
	pit traps, Mr. Chair. So and not being a frog
	expert, but my understanding is the frogs get caught in
	the in the pits, and it would require somebody to be
	monitoring them on a periodic basis to, you know,
	remove the frogs from the pits and and to relocate
	them to another site that was conducive.
	We were asked about the frequency of checking,
	and and my answer to that was: Well, it would
	depend on the season, on and on the the number of
	times we checked and found actual frogs, or if if
	you know, so we would we would vary that frequency
	depending on the situation.
	Q A A

1 Α MR. KANSAS: I can add -- I can add that 2 this won't stretch me out -- outside my expertise, but 3 movement of adult frogs and amphibians in general is a 4 standard practice. It's not something that's disadvantageous to the -- to the animals. 5 It's -- it's 6 pretty standard. I just haven't been involved in --7 in -- in -- in it very often.

8 Q Okay. Thank you.

26

9 So what are the implications of exposure ratios 10 greater than 1 for American dipper and mallard 11 regarding risks to the listed species with similar 12 diets -- so we're thinking the barn swallow, common 13 nighthawk, and olive-sided flycatcher -- given 14 the level of protection appropriate to listed species? So, again, worried about potential contamination from 15 the surge ponds affecting the diet of other listed 16 17 species.

18 THE CHAIR: And, Zoom Host, you can take19 down that previous exhibit.

20 A MS. MOONEY: Lindsey here.

So for the surge ponds or the operating water habitats during the mine that are above criteria, there would be exposure control for birds to prevent contact with the water and hopefully to prevent ingestion of food sources from those habitats as well.

With respect to the listed species that you

provided, you know, risk is a function of the 1 2 receptor-specific characteristics, and while we haven't 3 evaluated those species in particular, we have 4 evaluated a pretty close surrogate. So the American dipper is a small bird that eats also a lot of insects 5 6 and has a -- relative to its body weight would likely 7 have a similar food-ingestion rate. And we have a low magnitude of risk predicted in the end-pit lake. 8 But 9 the other habitats for those species were below the 10 risk threshold.

11 Q Okay. Thank you. Just a moment.

12 So I specifically asked about the surge pond, but 13 in terms of Blairmore Creek and the end-pit lake 14 exposure as well, they have a close surrogate that also 15 has an exposure ratio greater than 1. And given that the level of protection to listed species is not 16 17 limited to populations but also includes individuals, how do you see that issue in terms of risk to those 18 individuals? 19

A I'm not entirely sure about the -- some of the
receptor-specific parameters for those listed species.
But I think, again, the layered conservatism that we've
applied for species that -- with -- that would be -that would be considered a similar surrogate, given
that we have assumed that those similar surrogates
would be expected to, you know, only receive food

foraged from a specific location under these 1 2 conservative assumptions and sort of the numerous 3 levels of conservatism that I noted earlier, that --4 that those listed species would likely be protected as well. 5 6 Again, risk is a function of the specific receptor 7 characteristics, and I'd -- we'd have to evaluate those specific receptor characteristics. But I don't expect 8 9 them to -- to change the conclusions. Okay. Just a second. 10 0 11 So given that the -- I think I heard you say the 12 American dipper is a close surrogate and that the ER is 13 greater than 1. Wouldn't that trigger a particular 14 concern for a listed species that have a stricter definition of "acceptable risk"? 15 So receptor surrogates are partly chosen due to the 16 Α 17 availability of defensible receptor characteristics, and they're believed to be conservative across similar 18 species, which is why they're run as -- for that 19 20 specific feeding quild, which is why they're run as the 21 So, yeah, I think the answer to your surrogate. 22 question would be: No, I wouldn't expect that there would be significant differences for different birds 23 24 within the same feeding guild. 25 Okay. My wildlife specialist wants to just return 0 26 briefly to the issue of trapping and relocating of

It seems that that would be required over 1 amphibians. 2 a prolonged period of time and potentially into the 3 postclosure period. Does Benga think that that's a 4 workable solution over a long period of time? 5 MR. HOUSTON: Yes, Mr. Chair, we -- we will Α 6 have routine duties to perform to maintain the water 7 management system in any case, and so I -- I think it will be workable to hire somebody, if that's what it 8 takes, to monitor the -- the -- these traps, and -- and 9 10 we -- we would also expect that at some point during 11 the life of the, you know, monitoring after operations 12 that we would be able to close those surge ponds. And 13 so there -- you know, even though we may still be 14 pumping water to the saturated backfill zone.

So there -- there would be some -- you know, there would be an end point where we would close the surge ponds and -- and not have to do that. But, in any case, having -- having somebody on a local contract to maintain these traps, I -- I don't think is, you know, unreasonable.

A MR. BARTLETT: Mr. Chair, it's Mike Bartlett. Just to add to that, the -- the traps are just one of the mitigations that were in place. I think they would be supplemented, or the primary one would be exclusion fencing, and those are often used long term on industrial sites.

-		
1	Q	Okay. One moment.
2	A	MS. MOONEY: I also have an answer about
3		the D4 and D5 tables.
4	Q	Okay. Yeah.
5	A	And they are not flipped. And
6	Q	Okay.
7	A	just to qualify that the Blairmore Creek values
8		here, remember, they applied the older data set.
9	Q	So if they applied the newer data set, would the
10		numbers change substantively?
11	A	They don't change substantively in terms of conclusion,
12		no. That's the answer.
13	Q	Okay. And what accounts for the higher number of
14		HQs elevated HQs in Gold Creek versus Blairmore
15		Creek?
16	A	So there's two things. So the relative concentrations
17		that were used for Gold Creek didn't change
18		significantly from what has been applied in these
19		tables in the updated data. The larger change was for
20		Blairmore Creek. Specifically for selenium, the higher
21		hazard quotients have to do with the lower contribution
22		of sulphate to Gold Creek.
23	Q	Okay. Thank you.
24		Okay. So this is the follow-up I was going to ask
25		about following the clarification on the table. So
26		we've covered a bit of this, but I'll ask it anyway.

So if risks to amphibians can be assumed to be similar 1 2 to those for aquatic-dependent mammals and birds used 3 in your risk assessment and given that selenium exposure ratios equal to or greater than 1 are 4 5 predicted for American dipper and mallard duck in the end-pit lake, northern river otter, American dipper, 6 7 great blue heron, and mallard duck in Gold Creek, and mallard duck in Blairmore Creek, could Benga comment on 8 9 the potential risk to amphibians from exposure to 10 end-pit lake, Blairmore Creek, or Gold Creek water 11 based on the values in those tables? 12 I -- I think what's important to remember about Α Yeah. the values that have been presented is, you know, they 13 14 have been presented providing the upper distribution of possible exposure as a tool for us to better understand 15 and -- where mitigation may be required. 16 17 With respect to the amphibians, the same answer holds, that we know we've got some exposure ratios for 18 birds that are higher than -- than the threshold, 19

20 and -- and it's not a line in the sand. You know, 1.1
21 versus .9 is -- is not significantly different. But it
22 is something that needs further evaluation and, you
23 know -- yeah.

24 Q Okay. Thank you. Just a minute.

25 What specific mitigation would be required to26 reduce the risk of exposure to contaminants of

potential concern in listed bird species, again, barn 1 2 swallow, common nighthawk, olive-sided flycatcher? Are 3 there any specific mitigations required? 4 So, Mr. Chair, again, the --Α MR. HOUSTON: the lens that Ms. Mooney's looking through is -- is 5 6 a -- a screening lens, and so we've taken conservative 7 assumptions that, and -- and that has driven our -- our understanding of where the risk lies. 8 9 In -- in terms of some of the project water 10 bodies, like the surge ponds you mentioned, we -- we

11 would employ mitigations like fencing pits for the 12 amphibians and noisemakers or -- or flags or something 13 to have the birds stay away. So that -- those are the 14 kinds of mitigations.

15 But in terms of water quality in -- in the -- in the creeks, the -- the -- the same mitigations would 16 17 apply; that is, water treatment, monitoring, and 18 management -- active management of -- of those water bodies to -- to ensure that no harm is done. 19 20 Okay. Given the exposure ratio's greater than 1 0 21 predicted for Gold and Blairmore Creeks, what are the 22 implications of these results, given that there are 23 species covered by the Migratory Birds Convention Act? 24 Again, I'll -- I don't want to speak for Ms. Mooney, Α 25 but we've talked about the conservatism that goes into 26 these studies, and especially if you're talking about

1 migratory birds, they're not going to stay in one place 2 and -- and drink the water for -- for a lifetime. So I -- I -- I think that the -- the screening-level study 3 that we've done is -- is very conservative for -- for 4 5 migratory birds. 6 I quess the question was really more about: Given the 0 7 potential impacts to migratory birds, is there a need for additional level of protection or mitigation? 8 Like, I understand that the assessment is conservative. 9 10 The assessment shows the potential for some effect, 11 which may need to be considered, and so I guess what 12 we're looking for was: Are there any specific 13 mitigation measures as required by the Act to protect 14 migratory bird species? I -- I think the only mitigation that we would consider 15 Α in that -- in that light would be the -- I'm sorry. 16 17 I'm having trouble thinking of the word, but the -- the systems around the surge ponds to -- to disincent the 18 birds to land -- from landing there, and -- and that's 19 where the -- the levels of selenium and nitrates would 20 21 be quite a bit higher than the -- than the quidelines 22 for a natural water body. So we would have a disincentive system for -- for the migratory birds at 23 24 those ponds. 25 But outside of that, I -- I -- I think that the 26 actual risk, especially if we're talking about

1		Blairmore Creek and Gold Creek and a migratory bird
2		that is spending a short time in that vicinity, I I
3		think the risk is very, very small.
4	Q	Okay. Thank you, Mr. Houston.
5		Just the last couple of questions now. So the
6		guidelines for the preparation of Benga's environmental
7		impact statement require that the cumulative effects of
8		the project are assessed using the technical guidance
9		for assessing cumulative environmental effects under
10		the Canadian Environmental Assessment Act. The
11		guidelines for Benga's EIS state on page 37 that:
12		(as read)
13		A cumulative effect on an environmental
14		component may be important, even if the
15		assessment of the project's effects on this
16		component reveals that the effects of the
17		project are minor.
18		On the same page, the guideline requires
19		that Benga consider surface water quality,
20		fish and fish habitat, including westslope
21		cutthroat trout, mountain whitefish, as well
22		as other valued fish species; migratory
23		birds, including habitat loss and contaminant
24		exposure; and species at risk.
25		The CEAA, C-E-A-A, technical guidance for assessing
26		cumulative environmental effects states that:
1		

1 (as read) With complex interactions, the whole does not 2 3 necessarily correspond to the sum of the [The guidance goes on to state that] 4 parts. Continuing environmental changes associated 5 6 with past and existing activities may result 7 in a worsening or improvement of VC conditions and that where there is evidence 8 9 that effects are not simply additive, it 10 should be noted. 11 So the first question is: According to CEAA technical 12 quidance for cumulative effects assessment, consideration of simultaneous exposure to several 13 14 stressors should be considered. This guidance is 15 illustrated with an example at the bottom of the page, which is page 40 of the guidance document. 16 17 Could we pull up CIAR 313, PDF 1343? So these were the same tables we were referring to earlier. 18 Given the technical guidance regarding 19 consideration of the effects of a combination of 20 21 stressors on each valued component, could Benga comment 22 on the risk to wildlife of exposure to all combined contaminants of potential concern? Could Benga include 23 24 in the response specific consideration of effects of 25 the combined exposure to contaminants where exposure 26 ratios for each contaminant may approach or exceed 1

for long durations, for example, a combination of selenium, methylmercury, and thallium as indicated on PDF page 1343; and could Benga also include consideration of the level of protection required for species at risk and migratory bird species?

6 So, again, long question. The essence of it is 7 considering the potential for being exposed to multiple 8 contaminants approaching a hazard quotient of 1 and 9 having regard for the at-risk nature of these species, 10 what are Benga's comments on that potential combined 11 effect?

12 A MS. MOONEY: One moment.

13 So when we look at these con -- or these, sorry, 14 exposure ratios that have been produced, selenium has the end point of hatchability, but if we were to sum 15 the others that you had mentioned, it doesn't actually 16 17 change anything. We don't come close to exceeding the threshold. So I think selenium is its own COPC, based 18 on its defined and specific end point for birds, but 19 20 I -- I don't think that, you know, summing the remainder would make a significant change to the 21 22 conclusions.

23 Q Okay. Thank you.

24 Could Benga comment on the potential risk from a 25 combination of exposure to several contaminants as well 26 as degradation or elimitation [phonetic] of -- sorry, 1 degradation or elimination of habitat? For example,
2 which specific combinations of contaminant exposure and
3 habitat effects are most likely to cause adverse
4 effects, particularly listed species?

5 And you can consider amphibian species as well as 6 bird species in the answer. So habitat loss combined 7 with contaminant exposure.

So my understanding is that there is a hundred-metre 8 Α 9 offset for the riparian habitat. So with respect to 10 habitat loss, specifically for aquatic species, I -- I 11 don't know if there is any habitat loss expected for 12 the wildlife, including amphibians. So in terms of a 13 cumulative assessment, I think it would be strictly 14 relegated at that point to just the chemical exposure, which is what we've done. 15

So I think I understood from the discussion the other 16 0 17 day there is a significant loss of a treed wetland, 18 although it's a bit unclear about how many amphibians 19 that it includes because an assessment was not done, 20 but that's the kind we're looking at -- we're wondering 21 about, loss of that kind of habitat with contaminant 22 exposure to amphibians and how those two risks would 23 combine.

A I can say that -- so for that wetland that was used as an example, it is -- it's not connected to the drainage of the creeks that were evaluated, and it would primarily be receiving aerial deposition, which is, you know, less than 1 percent of the total concentration that we've evaluated.

So I think the cumulative effects would be very 4 5 low in terms of, you know, air deposition and potential 6 habitat loss. And what -- what we have evaluated is 7 the surface water habitats, the creeks, where predicted concentrations are higher due to that connection with 8 9 the -- the discharge. So -- and there is no habitat 10 loss predicted in those areas. So, again, I think it 11 would be in those spots related mainly to the chemical exposure. 12

13 Q Okay. Maybe just a follow-up question, then, for14 Mr. Kansas.

Mr. Kansas, do you see and has Benga considered,
you know, any scenarios where wildlife might, I guess,
be exposed to a number of different effects, so both
habitat loss and contaminant exposure?

19 MR. KANSAS: It's just really out of my Α 20 area, the whole contaminant game. I -- I don't ever 21 touch it, so it's throwing me off a little bit here, but I -- I think the wetland that you're referring to 22 that we didn't sample, that -- yet it will be removed, 23 24 that type of a wetland would probably have attracted 25 dispersing Columbia spotted frogs to it. However, that 26 could be deemed as a cumulative effect, but only if the

1		Columbia spotted frog was under pressure from a
2		chemical a toxicology point of view at the same
3		time, which I don't know we've we've determined.
4		However, the treed wetland that will be removed,
5		as I understand it, is going to be replaced at the
6		surge ponds or sediment ponds will will create
7		additional treed wetland habitat. So there should be,
8		in in essence, a a neutral effect on on that
9		species from multiple stressors.
10	Q	Okay. And what about a concern of habitat that may
11		attract wildlife such as amphibians but has
12		contaminants associated with it? Has Benga considered
13		that in its assessment?
14	А	I think we've been speaking to that, trying to keep
15		animals off and away from the the toxic water
16		through various means, radar-controlled cannons right
17		through to flighting tape, just keeping them off the
18		off the sites.
19	Q	Okay. So last question on this topic and last
20		question, I think, totally. Has Benga considered
21		situations where cumulative risks may require a change
22		in mitigation strategy because of additives synergistic
23		or antagonistic interactions among stressors and, if
24		so, how?
25	A	MS. MOONEY: So aligned with what I had
26		said before that, you know, the end points that we've
		_

1 evaluated really aren't appropriate for additive -- to 2 be added, and if you had added the hazard quotients, 3 other than selenium, we result in an exposure ratio 4 that's still quite low.

And I don't know if there is a lot of documented 5 6 information with respect to synergies as opposed to 7 just being additive in the -- the toxicological data 8 that we've applied for these species, mammalian and 9 avian, but I -- I don't really expect so, and, you 10 know, I think kind of based -- based on what I was 11 saying before about, you know, even if we had added 12 some of the exposure ratios, you know, it -- it doesn't change the conclusions. 13 So I -- I think that addresses 14 at least some of the question.

15 MR. HOUSTON: Mr. Chair, if I could just add Α on a little bit. We have committed to a wildlife 16 17 monitoring program, and we've also committed to an Indigenous-led monitoring program, which we expect will 18 get -- lean heavily into the -- into the wildlife 19 20 health area. And so, you know, we will be watching for 21 unforeseen consequences, and should -- should those be 22 detected through one or the other of those monitoring programs, then, yes, we would be looking for -- to --23 24 to apply other mitigations to prevent that from 25 happening.

26 Q Okay. Sorry. One last follow-up question, then. Is

1		Benga aware of any cumulative effects modelling tools
2		which allow for a consideration to both habitat-related
3		stressors and contaminants?
4	A	MS. MOONEY: I am not personally. That
5		doesn't mean they they don't exist. I just I'm
6		not aware of them.
7	Q	Okay. Thank you.
8		Okay. Panel, thanks. Those are my questions.
9		I'm just going to turn to Mr. Matthews and Mr. O'Gorman
10		to see if they have any additional questions.
11		THE CHAIR: Mr. Matthews, do you have any
12		questions for this panel?
13	Q	MR. MATTHEWS: Good afternoon, panel.
14		I have a few questions with regard to community
15		health, more specifically, Indigenous health. I
16		recall, I think, Mr. Mitchell talked about using
17		Statistics Canada 2013 data. I think it's referenced
18		to Zone 1 where I think he was there was mention
19		that there were 300,000 people living there.
20		But just wondering if you if you had any
21		statistics on community health or, sorry, Indigenous
22		community health in that area.
23	A	MR. MITCHELL: Give me just one moment on
24		that.
25	Q	Okay.
26	A	I don't think we're aware of any studies that are

1 specific enough to that sort of stale community and 2 also include enough data to be -- to be meaningful. 3 'Cause I was -- I was curious as to how Benga Okay. 0 4 would -- or -- or how -- what tools they would use to 5 monitor community health when they have no -- or very 6 little baseline data on each of the communities and 7 their mental and physical health.

So I've spent a lot of time 8 Α MR. HOUSTON: 9 with the Indigenous communities in the area, and it's 10 hard to -- from a health point of view, it -- it's hard 11 to make a direct correlation between the project and --12 and the community health or -- or the health statistics 13 within the community. There are so many other factors, 14 you know, impacting on health that I think -- I think it's an area that we would like to get into more with, 15 especially, our closest neighbours and -- and perhaps 16 17 work with them to investigate, but it's -- it's -- it's difficult to incorporate into a formal study like this. 18 Okay. 'Cause I'm just -- you know, obviously it was 19 0 20 mentioned that the environmental management committee 21 would play a role or the stewardship committee would 22 play a role, but how would you determine whether your project has -- is negatively affecting an Aboriginal 23 24 community's health?

25 A I -- I think a big part of the -- the answer to that
 26 question is open communications with -- with the

1 community through the leadership and -- and through 2 other -- other channels that are more at the base of 3 the community. But it's -- it -- it is a difficult question to answer, so we would look more for -- not --4 5 not just complaints but comments, attitudes towards the 6 project, and -- and combine that with, you know, 7 information that comes out of a -- an Indigenous-led monitoring program. But it -- it -- it is a tough one 8 9 to get a -- a handle on.

10 A MR. MITCHELL: Just a couple additional 11 comments, if I may, related to that. And what we're 12 talking about is sort of the -- I guess the physical 13 health that the traditional human health risk 14 assessment looks at and, you know, significant health 15 effects.

I think the comment came up about the studies in 16 17 the Appalachian region and how there's just so much noise in those studies that they couldn't really come 18 19 up with anything -- anything conclusive, and we were 20 talking about a -- about a smaller population again, 21 unless you had a really significant health effect, 22 there would probably be too much noise to actually detect it from, you know, measuring incidents of 23 24 cardiovascular disease or -- or cancer and anything 25 like that, and that's why we need to rely on the --26 things like the -- the air monitoring and the public

1		communication to make sure we don't get to the stage
2		where there is a risk of that, because by the time you
3		could detect it, it would be too late, really.
4	Q	Yeah. 'Cause, I mean, just I'm just thinking out
5		loud here, but if you did have the baseline data on,
б		let's say, cancer rates, diabetes, mental health
7		issues, as my colleague mentioned, potential toxicity
8		of the kidneys, liver, and all these other elements, it
9		would be very difficult to determine what kind of an
10		impact your project is having on the community health.
11		So I I'll just I'll just throw that out there and
12		just just something to think about.
13	A	Yeah. It is difficult. Even even if there is an
14		observable change relating it to a specific cause as
15		opposed to, say, a change in lifestyle, a change in
16		diet, a change in the community composition, it it
17		becomes very difficult, and, like I said, that's
18		that's why obviously when you get that information,
19		it's it's important to to incorporate it, but
20		it's it's very hard to actually get meaningful, good
21		data on.
22	A	MR. HOUSTON: I think the other thing,
23		Mr. Matthews, that that is has to weigh in here
24		is the nearest Indigenous community is, like, 50 or
25		60 kilometres away, and so it's it's not like
26		Fort McKay, that's, you know, right in the middle of
1		

several projects and directly experiencing the -- the 1 2 air -- our air models don't even go out that far. And 3 so when you think about typical diseases that might be because of air pollution or water pollution, we don't 4 have that effect on these communities. 5 6 We've modelled individuals that may choose to stay 7 close to the project and do their foraging close to the 8 project, so we've modelled them in, but it's not -it's not, you know, a -- a -- a general thing to -- to 9 say that the community's exposed to the project in that 10 11 It would be more a social, psychological, way. 12 other -- other kinds of health that I think would be the vectors that would -- would have the biggest effect 13 14 in the community. 15 Okay. Well, thanks -- thanks for your answers, and I 0 16 have no other questions. Thank you. 17 THE CHAIR: Mr. O'Gorman? MR. O'GORMAN: Thank you, Mr. Chair. 18 I do 19 just have a couple of areas of questions for this 20 panel. 21 So good afternoon, panel --Ο MR. O'GORMAN: 22 MR. HOUSTON: Good afternoon. Α 23 0 -- Mr. Houston. 24 Good afternoon. Α So the first one is a question about greenhouse gas 25 0 26 emissions. I'm guessing Mr. Rudolph might be your

1		expert for this, but is that right?
2	A	MR. RUDOLPH: Possibly. I'll do my best to
3		answer them, Mr. O'Gorman.
4	Q	Okay. Thank you, Mr. Rudolph.
5		So not a hard question.
6		MR. O'GORMAN: I'll say the reference, but
7		Zoom Host, you do not need to haul this up.
8	Q	MR. O'GORMAN: So in Addendum 10, which was
9		Registry Document 251, Package 1, near the end of that
10		document
11		MR. O'GORMAN: Don't haul that up, Zoom Host.
12	Q	MR. O'GORMAN: Near the end of that document,
13		final ten pages or so, in response to a request, you
14		gave us Benga gave us a greenhouse gas management
15		plan. In there, there were a couple of references to
16		the Alberta's Carbon Competitiveness Incentive
17		Regulation. Do you recall that?
18	A	MR. RUDOLPH: I do, yes.
19	Q	Okay. So I'm sure that you're aware that since the
20		time that was submitted, there's a new provincial
21		greenhouse gas regulatory framework, the carbon
22		competitiveness Carbon Competitiveness Incentive
23		Regulation has been replaced by the TIER program, the
24		Technology Innovation and Emissions Reduction
25		Regulation. You're aware of that; right?
26	А	Yes, that's right.

1 So obviously the references, you know, in the 0 Okay. 2 greenhouse gas management plan presumably would be updated to reflect the new TIER program. 3 That's not a 4 huge issue. 5 We are interested, though, in whether or not you 6 have calculated the -- for any year of the project's 7 operating lifetime, some early years, Year 19 which was the year that, you know -- your highest GHG emissions 8 9 estimated year, for example. Have you calculated what 10 you anticipate the compliance obligation to be for your 11 project, whether that be measured in tonnes or in 12 dollars? 13 I don't think we've done the benchmarking yet Α No. 14 for -- for the project, Mr. O'Gorman. 15 Right. 0 I did -- I did note, though, and I -- I probably 16 Α should've mentioned it earlier in the -- in the 17 conversation when Mr. Lambrecht was talking to 18 Mr. Houston, that mine-face emissions of methane would 19 20 likely be included as one of the sources under the TIER 21 But they would not be considered a process program. 22 source per se and, therefore, would not be subject to the 1-percent-a-year emission reduction requirement. 23 24 And I -- and I know that -- you know, it's not 25 necessarily the case that -- that Mr. Houston would not commit to some form of reduction, but I think it's a --26

		5755
1		I just wanted to point that out.
2	Q	Okay. Fair enough. Thank you.
3		So you haven't actually done an estimate of the
4		compliance obligation. Do you have a sense of whether
5		or not the compliance burden the project will face
6		under this regulation is higher or lower than it would
7		have been under the previous regulation?
8	A	We haven't done that assessment at all, to my
9		knowledge, Mr. O'Gorman.
10	Q	Okay. Okay. And I'm assuming you don't have a you
11		don't have a strategy yet for how you will satisfy your
12		compliance obligation, i.e., payments into a fund
13		versus offsets versus on-site emission reductions, or
14		do you?
15	A	MR. HOUSTON: So I guess all those options
16		are are open to us at this at this point. The
17		roughly a third of the greenhouse gas emissions
18		attributable to the project are for electricity
19		generation. So one of the potential wins, I think, we
20		see is to perhaps find a greener source of electricity
21		to offset those those emissions associated with the
22		electricity use. But no no concrete plans at this
23		moment. Just a thought process.
24	Q	Okay. That's good for that area. Thank you,
25		gentlemen.
26		So my second area I want to ask questions about

1		I will haul up a couple of references in a second.
2		But, first of all, I'll ask you, Mr. Houston, who on
3		your panel today I suspect I know the answer, but
4		I'll put it to you. So who is the person most familiar
5		with and can speak to the measure you folks have
б		like, the actual on-the-ground implementation of the
7		road dust watering system that you would implement?
8	A	I think it would be Mr. Rudolph that could speak to
9		what what is incorporated in the air modelling.
10	Q	Okay. I'm more talking about look, so Mr I was
11		guessing Mr. McCoy.
12		So what I'm wondering is which one of you or has
13		anyone actually been on a mine site and watched road
14		dust monitoring take place, and can you describe it to
15		me?
16	A	Mr. McCoy might be a good candidate for that, but I
17		think Mr. Rudolph might also have that kind of
18		experience.
19	Q	Is that right, gentlemen?
20	A	MR. MCCOY: Well, I I have been on a
21		mine site, and and, you know, watched road watering
22		occur. So, I mean, we can take that I can take a
23		stab at it, Mr. O'Gorman.
24	Q	Sure. Let's start with you, and you guys can figure
25		out how best Mr. Houston, it might also fall back to
26		you.

1 So let's start with -- I'm going to suggest that 2 there -- you haven't provided us with a whole lot of 3 information about what that measure would look like. You've implemented -- you've said you will do it as a 4 5 mitigation measure to manage road dust, but can you 6 describe it a bit to us, Mr. McCoy or Mr. Houston? 7 Like, what does it look like? How -- it's -- is it big 8 trucks? How big are they? How many are they -- are 9 you using? Tell us a little bit about what that looks 10 like, please.

11 So most of the mines -- well, there's a combination. Α 12 You can use a -- a typical water truck that would, like, haul water to an acreage, for instance, but --13 but most of the mines have -- have modified or 14 retrofitted some of their big coal haulers with big 15 16 water tanks on them that actually can get more range 17 out of it so when they're actually dispersing the water, they -- they could get, you know, from one end 18 19 of the mine to the other then go back and sort of 20 reload with water. So it's a -- it is a, you know, 21 200-tonne truck capacity full of water that would be --22 would be spreading the water evenly out over the -over the haul road, so ... 23 24 And what roads, to be clear, are we talking Q Okay. 25

25 about? I think I know the answer, but I'll let -- I'll 26 let you tell me.

1	А	That that that would largely be a for the
2		for the coal haul road, so from the from the from
3		the pit base area to the to the CHPP would be a few
4		roads that would be watered, and also the the roads
5		that go from the pit face up to the external rock
6		disposal areas. So roads that are being traversed
7		with with those waste haul trucks would would
8		would be watered as well. That those would be the
9		ones that that would get the the lion's share of
10		the of the watering and the attention, so
11	Q	Okay. So a good a good amount of that water is
12		being used in the pit along the roads back and forth
13		between the CHPP and where you are mining at a
14		particular point in time; right?
15	А	I I I would say that, you know, wherever waste
16		rock is being hauled or or coal hauled back to the
17		plant, both of those probably get equal attention
18	Q	Okay.
19	A	so
20	Q	And I'm guessing not or correct me if I'm wrong
21		probably not a lot of watering, or or is there, of
22		the mine access road from Blairmore up to the CHPP
23		area? Or is that one also going to receive some lot
24		like, how much watering would that get?
25	A	Well, I I I think the the the sort of
26		the the mechanics of what I was just describing

1		would be for on the mine. For off the mine, I would
2		suggest that that that equipment is is too large
3		and wouldn't be capable or acceptable on a on a a
4		sort of public road like that. That would be more of
5		a a conventional water truck that would would
6		would be used in those instances.
7		And I I I think it it really varies
8		from from mine to mine. And and I do know that
9		there has been some talk about about supplementing
10		the dust suppression, and and there's various
11		methods for doing that, and Mr. Houston has talked to
12		that in in the some of the previous discussions,
13		but so and, anyway, so on the mine, it would
14		be be be the larger trucks that would be hauling
15		water. On on off the mine, it would be a
16		different sort of configuration.
17	Q	Okay. So thank you, Mr. McCoy.
18		MR. O'GORMAN: Zoom Host, I'm going to ask
19		you please to haul up the first of the two documents
20		that I sent you, which was the transcript from Friday.
21		I think it's I'm not sure what the CIAR number is,
22		but the Volume 26, November 27 transcript. And the
23		page number I'd like you to go to is 5641, please.
24		Right.
25	Q	MR. O'GORMAN: So, Mr. Houston, you were
26		having a conversation with Ms. Janusz, and this
1		

1 exchange took place on Friday. She was talking 2 about -- well, she was reading something you had said 3 earlier. I didn't go back and look for the early reference, but she was reading, you'll see there. 4 You 5 talked about there being a wash bay to clean the 6 equipment, as she was asking about water use. You said 7 you're committed to doing a wash bay; that's something 8 that's using water. You also then said down that line -- line 7, "Another --" sorry, starting at line 8: 9 10 (as read) 11 Another one -- another use would be spreading 12 water on the roads to keep dust down. [And you said] So that is, actually, you know, not 13 14 an insignificant use of water. 15 You recall saying that, Mr. Houston? MR. HOUSTON: Yes, I do. 16 Α 17 She was quoting you here, but I'm -- I'm didn't go back Ο and -- I didn't do the double reference. 18 It was too 19 meta for me. 20 MR. O'GORMAN: So, Zoom Host, can we haul up 21 the other document I sent you, which was Addendum 2, 22 CIAR 53, Appendix 1E, and we're going to go -- well, 23 when I see that up, we're going to go to PDF 8, please. 24 Scan in on the table at the bottom, please, Zoom Host, 25 so we can see it a bit better. And scroll down to the 26 bottom.

1	Q	MR. O'GORMAN: So you gave us an estimate in
2		here in your water use application of wash I'm
3		assuming wash the column that's "Wash Down Makeup
4		Water" in cubic metres, the 2,000 cubic metres per
5		year, that's notionally your wash bay water. Is that
6		right, Mr. Houston?
7	A	MR. HOUSTON: I I believe so, but I'm
8		I'm just going to check with Mr. McCoy to see if he
9		knows anything different.
10	A	MR. MCCOY: I I believe that's what
11		that was meant to account for.
12	Q	Yeah, which that would make sense. So 2,000 cubic
13		metres per year. That's like 2 million litres; right?
14	A	That's correct.
15	Q	Okay. So we looked and did not find anywhere in your
16		document where you have told us how much water you
17		anticipate using for the wash the I'm sorry, the
18		road dust spraying program. Based on now so I'll
19		invite you to tell me if we missed it and where we
20		could find that amount, and if you haven't, is there
21		can you give me an estimate of what that might look
22		like? And the reason I hauled this up is, of course,
23		you know, in the conversation you had, you you
24		you talked about the makeup the wash bay water and
25		then the road dust water is you spoke about them in
26		the same sentence, so is it the sort of thing where you

		5700
1		expect them to be about the same? I don't know. We
2		don't have any estimate of how much water you're
3		talking about for the road dust, unless you can show me
4		where it is.
5	A	I can in a in an earlier version of this, the
6		the the the assumption was that we would use
7		about 60,000 cubic metres of water per year or per
8		road watering, and I I don't know off the top of my
9		head where that reference is, but I but I do know
10		that in the initial water balance, that was the the
11		estimated volume that was was proposed to be used,
12		
		SO
13	Q	Okay. 60 million litres per year in road dust
14		watering?
15	A	Correct.
16	Q	Okay. Is that the sort and, Mr. McCoy, in again,
17		as I I'm I'm thinking you're the one who's seen
18		this happening on mine sites. Is that sort of an
19		amount that you would say is comparable to other
20		mountain mountain you know, mountain coal mines?
21		Is that the sort of the ballpark? Is that
22		significantly higher, significantly lower based on your
23		expert judgment?
24	A	I I would say that it seems reasonable, you know,
25		just given the the the length of the haul roads
26		and the amount of watering that would would likely

I've also been on some mines that 1 need to be done. have, you know, 40, 50 kilometres of haul road that 2 3 need -- there's a lot more road that needs to be watered than what -- that what we would have at -- at 4 Grassy. So I -- I would say it's -- it seems like a 5 6 reasonable amount of water --7 0 Okay. 8 Α -- (INDISCERNIBLE). 9 So I wonder if you folks, whoever, can tell me how that Ο 10 water is managed? What happens to it once you spray it 11 on the roads? Does it sit there and just evaporate? 12 Does it run off? Where does it run off? Are you 13 managing it in any way? 14 Α So the -- the idea is we're -- we're -- we would be 15 spraying this on the haul road. So our -- our -our -- our retrofitted haul truck would have a -- a --16 17 a water tank on the back, and it would have a spray bar on the back of it that would, you know, drive down 18 the -- drive down the haul road and -- and spread 19 20 the -- the water sort of evenly across the -- across 21 And -- and once it's on the road, there the road. 22 would be -- it would be -- it would be left there to --23 to help. You know, we would -- we would put the 24 appropriate volumes on, I quess, so that it would --25 would keep the dust down for a -- for an extended 26 period of time, and then it would just -- it would just

1 go from, you know, across the -- the -- the roads that 2 would need watering, and then once he was -- once the 3 truck was empty, it would go back to -- to fill-up 4 station and then carry on and continue, so ... 5 Right. Okay. I understand that. But I'm thinking 0 6 once the truck has left. So the water has been sprayed 7 on the road, it suppresses dust, and then what? Does any of that water -- does much of that water run off? 8 9 Does it -- in interacting with the road dust to 10 suppress it, does it essentially sort of evaporate 11 later? Like, what happens to that water? 12 Mr. O'Gorman, I -- I would say that that water Α 13 essentially just -- it -- it would evaporate over time, 14 and it -- I wouldn't -- I wouldn't think that it would I think the -- the idea would be to put 15 run off. 16 enough on so that it stayed on the road and not -- not 17 to run off. So I guess if you put excessive watering, then -- then you -- you might get a small bit that 18 would -- would leave the surface of the haul road. 19 20 Okay. So now I'm going to come to the big kicker of 0 21 why I've asked you these questions. I'm quessing it 22 might -- so remind us where that water is coming from. 23 That -- that water is -- is likely coming from the --Α 24 the raw water pond. 25 Right. The raw water pond, which is the one receiving 0 26 all of the high-selenium runoff from the rock dump

1		areas before it gets fed into the SBZ for treatment;
2		correct?
3	А	That's correct, yeah.
4	Q	Okay. So I guess on first blush and I could I
5		could get a calculator out and do some estimates of
6		if you look at the concentration you've given us,
7		and we discussed it back in the water section, the
8		expected concentration I won't haul it up of
9		selenium in the raw water pond. It was, as I recall,
10		.7 milligrams per litre. Does that sound right? I
11		think it was about you had an estimate in one table
12		of, say, about .7 milligrams per litre. And you're
13		looking at potentially spraying 16 million litres per
14		year of that water over the roads. The water is going
15		to potentially sit there and evaporate. And if water
16		evaporates that's containing things like selenium,
17		presumably the little molecules of selenium are just
18		left there sitting on the roads after the water
19		evaporates. Do you agree with that?
20	А	MR. HOUSTON: I I I think that, you
21		know, conceptually is right, Mr. O'Gorman. I'm not
22		advanced enough in my chemistry to know if it would
23		stay in the form of selenate or if there would be some
24		kind of, you know, a reduction or oxidation process
25		that would change it from from that form.
26	Q	Okay. I mean, it seems that there's a potential for

Г

1		if there are molecules, potentially a whole lot of
2		molecules of selenium left behind on the roads after
3		watering, and then precipitation comes along, and some
4		portion of that is washed into, for example, the pit
5		where a lot of the dusty roads are that will be
6		watered, and then some of it might make it out of the
7		pit and make it into Gold or Blairmore Creek, or will
8		all of that be captured somehow? Tell me what's going
9		to happen the eventual fate of the selenium that
10		you've sprayed onto your roads.
11	A	All
12	Q	Because I'm going to suggest that it's not an
13		insignificant amount of selenium.
14	A	So so you raise raise an interesting point;
14 15	A	So so you raise raise an interesting point; however, all all of that you know, if if you
	A	
15	A	however, all all of that you know, if if you
15 16	A	however, all all of that you know, if if you consider the scenario where we have a say, a a
15 16 17	А	however, all all of that you know, if if you consider the scenario where we have a say, a a storm and a a inundation washing some of that
15 16 17 18	A	however, all all of that you know, if if you consider the scenario where we have a say, a a storm and a a inundation washing some of that selenium off the road. It it would go into the
15 16 17 18 19	A	however, all all of that you know, if if you consider the scenario where we have a say, a a storm and a a inundation washing some of that selenium off the road. It it would go into the groundwater system. It would not it would not run
15 16 17 18 19 20	A	however, all all of that you know, if if you consider the scenario where we have a say, a a storm and a a inundation washing some of that selenium off the road. It it would go into the groundwater system. It would not it would not run off the site. It would be captured on the site. And
15 16 17 18 19 20 21	A	however, all all of that you know, if if you consider the scenario where we have a say, a a storm and a a inundation washing some of that selenium off the road. It it would go into the groundwater system. It would not it would not run off the site. It would be captured on the site. And so it would end up either in the groundwater in the
15 16 17 18 19 20 21 22	A	however, all all of that you know, if if you consider the scenario where we have a say, a a storm and a a inundation washing some of that selenium off the road. It it would go into the groundwater system. It would not it would not run off the site. It would be captured on the site. And so it would end up either in the groundwater in the SBZ, if if it was in that area, or in the pit,
15 16 17 18 19 20 21 22 23	A Q	however, all all of that you know, if if you consider the scenario where we have a say, a a storm and a a inundation washing some of that selenium off the road. It it would go into the groundwater system. It would not it would not run off the site. It would be captured on the site. And so it would end up either in the groundwater in the SBZ, if if it was in that area, or in the pit, and and it would manifest itself, I guess, in the
15 16 17 18 19 20 21 22 23 24		however, all all of that you know, if if you consider the scenario where we have a say, a a storm and a a inundation washing some of that selenium off the road. It it would go into the groundwater system. It would not it would not run off the site. It would be captured on the site. And so it would end up either in the groundwater in the SBZ, if if it was in that area, or in the pit, and and it would manifest itself, I guess, in the water we extract from the pit.

5964

-		
1	A	It it will depend on on any selenium content in
2		that water. So if if that pit water had high
3		selenium content, we we would direct it towards a
4		surge pond or to the
5	Q	Okay.
6	A	raw water pond again.
7	Q	Okay. And I'm guessing, if you could confirm, that the
8		selenium that we're talking about now that was sprayed
9		on roads and then either goes into the groundwater or
10		washes off and ends up in the pit, water you're pumping
11		out or, you know, some other in ditches around the
12		site, I am guessing that you have not 'cause we
13		incorporated that into your, you know, water quality
14		modelling.
15	А	No. And I okay. I'm I'm guessing here, but I
16		I would think that it would be small compared to the
17		other sources of of selenium. If it was not, I
18		would suggest we'd have to change our watering road
19		watering strategy and and use treated water or at
20		least water that's coming out of the SBZ.
21	Q	Okay.
22	A	No, no. I good good questions and certainly
23		something we need to check quickly to make sure that
24		it's not an issue for the project.
25	Q	Yeah, that might be worth doing. I was even thinking
26		about the ditches you have around site capturing site

	1		runoff water, not the is supposed to, as I recall,
	2		be directed to the sediment ponds, and that's supposed
	3		to be your non-selenium-laden water, but if you have
	4		this extra selenium being potentially washed into it,
	5		yeah, it's
	6	A	Yeah.
	7	Q	But there's but there's been no estimates of the
	8		impact of this? That's, I guess, what I wanted to
	9		confirm, and
-	LO	A	No.
-	L1	Q	you agree with that? Okay.
-	L2	A	I I agree with that. It it's something we'll
-	L3		take away, though, Mr. O'Gorman, and take a look at.
-	L4		The the water in the sedimentation ponds, even if
-	L5		this water had selenium in it and got that far, will be
-	L6		tested before it's discharged to the environment. So
-	L7		if there is an incidence of high selenium, that water
-	L8		would then get redirected back to the the raw water
-	L9		surge surge ponds or the raw water pond for for
	20		further treatment through the SBZ.
	21		But I'll I'll I'll get our guys to run a
	22		check on this to see if it's a significant amount
	23		compared to the other selenium loading we're we're
	24		calculating.
	25	Q	Okay. That's all my questions. Thank you, gentlemen,
	26		and thanks for this panel. I think I I I I

1		think I wrap us up, so my the chair will speak, but
2		I'd like to say thank you to all of you for the last
3		few days of the questions that you've all put
4		answered and to the best of your ability. We really
5		appreciate it. So thank you.
6	A	Thank you.
7		THE CHAIR: Okay. Thank you,
8		Mr. O'Gorman.
9		So, yes, that is the end of the questions from the
10		Panel. So another long slog.
11		Mr. Ignasiak, any re-direct?
12		MR. IGNASIAK: No, sir.
13		THE CHAIR: Okay. Well, with that, this
14		panel's work is done, so thank you very much, Benga
15		panel, for answering all of the questions of the
16		participants and the secretariat and the Panel.
17		(WITNESSES STAND DOWN)
18		Discussion
19		THE CHAIR: So it is just about 4:30, and
20		so it seems a bit late to start the Canada panel,
21		particularly recognizing that many of the participants
22		are probably in the Ontario, Quebec area, and it's
23		later for them.
24		So, Mr. Drummond, if you are here, is it okay if
25		we start your panel in the morning?
26		MR. DRUMMOND: I'm sure they're fine with

1 that, sir. Thank you. 2 And the other question THE CHAIR: Okay. 3 I had was -- I'm just kind of doing the math to see if 4 we can finish tomorrow, which depending on the answer to a few questions, it looks like we should be able to. 5 6 So we have Canada available for cross-examination. I'm 7 aware that between the secretariat and the Panel, we probably have about two hours of questions. I don't 8 9 know how long Benga thinks it may be or if Mr. Ignasiak 10 wants to provide an estimate. 11 MR. IGNASIAK: I think we would be fairly 12 brief, Mr. Chair. I'd reserve 15 minutes, but I don't see anything beyond that. 13 14 THE CHAIR: Okay. Thank you. And then in addition, we have direct from the 15 Coalition, which is 45 minutes; and Livingstone 16 17 Landowners Group, an hour and 30 minutes; and then, of course, any cross-examination resulting from them. 18 And then the only other piece of business would be if Benga 19 20 intends to do any reply evidence. That would be in 21 addition to those things. So, subject to any comments 22 from the participants, it looks like we should be able to finish tomorrow. 23 24 I did have a question about whether we wanted to 25 start a bit earlier to ensure that we finish tomorrow. 26 And by "earlier", maybe 8:30. I don't know that it's

necessary, but if we wanted some additional comfort, we
could start a bit earlier. So I'll just put that to
the participants and maybe hear particularly from
Canada and Benga.
MR. DRUMMOND: Thank you, Mr. Chair. Robert
Drummond here.
I think, just given because of the time
difference for a few of the witnesses, I don't think an
8:30 time is is problematic at all and actually
might be preferred, in part.
THE CHAIR: Okay. Yeah, I thought that
might be the case.
Mr. Ignasiak, any concerns about starting earlier?
MR. IGNASIAK: No, none, sir.
THE CHAIR: Okay. Any other participants
have concern with an 8:30 start?
Okay. Hearing none, we'll start at 8:30 tomorrow
morning just to hopefully ensure we can finish
tomorrow.
And is there any other business we need to take
care of before we break?
Okay. Thank you, everyone. We'll see you again
in the morning.
PROCEEDINGS ADJOURNED UNTIL 8:30 AM, DECEMBER 1, 2020

```
1
     CERTIFICATE OF TRANSCRIPT:
 2
 3
          I, Christy Longacre, certify that the foregoing
     pages are a complete and accurate transcript of the
 4
     proceedings, taken down by me in shorthand and
 5
     transcribed from my shorthand notes to the best of my
 6
 7
     skill and ability.
          Dated at the City of Calgary, Province of Alberta,
 8
     this 30th day of November 2020.
 9
10
11
      <Original signed by>
12
13
     Christy Longacre, RPR, CSR(A)
14
     Official Court Reporter
15
16
17
18
19
20
21
22
23
24
25
26
```

		1		
0 0.005 5844:16 5845:14,20,22 0.01 5818:2 0.03 5844:17 5845:14,20 5912:24 0.045 5832:18 0.107 5832:17 0.11 5844:22 0.14 5844:22 0.14 5844:22 0.177 5832:19 0.2 5837:20,26 5838:21 5839:8, 11,16,20 5840:20 5861:25 5867:18 5869:3,9 5885:2 5900:12 5902:14 5903:12 5902:14 5903:12 5902:14 5903:12 5902:14 5909:9 5910:7,14 0.23 5831:24 0.248 5815:1 0.437 5824:16 0.65 5820:18 5824:20 005 5846:8 1 1 5791:8 5801:26 5803:3 5804:15 5809:14 5820:22 5824:1 5826:1 5828:4,7 5829:9 5832:12 5835:25 5837:3,4 5842:25 5844:21 5855:13 5864:7,8,9 5869:10 5879:3,5 5885:2,15	5912:15 5915:13 5923:17,20 5924:4 5928:16 5929:12 5931:10 5932:15 5933:13 5936:4 5937:20 5940:26 5941:8 5943:2 5946:18 5951:9 5969:25 1,800 5778:10 1-percent-a-year 5952:23 1.1 5936:20 1.12 5916:24 1.4 5915:14 1.48 5916:22 1.7 5912:16 1.79 5831:24 10 5791:8 5814:7 5815:9 5829:12 5832:2 5836:14 5837:3,4 5869:16 5870:6,10,14 5878:7,16 5895:18,24 5895:18,24 5896:11 5901:20 5902:18 5928:22 5929:4,8 5951:8 10,000 5835:24 100 5837:8 5911:24 5919:18 5920:8 100,000 5835:25 100-hectare 5778:14 105 5786:5 1063 5836:19 1083 5923:24 1083 5923:24 1083 5923:24 109 5791:9 10:20 5807:21 109 5791:9 10:20 5807:21	11 5814:8 5836:24 5923:24 11.2.2.3 5925:9 115 5809:15 116 5802:1 1170 5820:15 5824:13 11th 11th 5768:4 5824:13 11th 12 5786:4 5824:13 11th 12 5786:4 5824:13 11th 120 5795:11,14 1256 5904:14 1258 5817:20 1259 5837:15 1263 5837:15 1263 5837:26 1265 5838:8,15 1270 5904:26 5905:3 5906:17 1272 5897:26 5910:20 1275 1275 5886:15 12:15 5855:13 13 5815:4 12:15 5823:21 5831:21 1301 1301 5911:20 1310 5815:12 5818:6 5820:21 5823:24 5844:13<	15-minute 5807:21 150 5784:24 15th 5768:12 16 5796:14 5803:6 5963:13 17 5799:21 5911:20 5924:3 170 5798:18 174 5814:17 5815:16 18 5792:21 19 5798:16 5800:19,21 5805:22 5952:7 190 5832:15 194 5844:5 19th 5795:12 1:00 5855:15 1:02 5859:21 1:30 5866:11 1E 5958:22 2 2 5792:19 5828:4, 6 5881:11 5855:15 5887:10 5919:25 5958:21 5959:13 2,000 5959:4,12 2-1 5869:23 2.5 5869:16 5870:14 5878:6, 19 5890:11 5895:18,24 5896:11 5901:20 2.61 5846:9 2.69 5845:22 2.7 5825:11 5835:23	5866:13 200- 5778:14 200-tonne 5955:21 2013 5946:17 2014 5926:1 2016 5925:26 2018 5789:14,15 5923:25 2020 5856:3 5969:25 5970:9 2032 5776:26 2045 5777:2 5806:20 208 5777:26 5778:2,8,16 21 5775:15 21,000 5778:18 22 5784:14 5920:5 23-year 5819:23 5829:5 24 5800:22 25 5779:17 5813:25 250 5820:4 251 5791:7 5801:25 5804:15 5809:14 5871:17 5951:9 25th 5800:18 26 5928:23 5929:4,8 268 5928:23 5929:5,8 269 5832:3 27 5835:24 58057:22 271 5832:3 201 5832
5844:21 5855:13 5864:7,8,9 5869:10 5879:3,5	1088 5925:17 109 5791:9	5844:3 5848:4,5 138 5843:24 5844:7 5848:4	2.61 5846:92.69 5845:222.7 5825:11	27 5835:24 5868:18 5957:22

		2		
28th 5789:15 29 5773:2 2:23 5911:5 2:40 5911:5 3 3 5778:16 5820:15 5843:22 5844:5 5845:1,10 5848:4 5857:2 5906:7 3-to-1 5778:17 3.4 5778:2 3.8 5912:16 3.9 5796:14 30 5776:7 5781:22 5793:16 5794:7 5795:21 5832:14 5856:3 5896:2 5968:17 300,000 5946:19 305 5778:16 30th 5970:9 313 5815:11 5817:19 5820:4, 11,12,21 5821:6 5823:24,26 5824:13 5829:10 5830:2 5832:12 5833:1,6 5836:18 5837:14 5838:1, 8,15 5839:1 5842:25 5844:12, 25 5886:15 5897:26 5904:14, 25 5905:3 5906:17,25 5907:14 5910:19	334 5923:6 35 5784:16 360 5786:1 5798:18 5814:7, 17 5815:3 5816:2 5819:21 5829:1 5836:24 5869:23 5911:20 5912:18 5924:3 365 5914:4 37 5939:11 4 4 4 5836:14 5869:1, 7 5870:7,10 5906:7 4-1 5809:18 4.1 5810:2 5912:24 40 5798:11,19 5940:16 5961:2 42 5803:3 5804:16 5829:12 5831:14 5832:2, 26 5843:22 5844:4 5848:3 5928:22 5929:4,8 45 5968:16 46 5923:25 4:30 5967:19 5 5 5794:7 5831:14 5837:3,5 5906:7 5,700 5768:6 50 5949:24 5061:2	54 5824:1,9 542 5796:2 55 5792:19 5794:17 5803:5 5641 5957:23 57-year 5819:24 5829:6 571 571 5796:14 5799:11,21 58 58 5831:20 5th 5797:9 5810:14 6 6 6,000 6,000 5778:5 6,019 5778:3 6,900 5779:21 6.19-3 5923:24 6.25 5820:5,11,12 5827:4 5830:2,10 5863:13 6.25-1 6.25-1 5824:1,5 5826:6 6.27-1 6.27-1 5842:25 6.3 5796:3,8,20, 25 60 5774:10 5949:25 5960:13 60,000 5960:7 602 5924:25 604 5925:8 61 5831:22 63 5796:2 63,000 5778:18 66 5857	5963:10,12 7-1 5817:20,21 5837:15 7-16 5832:2 7-2 5817:21 7-20 5832:2 7-3 5817:21 7-4 5817:22 5837:15 7.1-2 5815:3 5816:11,26 7.1-5 5924:3 7.2.1.2 5838:8 7.2.1.3 5838:15 7.5 5904:25 5905:11 7.8 5904:25 5905:11 7.8 5904:25 70 5774:10 5789:13 760 5776:21 5779:25 761 5776:11 77 5906:1 78 5906:1 8 8 5819:21 5829:1 5958:9,23 8.83 5844:20 80th 5918:5 85 5869:23 89 5772:7 5776:10 5779:25 5781:22 5924:25 8:30 5968:26 5969:9,16,17,25	900 5793:23 907 5800:15 95 5915:8 95th 5815:7 5816:13 5819:22 5821:24 5824:4, 22 5829:4 5834:26 5835:1 5918:6 9:03 5765:21 Aborisinal 5784:4 5970:7 abnormalities 5925:5 Aboriginal 5784:4 5947:23 absence 5836:9 absolutely 5811:16 5929:25 absorbed 5904:1 abundance 5775:7 abundances 5923:26 accept 5767:10 acceptable 5842:16 5851:12 5854:4 5863:10 5875:2 5879:16 5913:1 5922:4,6 5933:15 5957:3 acceptance 5836:11
5830:2 5832:12 5833:1,6 5836:18 5837:14 5838:1, 8,15 5839:1 5842:25 5844:12, 25 5886:15 5897:26 5904:14, 25 5905:3 5906:17,25	4:30 5967:19 5 5 5794:7 5831:14 5837:3,5 5906:7 5,700 5768:6	5949:25 5960:13 60,000 5960:7 602 5924:25 604 5925:8 61 5831:22 63 5796:2 63,000 5778:18 66 5857:14	5958:9,23 8.83 5844:20 80th 5918:5 85 5869:23 89 5772:7 5776:10 5779:25 5781:22 5924:25 8:30 5968:26	accept 5767:10 acceptable 5842:16 5851:12 5854:4 5863:10 5875:2 5879:16 5913:1 5922:4,6 5933:15 5957:3 acceptance

		3		
accessible 5879:2	5804:11	5946:10 5948:10	adverse 5869:5	5787:20 5788:15
accidents	actual 5781:3	5969:1	5879:1 5884:5,8	5860:23 5930:12
5784:19,20	5812:24 5848:19	additive 5897:6	5886:5 5888:3,6	air 5770:13,22
accommodate	5862:19 5872:25	5901:4 5902:10,	5902:9 5912:4	5791:8 5801:26
5766:8	5880:1 5886:18	22,25 5903:7	5915:4 5942:3	5803:3 5804:15
accompanying	5896:21 5908:19,	5904:10,23,26	advice 5924:14	5809:14 5814:22
5880:5	22 5914:24	5905:5 5908:12	advised 5769:7	5815:18 5816:1,
	5930:24 5938:26	5909:22,24,25	AER 5856:9,10,	8,12,16,19,24
account 5805:18 5959:11	5954:6	5910:2 5940:9	16,17,18,19,20	5817:1 5826:7,25
	acute 5883:13	5945:1,7	AER's 5765:26	5841:4,21,22
accounted	adapted 5778:21	additively		5859:26 5864:15
5804:24 5806:4,8	adapting 5920:6	5903:5,14	aerial 5943:1	5865:8 5867:8
5807:1	. 0	additives	aesthetic	5872:16 5876:6
accounts	adaptive 5890:7 5893:5	5944:22	5848:10,12,24	5880:13 5881:6
5914:22 5935:13		address 5875:4	affect 5801:10	5882:7,8,9
accumulation	add 5783:23	addressed	5850:2 5873:11	5883:12 5885:21,
5898:14	5793:9,11 5851:26 5852:13	5789:24 5875:7	5925:3	24,26 5886:2
accurate 5815:22	5851:26 5852:15	addresses 5822:6	affected 5854:14	5890:6,13
5873:7 5970:4	5894:26 5900:1	5945:13	5911:25	5891:5,6,11,26
achieve 5805:19	5901:2 5910:11,		affecting	5893:3,16
achieved	15 5915:11	adds 5927:4	5931:16 5947:23	5894:3,5,6,10 5898:23 5899:13,
5915:10	5916:6 5930:6	adequate	affects 5771:22	15,21 5908:24
acknowledged	5931:1 5934:22	5781:19 5850:24	5875:12	5909:5,12
5814:8 5824:25	5945:15	adjacent 5850:9,	affirmation	5905.5,12
5879:3	added 5816:19	11 5854:2	5769:16,24	5943:5 5948:26
ACO 5768:14	5864:16 5906:11	ADJOURNED	Affirmed	5950:2,4 5954:9
5865:19	5945:2,11	5855:15 5969:25	5770:12 5859:25	air-dispersion
acreage 5955:13	addendum	ADJOURNME	afraid 5793:8	5879:12
acres 5807:9	5772:7 5776:10	NT 5807:24	afternoon	air-monitoring
act 5904:16	5786:4 5791:7	5911:6	5766:16 5856:3	5894:12
5923:18,21	5792:20 5801:25	adjust 5768:18	5946:13 5950:21,	airborne
5924:23 5937:23	5814:7 5820:22	5777:6 5871:12	22,24	5901:10 5903:17
5938:13 5939:10	5829:9 5832:12	adjustment	agencies 5883:26	5908:15
action 5858:24	5842:25 5923:24	5914:15 5921:2	5884:2	albeit 5905:14,20
5924:18	5951:8 5958:21	adjustments	agency 5789:15	
actions 5886:25	addition 5767:15	5817:7,9,16		Alberta 5772:21
	5877:21 5968:15,	adopting	agree 5828:2,11 5893:6 5963:19	5775:14 5776:3
active 5937:18	21	5799:16	5966:11,12	5778:10,20 5794:23 5795:2
actively 5881:12	additional	adult 5931:3	agreeable	5812:8 5857:1,
activities	5786:3 5789:14	adults 5775:1	5867:20	22,24 5858:18
5786:12 5804:22,	5800:23 5838:22	5924:9		5860:4 5878:13
23,26 5805:25	5850:14 5855:8	advance 5766:6	agrees 5766:25 5767:1	5923:1,2,17
5806:4 5813:11	5891:15,16,17			5929:5 5970:8
5940:6	5892:12 5893:11	advanced 5963:22	Agudelo 5858:9	Alberta's
activity 5787:7	5894:8 5903:11	3703.22	ahead 5769:5	5951:16
5798:17 5803:12	5938:8 5944:7		5770:6 5781:11	
1				

		4		
Alfalfa 5858:2	amphibians	Antimony	5921:12 5932:23	aquatic-
aligned 5944:25	5923:8 5925:4,21	5838:10	5935:8,9,18	dependent
Alistair 5859:3	5926:4,7,10,13,	anxiety 5874:6	5945:8	5919:17 5936:2
allowed 5834:3	16,26 5927:9,13,	Apologies 5911:9	applies 5900:10	aquifers 5843:11
5901:22	17,18 5929:21,26	apologize 5770:3	apply 5840:7	area 5774:11,14,
	5930:1 5931:3	5880:26	5862:18 5889:12,	15 5775:21,24,26
allowing 5898:13	5934:1 5936:1,9,		21 5915:5	5776:4,5,12,19
Allred 5859:11	17 5937:12	apology 5899:5	5916:17,19	5777:7,15
alpine 5776:6	5942:12,18,22	Appalachian	5918:4 5919:8,13	5778:4,5,7,10,20
alternative	5944:11	5948:17	5937:17 5945:24	5779:17,19
5889:1	analogous	apparent	appointment	5780:13 5782:4,
alternatives	5820:1 5926:26	5823:21	5866:10,15	14 5783:7,10,19
5842:7	analyses 5826:20	apparently	apportionment	5784:3 5786:11
aluminum	analysts 5769:2	5927:6	5879:22	5787:3,5,6,13,15,
5817:24 5826:1	5770:21,23	appeared	appreciated	16,18,21 5843:20
5837:21 5838:2,5	5807:16 5811:18	5769:14 5787:10	5866:16	5845:8 5851:6,8
5843:15 5844:1,	analyzed	appears 5800:1		5875:16 5879:6
9,15,18 5847:19	5889:20	5804:20 5811:20	appreciation 5773:21	5881:15 5882:12
5848:8,12	and/or 5892:26	5817:20 5824:19		5894:5 5914:8
5849:11 5850:5	anecdote	5827:20,22	approach	5920:9,10,12,15
5862:2,6 5863:7,	5784:13	5843:23 5844:2	5787:20 5864:8 5870:15 5871:2	5922:26 5923:14
11,12 5864:26	animal 5826:25	appendix	5881:19 5901:11	5943:20 5945:20
5865:10,24		5809:15 5820:11,	5902:22 5904:11	5946:22 5947:9,
5898:23	animals 5779:19 5931:5 5944:15	12,22 5821:16	5918:3 5940:26	15 5953:24,26
ambient 5854:4		5824:1,5,15	approaching	5956:3,23 5964:22 5967:22
5890:13	annual 5795:14	5826:6 5829:9,12	5825:26 5885:2	
amending	5805:12 5806:25 5891:22	5830:2 5832:2,8,	5891:6 5892:4	areas 5776:25
5789:24		12,13,26 5833:1	5893:2 5941:8	5781:26 5782:9, 18 5783:10
American	answer's	5839:1 5842:25	appropriately	5785:22 5786:22,
5919:23,26	5915:21	5923:24 5928:22	5797:12	23 5787:11
5924:5,6 5931:10	answering	5929:4,8 5958:22		5789:2 5803:18
5932:4 5933:12	5769:10 5967:15	applicable	approval 5891:3	5812:4 5850:1
5936:5,6	answers 5819:4	5913:19	approved	5882:24 5887:18
amount 5798:23	5821:25 5887:25	application	5872:26 5883:4,5	5891:1 5912:6
5836:2 5853:24	5950:15	5826:4 5839:8,17	approximate	5914:1 5923:25
5860:13 5864:11	antagonistic	5879:19 5891:13	5790:25	5943:10 5950:19
5865:5 5877:23	5944:23	5905:9,15	approximately	5956:6 5963:1
5956:11 5959:20	anthropogenic	5906:2,19	5775:21 5778:17	argument
5960:19,26	5898:25	5907:17 5918:7 5959:2	5779:17	5766:18,21,23,
5961:6 5964:13	anticipate		April 5789:14	24,26 5767:4,5,8,
5966:22	5766:15 5812:16	applications	aquatic 5769:11	12,19,24 5768:2,
amounts 5778:2	5854:1 5952:10	5768:1	5890:1 5912:14	9,10,16 5865:16
amphibian	5959:17	applied 5913:20	5923:12 5924:7	arising 5868:9
5922:23 5925:24	anticipated	5914:12 5916:21,	5942:10	5896:20
5926:20 5942:5	5795:8 5822:1,11	22,25 5917:12		army 5778:24
	5823:5	5919:1,4,12		

		5		
aromatic 5870:12 5871:7 5904:17 arrives 5835:6,9 Arruda 5856:16 5922:10 arsenic 5814:9, 25 5815:2 5816:4 5817:6,11 5820:14,17 5824:6,15,18 5825:9 5826:3 5835:23 5836:1, 6,13,15 5864:13, 21 5865:3,8,25 5867:6,12 artifact 5838:12 aspect 5884:16, 17 5885:8 aspects 5835:26 5885:9 assemblage 5919:7 assess 5828:1 5852:16 5872:12 5876:4 5888:17 5927:8 assessed 5869:1	26 5840:20 5842:24 5844:12, 15 5845:14,19 5846:13 5848:16 5849:10,23 5851:24 5853:1,3 5860:3,10 5865:23 5871:22, 24 5873:19 5874:11 5875:25 5878:25 5879:12, 23,24 5880:3,6, 17,23 5881:22 5883:23 5884:10, 14,19 5885:8,22 5886:21 5897:24 5899:16,21,23 5900:3,4 5901:7 5909:24 5910:25 5911:1,16,19 5912:1 5917:26 5925:24 5927:5 5928:7,10 5936:3 5938:9,10 5939:10,15 5940:12 5942:13, 19 5944:13 5948:14 5953:8 assessments	assuming 5766:16 5777:9 5794:16 5810:26 5882:9,26 5897:12 5913:23 5953:10 5959:3 assumption 5794:21 5835:5 5836:4,11 5837:12 5852:18 5881:10 5882:2 5884:13,16 5887:13 5900:25 5919:16 5920:16 5960:6 assumptions 5826:23 5833:14 5835:13 5837:7 5872:16 5882:3, 15,16 5900:16 5911:18,21,23 5912:8 5915:2 5933:2 5937:7 asthmatic 5883:17 at-risk 5941:9 Athabasca	attracted 5943:24 attributable 5953:18 attribute 5839:10,19 attributing 5906:12 audio 5765:24 authoritative 5872:9 availability 5793:1,7 5920:2 5933:17 average 5778:9 5804:4 averages 5820:3 avian 5919:23 5923:10 5945:9 avians 5926:23 avoid 5842:8 5850:16 5887:23 aware 5768:21 5793:12 5821:15 5874:1 5875:18 5904:6 5946:1,6, 26 5951:19,25	5958:3,17 5961:17,18 5962:3 5963:7 5966:18 back-and-forth 5867:3 backfill 5834:2 5851:4 5934:14 background 5834:23 5836:12, 13,15 5837:25 5838:5,11,19 5839:1,9,11,18, 20 5849:17 5876:6 5879:9 5893:14,18,20,22 5893:14,18,20,22 5895:2,6,11,13 5898:21 5900:1, 11,13,14,19 5906:4,7,13,21, 26 5907:3,8,16 5909:2 5924:21 backup 5915:26 bad 5779:7,13 bad-climate 5779:8 bad-weather 5779:7
assessed 5007.1 5872:10 5883:14 5898:5 5939:8 assessing 5939:9, 25 assessment 5770:16 5771:25 5792:20 5801:26 5803:3 5804:24 5812:4 5818:12 5819:22 5822:3, 16 5823:7,20,24 5824:3,17,23,25 5825:5 5826:10, 21,22 5827:22,24 5828:8,21 5829:3,13 5832:10 5833:10 5838:26 5839:3,	5812:12,15 5815:14 5820:20 5822:13 5909:21 assessors 5910:15 Association 5857:25 5859:1 assume 5783:11 5853:5 5883:11 5920:7 assumed 5821:1 5826:24 5835:3 5881:22 5883:9 5897:15,16,22 5904:22 5913:22 5919:17 5920:18 5924:7 5932:25 5936:1	5784:17 atmospheric 5912:3,11 Attachment 5792:19 attack 5778:12, 13 attempt 5777:22 attempting 5896:9 attention 5776:24 5796:6 5804:20 5843:26 5956:10,17 attitudes 5948:5 attract 5944:11	5968:7 B B8 5843:23 5847:2 back 5776:10 5787:23 5807:18 5808:3,15 5811:5 5817:4 5818:25 5819:2,7 5823:12,16 5848:1 5860:6 5868:4 5877:5 5878:24 5911:4, 5,7 5928:18 5954:25 5955:19 5956:12,16	 balance 5816:15 5960:10 ballpark 5960:21 Band 5857:4 Banff 5785:3 bar 5961:17 Barata 5857:15 Barbara 5800:20 5858:14 barium 5837:21 5838:17 5843:15 5898:23 barn 5923:14,16 5924:9 5931:12 5937:1 Bartlett 5770:9

Dicta Court Reporting Inc. 403-531-0590

		0		
5859:22 5934:21	5924:19 5930:18	5800:23 5801:4,	5927:8 5928:23	bird 5770:26
base 5803:12	BAT/BEP	8,17 5802:6,7,11,	5929:2,21 5934:3	5773:23 5774:11,
5807:8 5837:7	5796:9,23	13 5805:16	5936:8 5939:19	23,26 5783:9,15
5852:5,7 5918:18	batch 5787:20	5806:2,10 5807:1	5940:21,23	5786:15 5788:17
5948:2 5956:3		5808:25 5809:2	5941:3,24	5919:26 5923:11
based 5802:14,17	Bauman 5770:10 5779:26 5780:1	5810:8 5811:8,10	5943:15 5944:12,	5932:5 5937:1
5804:1,10,11	5783:22 5859:23	5812:8 5813:14,	20 5946:1 5947:3	5938:14 5939:1
5807:9 5810:15	5866:10	20 5814:8,19	5951:14 5967:14	5941:5 5942:6
5811:1 5819:22		5815:2,15	5968:9,19 5969:4	birds 5770:14
5826:12,22	bay 5877:16	5816:3,10,22	Benga's 5767:10,	5773:25 5779:11
5827:3,13 5829:3	5958:5,7 5959:5,	5819:21,25	22 5782:2 5786:2	5783:17,18
5830:26 5833:13,	24	5820:5,10 5821:4	5794:19 5801:10	5860:1 5912:17
14 5835:11	BC's 5926:1	5823:21 5824:15	5816:22 5819:17	5922:22 5924:23
5836:3 5846:18	beak 5778:25	5825:23 5826:4	5823:13 5826:12	5926:3,8,9,12,18,
5848:10,12	bear 5778:6	5829:1,8	5830:16 5839:10,	22 5927:10,18,22
5849:11 5851:1	bed 5810:4	5831:14,20	19 5843:13,26	5931:23 5933:23
5852:16,17	bedrock 5843:5	5832:3,9,20	5851:23 5854:12	5936:2,19
5854:24 5855:5	5850:3,19	5834:7 5835:22	5870:19 5890:1,	5937:13,23
5861:12 5863:12	begin 5769:4	5837:16,24	6,9,17 5891:2	5938:1,5,7,19,23
5869:6 5872:20	5771:5,20 5772:8	5838:1,8,15,22	5892:25 5907:11	5939:23 5941:19
5876:6 5878:4	5782:7 5797:15	5839:5,14	5913:10 5916:14	bison 5784:3,8,
5881:10 5885:24	5808:3	5840:21,25	5939:6,11	11,16 5785:1
5887:5,6,10		5842:1,26	5941:10	bit 5773:3
5888:16 5891:22	beginning	5843:10 5844:7,	benthic 5779:10	5777:23 5785:16
5896:20 5897:14	5800:18,21	10,14 5845:25	5919:20 5920:14	5788:26 5789:20
5899:16 5906:7	behalf 5911:13	5850:18 5856:22	benzoate	5790:6 5794:4,10
5908:18 5917:16	believed 5933:18	5860:4 5864:11 5867:4,13	5904:19	5795:21 5804:17
5919:2,9 5925:1,	benchmarking	,	Berdina 5857:26	5809:25 5810:15
10 5927:22	5952:13	5869:4,14,21,26 5872:4 5873:19	berry 5868:9	5812:2 5823:11
5936:11 5941:18	benchmarks	5874:1,9,10	biases 5873:16	5831:8 5834:23
5945:10 5959:18	5893:4	5878:25 5879:2,		5842:20 5848:1,
5960:22	benefit 5766:13	4,14,21 5880:4	big 5872:14	20 5867:3,24
baseline 5843:13	benefits 5773:13	5886:16 5890:12	5914:16 5947:25	5868:24 5876:4
5846:22 5853:14		5891:24 5892:17	5955:7,8,15	5878:23 5885:23
5879:9 5880:14	Benga 5766:20,	5893:17 5894:8	5962:20	5886:22 5896:23
5889:6 5894:8,	22 5768:9,11,15, 26 5769:7,9	5896:9 5897:1,5,	biggest 5950:13	5901:23 5911:10
11,17 5905:14,20	5770:18 5777:9,	11,19,26 5902:9	BILAWCHUK	5915:21 5916:25
5906:20 5907:12,	26 5778:15,22	5904:14,20,26	5770:10 5859:23	5929:19 5930:3
18 5908:4,18	5780:16 5782:7,	5905:3,7 5906:17	bioavailability	5935:26 5938:21
5909:1 5947:6	9,13 5783:13	5907:2 5909:21,	5871:10,13	5942:18 5943:21
5949:5	5785:20 5788:2,	23 5910:1	bioconcentratio	5945:16 5955:6,9
basically 5836:4	11,23 5790:11	5911:16,26	n 5917:12	5958:25 5962:18
basis 5787:19	5791:14 5792:26	5912:7,18,20,25	biologist 5771:9	5967:20 5968:25
5789:6 5832:20,	5794:21 5796:6,	5915:3 5922:22,	5784:14	5969:2
26 5850:20	8,14,21 5797:4,	26 5923:11	biologists	Blair 5861:9
5871:2 5888:9	24 5798:25	5924:11,16	5784:10	Blairmore
5905:7 5911:26		5925:10,23	5707.10	5817:25 5819:20

		7		
5820:8,18	bound 5769:24	5874:19 5879:11,	10 5815:24	5957:3
5821:17,18	5886:3	23 5882:25	5816:20 5817:5	capacity 5883:19
5823:23 5824:7,	boundaries	5883:7,23 5884:6	5818:8 5823:12	5955:21
17 5829:23,25	5801:14,15	5885:10,13,16,26	5861:12 5862:17	caption 5928:12,
5830:1,5 5837:17	boundary 5820:1	5886:4,11	5863:1,5 5867:12	14
5839:8,17	5833:8 5843:2,4	5900:15 5901:6	5868:5 5871:12	capture 5841:18
5841:17 5843:7	5851:18 5869:4,	5906:9	5885:5,13	5854:1,21 5855:4
5844:16 5854:17	11 5879:6	bulk 5913:19	5900:16 5906:9	5867:4 5871:3
5860:25 5861:3,	5901:16	5914:14 5921:13	5915:25 5920:26	5915:7,15
5,9,10,17,22	bounded	bullet 5785:13,18	calculator	captured 5766:2
5862:3,9,14,18, 20 5863:4,6	5854:16	bullets 5799:26	5963:5	5852:14 5899:21,
20 3803.4,0 5864:1,14	bounds 5913:21	5800:1,5	Calgary 5970:8	26 5900:2
5865:12 5866:2	Boyce 5858:21	burden 5953:5	call 5769:13	5918:9,10
5867:6 5882:4	Bradley 5859:7	business	5774:10,12	5964:8,20
5889:5,8,14	brave 5911:11	5813:19,24	5784:25 5796:13	captures 5867:19
5890:14,20		5968:19 5969:20	5830:26 5847:25	capturing
5894:13 5895:4	break 5767:9	busy 5784:12	camera 5766:1	5965:26
5901:25 5905:16	5807:14,15,21	,	Campbell	carbon 5789:11
5915:6,13	5828:17 5855:12 5860:18 5863:24	C	5856:17 5859:1	5790:12,15,26
5917:24 5918:25	5911:4,5 5969:21		camping 5881:25	5791:12,16
5928:10,13,15		С-Е-А-А	Canada 5796:7,	5793:1,14,21
5929:15 5932:13	breathing 5882:9 5883:12	5939:25	19,25 5798:20	5807:2,6
5935:7,14,20		caches 5780:25	5825:11 5835:24	5951:16,21,22
5936:8,10	breeding	caddis 5923:26	5857:8 5858:26	cardiovascular
5937:21 5939:1	5774:20 5775:6 5788:3,17		5859:1 5883:5,26	5948:24
5956:22 5964:7	5788:3,17 5919:21,22	cadmium	5902:21 5923:4	care 5969:21
block 5769:14	briefly 5771:21	5817:24 5826:1 5837:21 5838:17	5924:13 5946:17	Carlo 5831:1
blowing 5876:21	5774:6 5775:11,	5898:23	5967:20 5968:6	carry 5816:21
blue 5914:6	13 5802:17		5969:4	5819:2 5823:10
5915:14 5936:7	5886:15 5933:26	calcium 5862:10	Canadian	5828:23 5962:4
Bluff 5854:18	bright-green	calculated	5784:16 5800:7,	carrying 5823:18
blush 5963:4	5776:25	5816:23 5839:22 5897:12 5912:12,	25 5857:20	• •
bodies 5818:17	brings 5910:24	16 5952:6,9	5858:20 5923:6	case 5769:20 5815:8 5817:3
5844:11 5861:13	e	,	5939:10	5819:24,25
5868:3,12 5912:3	Brinker 5769:3,	calculating 5966:24	cancer 5814:12	5821:8,24 5826:5
5937:10,19	6,7,21,23 5770:1, 4,5,7 5856:23		5825:10,12	5829:7 5833:7,8
body 5904:1		calculation	5835:23 5836:5 5837:17 5864:13	5834:11,18
5932:6 5938:22	broad 5775:16,17	5803:5 5814:14, 25 5815:17	5867:6 5897:12,	5836:7 5839:9,17
Bolton 5856:5	broadcast	5819:14 5864:19	20 5905:1	5840:3 5865:10
bottom 5789:21	5766:4	5867:9 5880:8	5948:24 5949:6	5868:7,10 5873:1
5800:18 5805:9	broken 5881:14	5908:11 5912:20,	candidate	5891:14 5905:9,
5844:3 5848:5	brought 5812:25	23 5913:9	5954:16	14,15,20 5906:2,
5940:15 5958:24,	built 5827:10	5914:24	cannons 5944:16	19,21 5907:7,18
26	5836:2 5837:7	calculations		5926:7 5934:7,18
	5838:13 5861:15	5795:16 5814:5,	capable 5779:20	5952:25 5969:12

		8		
cases 5834:16 5838:20 5879:16 5900:11 5929:11 category 5847:15 caucus 5818:7 5899:9 caught 5930:16 caused 5869:5 CEAA 5939:25 5940:11 cell 5798:23 centre 5779:16, 18 CERTIFICATE 5970:1 certificates 5782:17 certify 5970:3 cetera 5786:16 5805:2 chain 5801:23 5918:18 chair 5765:23 5769:1,3,5,7,19 5770:2,4,6 5790:16 5797:3 5799:4 5802:20 5807:13,20,23,25 5808:1 5811:14, 25 5812:10 5813:18 5814:16, 18 5815:22 5820:23,25 5821:10 5826:16, 18 5829:16 5830:5,21 5833:3,5 5834:10 5835:12 5839:21 5841:1,2,24 5842:6 5843:21	5860:6,15 5863:10,17 5865:7 5866:5,8, 17,21,25 5868:14,17,19, 20,22 5873:21 5874:14 5876:15 5878:1,8 5880:25 5881:8 5882:23 5891:8,20 5892:11 5893:21 5894:23,25 5896:15 5899:9, 11 5907:6 5911:7,15 5915:18 5922:8, 10,12,13 5924:24,26 5925:16,18 5929:9 5930:15 5931:18 5934:5, 21 5937:4 5945:15 5946:11 5950:17,18 5967:1,7,13,19 5968:2,12,14 5969:5,11,15 Chairman 5821:12 challenge 5873:5 challenges 5891:24 change 5796:7, 19,25 5798:20 5814:1 5820:9 5821:7,20 5822:23,24 5827:11 5830:2, 19 5831:6 5868:23 5878:23 5898:5 5907:2,8	11,17,19 5941:17,21 5944:21 5945:13 5963:25 5965:18 changing 5813:25 5920:6 channels 5948:2 Chapter 5857:22 5858:18 characteristics 5897:13 5913:23 5932:2 5933:7,8, 17 chart 5789:17 5792:1 5806:7 check 5785:4 5817:11 5865:13, 21 5866:5 5868:4 5869:12 5921:16 5928:18 5959:8 5965:23 5966:22 checked 5817:7,8 5930:24 checking 5866:9 5930:21 checks 5921:3 5922:3 checking 5866:9 5930:21 checks 5921:3 5922:3 chemical 5840:14 5887:2 5897:3 5900:26 5904:4 5942:14 5943:11 5944:2 chemical-by- chemical-by- chemical-specific 5914:23 5917:17 chemicals	chemistry 5917:18 5918:17, 19 5963:22 Chief 5857:4 chime 5881:2 chip 5882:19 choose 5950:6 chosen 5803:23 5895:8 5933:16 CHPP 5956:3,13, 22 Christmas 5767:9 Christmas/new 5767:3,6 Christy 5970:3, 14 chromium 5843:15 chronic 5861:14 5868:26 5869:5 5872:5 5883:2 5902:10 CIAR 5772:7 5776:10 5779:25 5786:1 5789:13 5791:7 5792:19 5796:2,14 5799:21 5800:15 5801:25 5803:3,5 5804:15 5809:14 5819:21 5820:4, 11,12,21 5821:6 5823:24,26 5823:24,26 5823:24,26	8,15 5839:1 5842:25 5843:22 5844:4,12 5848:3 5869:23 5871:16 5869:23 5871:16 5869:23 5871:16 5869:23 5871:16 5866:15 5897:26 5904:14,25 5905:3,10,11 5906:17,25 5907:14 5910:19 5911:19,20 5912:18 5913:18 5923:6,23 5924:3,25 5925:17 5927:26 5928:22 5929:4,8 5940:17 5957:21 5958:22 circle 5823:16 circumstance 5851:2 circumstances 5873:8 5893:12 5901:10 citations 5925:2, 11 City 5970:8 cladded 5876:18 claim 5876:2 claim 5876:2 claim 5876:2 clarification 5787:14 5806:26 5808:7,16,25 5820:26 5867:23 5868:13 5935:25 clarify 5782:2 5786:21 5787:8 5796:21 5816:10 5922:14 5927:15 5928:3 cla
5820:23,25 5821:10 5826:16, 18 5829:16 5830:5,21 5833:3,5 5834:10 5835:12 5839:21	5814:1 5820:9 5821:7,20 5822:23,24 5827:11 5830:2, 19 5831:6 5868:23 5878:23	chemical-by- chemical 5897:7 chemical- specific 5914:23 5917:17	5804:15 5809:14 5814:7,17 5815:3,11 5816:2 5817:19 5818:6 5819:21 5820:4, 11,12,21 5821:6	clarify 5782:2 5786:21 5787:8 5796:21 5816:10 5922:14 5927:15 5928:3 clarity 5802:9

		9		
5779:14 5780:3, 6,19,21,24 5781:14,26 5782:3,8,24 5783:4,6,14 5788:1,2,12 5789:4 5807:18 clean 5877:4 5958:5 clear 5786:26 5788:10 5824:11 5826:19 5827:23 5847:5,8 5865:7 5866:26 5870:8 5955:24 cleared 5785:23 5787:4,12,16,18, 22 5807:9 clearer 5787:9 5828:11 clearing 5787:21 climate 5775:18 5796:7,19,25 5798:20 5820:9	5803:19 5804:10 5805:24 5809:18 5810:4,6,18,22, 24,25 5811:3,7 5813:5,13,23 5859:1 5868:25, 26 5869:6,20,25 5870:3,9,12,16, 22 5871:5,10,15, 25 5872:6,12 5873:20,22 5874:2,20 5875:1,6 5876:11,25 5877:7,19 5880:18 5898:15, 16 5902:17 5955:15 5956:2, 16 5960:20 coal-fired 5794:25 5795:2 coal-handling 5876:23 Coalition 5857:24 5968:16	g collision 5784:22 colouration 5777:1 Columbia 5922:24 5925:4 5943:25 5944:1 column 5786:6 5789:18 5799:26 5906:1 5959:3 combination 5816:12 5899:16 5902:12,16,19 5903:17 5909:7 5940:20 5941:1, 25 5955:11 combinations 5903:19 5942:2 combine 5872:15 5884:18 5942:23 5948:6 combined 5898:1 5902:21 5905:25 5940:22,25 5941:10 5942:6	Commissioner 5856:6,7 commit 5792:11 5796:21 5854:7 5952:26 commitment 5782:3 commitments 5801:8 commits 5869:26 committed 5797:5 5869:21 5875:3 5890:12 5892:20 5915:26 5945:16,17 5958:7 committee 5875:3 5923:3 5947:20,21 common 5923:14,16 5924:9,17 5931:12 5937:2 communication	company 5875:7 comparable 5960:19 compare 5844:10 compared 5792:9 5805:5 5829:23 5893:25 5900:19 5909:1 5965:16 5966:23 comparing 5878:20 5894:5 comparison 5795:7 compelling 5909:13 competitiveness 5951:16,22 complaint 5896:24 complaints 5876:11 5878:5, 15,21 5896:10, 19,20 5948:5
5821:7 5830:19 5831:6 5858:23 5924:13 close 5798:19 5817:25 5852:3,4 5863:20 5893:8 5919:2 5932:4,14 5933:12 5934:12, 16 5941:17 5950:7 closely 5883:4 closer 5812:26 5852:9 5894:6,16 closest 5947:16 closest 5947:16 closure 5804:26 5805:19 5806:4, 14,15 5808:26 5809:3 5811:1,6 coal 5794:15,18 5795:7 5801:15, 17 5802:25	5837.24 5908.10 cobalt 5818:1 5826:2 5832:4,17 5837:22 5928:26 code 5844:19 coefficients 5811:1 colleague 5949:7 colleagues 5828:17 5911:10 collect 5894:8 5895:13,24 collected 5831:18 5846:11 5890:25 5896:4 collecting 5894:22 5895:2 5894:16	comfort 5969:1 commence 5894:9 COMMENCED 5765:21 5859:21 comment 5781:8, 12 5783:21 5784:7 5793:8 5845:25 5878:8 5880:4,21 5885:25 5895:16 5910:1 5929:21 5936:8 5940:21 5941:24 5948:16 comments 5822:2 5941:10 5948:5,11 5968:21 Commission 5903:1	5949:1 communications 5947:26 communities 5892:16,22 5947:6,9 5950:5 community 5874:18,25 5876:11,16 5877:20 5878:2, 21 5896:10 5901:24 5902:3 5919:6,11 5946:14,21,22 5947:1,5,12,13 5948:1,3 5949:10,16,24 5950:14 community's 5947:24 5950:10	complete 5767:7, 20 5768:2 5783:2 5970:4 completed 5811:17 5843:4 completing 5767:23 completion 5767:25 complex 5768:6 5870:4 5880:18 5940:2 complexity 5871:3 compliance 5952:10 5953:4, 5,12 complicated 5899:7

		10		
component	5828:25 5829:5,	5825:14,18,25	5935:11	confident
5790:7 5806:21	8,17 5830:3,7,17	5828:9,15,26	conclusions	5803:23 5805:16,
5842:24 5865:9	5831:12,16,21,	5830:3,17	5821:20,22	26 5827:10
5892:23 5939:14,	23,26 5832:4,6,9,	5831:10,13,17	5822:24 5823:5	5854:5 5872:4,17
16 5940:21	11,13,21 5833:1	5832:7,21	5838:25 5921:8,	5884:7 5886:5
components	5835:21 5836:13,	5834:15 5835:8,	14 5933:9	5889:9 5893:17
5809:1,3	15 5837:4,5,25	16 5837:21	5941:22 5945:13	5901:5 5917:10
composition	5838:3,19	5838:7 5839:3,7,	conclusive	configuration
5949:16	5839:2,6,15,23	15 5840:23,26	5836:10 5873:15	5841:14 5957:16
compound	5840:7 5843:26	5841:22 5848:18	5948:19	confines
5918:21	5844:8,11,15,18,	5849:9 5850:4	conclusively	5854:19,26
	21 5845:13,19,21	5863:26 5864:2,	5873:4	confirm 5769:24
compounders	5846:2,21	23 5867:15		5815:15,23
5873:16	5847:1,3 5848:6,	5870:5 5874:21,	concrete 5953:22	5815:13,22 5821:4
compounding	13,19 5849:12	23 5879:25	concurrently	5829:8 5832:20
5916:26	5850:4 5853:10,	5880:10,15	5804:23	5834:25 5840:11
compounds	12 5854:4	5881:5 5887:3,26	condition 5811:9	5844:14,24
5914:21,25	5860:26 5861:20,	5888:19 5890:3	5820:1 5891:3,25	5845:12,18
5921:9	21,22 5862:13,	5891:4 5893:2,15	5892:26 5893:6	5849:23 5861:21
compressed	22,26 5863:2	5898:22 5901:11	conditions	5893:4 5915:3
5776:4	5864:16,24	5902:11,12	5876:10,13,14	5928:20 5929:2,9
con 5941:13	5867:16 5870:10	5904:11,21	5894:11 5899:20	5965:7 5966:9
concentration	5879:10,13	5906:25 5909:7,	5901:14,18,22,26	confirmed
5814:26 5816:25	5880:1,9,10,13,	15 5910:3	5902:1,5 5920:6	5843:1 5868:5
5820:17 5821:1	14 5881:7,18	5912:13 5913:4	5940:8	5922:25 5923:13
5824:16,17,19	5886:19 5887:10	5915:15 5916:18	conducive	
5831:9 5832:14,	5891:5 5893:14,	5917:6,9 5921:1	5930:20	confirming
15,16,17,18	19 5898:21	5923:5 5933:14	conduct 5786:21	5768:20 5769:15
5836:5 5839:24	5900:1,18	5937:1 5940:23	5788:2 5867:2,5	confused 5788:7
5844:20 5849:8,	5906:13,22,24	5944:10 5969:16	5925:23	5797:17
16,17 5862:3	5907:1,7,13,15,	concerned	conducted	connected
5863:13 5864:17	19,22 5908:5,6,	5828:5 5849:13	5774:10 5785:21	5942:25
5876:5 5886:2	19 5909:2	5864:5,7	5786:11 5787:11	connection
5914:1 5915:9	5911:23 5913:4	concerns 5766:5,	5788:16 5820:7	5943:8
5943:2 5963:6,8	5914:12 5917:1	7,8 5825:8	5878:16	consequences
concentrations	5920:22 5925:3,	5969:13		5915:1 5945:21
5814:24 5815:3,	12 5929:3	conclude	cones 5773:17	Conservation
7,11,12,17	5935:16 5943:8	5774:13	confer 5811:18	5858:5
5816:3,10,14,23	conceptually	concluded	5828:17	conservatism
5818:3,22	5963:21	5869:4 5873:3	confidence	5812:14 5819:14
5819:15,19,23	concern 5814:12,	5878:26 5897:26	5830:16 5854:13,	5812:14 5819:14
5820:6,13,15,19	15,21 5815:13	5911:26 5912:11	25 5855:3	5821:1 5825:21
5821:18 5822:20	5816:4 5817:6	conclusion	5872:20 5880:22	5827:10 5828:25
5823:22,26	5818:4 5819:16,	5869:6 5873:12	5882:18 5884:23	5829:22 5855:20
5824:2,7,22	19 5820:7,14,19	5888:3,6,9	5912:9 5913:11	5861:15 5872:16
5825:4,19,21	5821:2 5822:5	5903:2 5908:13	5914:10 5918:6	5878:25 5879:11
5826:5,7,8	5823:22 5824:11	5913:11 5915:4		5880:5,22
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		J/13.11 J/13.7		5000.5,22
	I			

		11		
5882:17,25	5820:2 5833:22	consumed	5910:3 5912:13	contributions
5883:7,23	5838:6,12	5924:9	5913:4 5916:17	5879:10,17
5884:6,9,12,18,	5842:23 5843:9	consuming	5917:9 5920:26	5893:20,23
21,22 5885:1,3,	5844:11 5851:23	5926:20	5936:26 5940:23,	5908:12 5909:4
10,13,16,26	5852:26 5853:4	consumption	25 5941:8,25	contributor
5886:7 5900:9,	5871:26 5879:25	5794:13 5806:17	5944:12 5946:3	5879:19 5907:23
15,22 5901:3,6	5883:16 5923:9	5842:22	contamination	control 5801:22
5906:8 5913:3	5932:24 5938:11		5850:13 5894:2	5813:10 5855:4
5914:10 5932:22	5940:14 5943:15	consumptive 5826:23	5931:15	5931:23
5933:3 5937:25	5944:12,20		content 5793:14	controls 5855:7
conservative	5952:21	contact 5766:5	5965:1,3	5873:7
5826:23 5827:2,	considers	5834:13 5915:7	contention	
20,23 5830:19	5835:22	5931:23	5767:11	Convention
5834:8 5835:15,	consistent	contained		5924:23 5937:23
25 5837:7,12	5827:12 5828:12	5876:26	contingent	conventional
5881:3,19,24	5838:4 5882:14	contaminant	5768:13	5957:5
5882:2,15	5920:21	5841:4 5864:23	continue 5769:17	conversation
5884:13,24		5867:14 5881:20	5797:24 5798:3	5862:22 5952:18
5887:13 5891:9	consistently 5882:10 5913:12	5892:4 5939:23	5799:14 5802:13	5957:26 5959:23
5903:13 5911:17,		5940:26 5942:2,	5807:26 5851:9,	conversion
18,21 5912:8	5920:22	7,21 5943:18,20	10 5852:7,8	5913:19
5913:13,22	consolidated	contaminants	5889:19 5894:13,	
5914:10 5915:23	5786:4	5814:15,21	18,20,23 5896:17	conveyer 5876:20
5916:16 5917:11	constant 5835:3	5815:13 5816:4	5962:4	
5918:7,9	constituents	5817:5 5818:4	continuing	Cooke 5858:5
5919:12,19	5870:11 5871:7,9	5819:15,19	5894:12 5940:5	cooperation
5920:9,13,16	5872:1	5820:6,13,19	continuous	5868:21
5933:2,18 5937:6	constraint	5821:2 5823:22	5879:7 5890:12	COP 5904:15
5938:4,9	5892:10	5825:18,24	5895:3	COPC 5865:26
conservatively	constraints	5828:26 5830:3,	contract 5813:22	5941:18
5805:17 5872:11	5891:24 5892:6	17 5831:10,13,16	5934:18	COPCS 5829:25
5897:22		5832:7,21		5837:26 5861:20
	constructed	5834:14 5837:20	contractor	5897:9 5903:18
considerable	5809:7	5839:2,6,15	5800:11 5801:2	5904:15 5919:14
5827:7	construction	5840:23,26	contractors	5927:9
consideration	5786:12 5879:8	5841:21,22	5801:9	copper 5824:6
5798:21 5838:23	5888:5 5894:9,	5850:4 5855:4	contribute	5837:22 5838:17
5860:22 5879:21	14,22	5861:1 5870:4	5812:18 5918:1	5898:22
5880:19 5940:13,	consult 5807:16	5880:9,14 5881:5	contributed	
20,24 5941:4	consultant	5890:3 5891:4	5907:22	COPS 5824:10
5946:2	5797:13,21	5893:1,15	contribution	5825:21 5832:13
considerations	5831:14 5845:1,	5898:13,21,26	5801:21 5837:25	5835:21
5879:26 5886:17,	10 5848:3	5899:2 5901:10	5838:21,23	correct 5780:4
25	Consultant's	5902:11,12,17	5840:18,22,25	5817:13 5823:14
considered	5843:22 5844:5	5904:10,21	5906:5 5908:7,24	5835:4,5 5840:9
5766:19 5797:14	consume 5924:7	5906:25 5907:2	5935:21	5845:3,5,24
5799:4 5810:5,6	UIISUIIIC 3724.7	5909:7,14,17,22		5882:21 5907:19
		, , , , , , , , , , , , , , , , , , , ,		5914:16 5918:15
	1	i i i i i i i i i i i i i i i i i i i	1	1

5920:17.18 5935:26 5937:23 critical 5898:3 5914:4 5921:24 5967:3 5922:16,17 covering 5811:4 23 D 5967:3 deadlines 5767:5 5960:15 5963:2,3 creating 5778:26 cross- examination 5935:3 deadlines 5767:5 correction 5867:11 5921:13 creating 5778:26 cross- sexamination 5935:3 deathing 578:22 5903:22 5906:6 deathing 578:24 decade 588:13 decade 588:13 5903:22 5906:6 deathing 578:24 decade 588:13 decade 587:42 5907:14 datk re-green 5782:15,23 5782:12,23 5782:15,23 5783:12,52,33 5783:24,16 decade 587:41 5788:15,23 5783:24,16 decade 588:13 decade 588:13 decade 587:45 5969:25 decision 5767:23 5865:11,18 5895:11,18<
5950:19 5951:15 26 5830:1 cut 5773:6 5787:3 5770:11 5859:5, 5883:6 5954:1 5844:16 5846:3 cut 5773:6 5787:3 5770:11 5859:5, 5883:6 Court 5859:19 5882:5 5937:16, 21 5942:26 5916:23 5939:21 day 5865:17 5933:17 cover 5898:19 5943:7 5920:11 5920:11 5929:19 5942:17 5881:24 5882:1,6 defer 5888:10 covered 5876:19 5926:1 5931:22 criteria 5925:26 5920:11 5920:15 5827:17 5898:13 5941:19

		13		
definite 5795:16 definition 5808:16 5933:15 Deforest 5769:8, 13,21,22,23,26 5770:11 5859:24 deforestation	8,12,16,19 5826:7 5864:15 5865:8 5867:8 5908:15 5912:3, 11 5922:15 5943:1,5 deposits 5810:17 5843:6 17	desire 5767:22 5827:12 detail 5841:14 5888:18 5903:20 detailed 5820:10 5840:13 5841:8,9 details 5831:24	diets 5931:12 difference 5821:4 5822:9 5863:19 5914:16 5929:11 5969:8 differences 5873:10 5933:23	5912:21 discrepancies 5823:21 discuss 5834:7 5929:24 discussed 5776:16 5807:4
5780:13 deformities 5925:5,14 degradation 5941:26 5942:1 degree 5880:12 5882:18 5926:16 delay 5865:16	5843:6,17 5844:2,4,19 5846:1,4 5850:2, 3,19 deputize 5911:13 derivation 5828:25 5831:12 5835:20 5879:12 5880:8	detect 5948:23 5949:3 detected 5774:12 5945:22 determination 5796:9,23 5873:15 determine	differentiate 5894:1 differentiated 5895:6 difficult 5828:1 5853:20 5887:25 5947:18 5948:3 5949:9,13,17	5826:18 5829:16 5833:26 5851:5 5865:11 5867:4 5880:7 5913:5 5963:7 discussing 5860:17 5866:22 5868:16 5893:21
delayed 5773:14 deliver 5877:2 delivered 5813:15 demonstrate 5861:8 demonstrated 5889:16 density 5913:19 5914:15 5921:13	derive 5835:15 derived 5816:24 5831:18,26 5862:23 5917:14 deriving 5840:6 dermal 5897:5 5898:2 5904:24 5905:2,9,16 5909:23,26 5910:2,21	5785:24 5786:13 5792:8 5861:16 5947:22 5949:9 determined 5799:6 5921:6 5944:3 develop 5773:17 5797:5 5811:10 5841:13 5924:14 developed 5786:23,24	diluted 5902:6 diminish 5853:12 dioxide 5901:19 5902:17 5903:23 dipper 5919:23, 26 5924:5,6 5931:10 5932:5 5933:12 5936:5,6 direct 5771:6 5947:11 5965:3	discussion 5765:22 5829:14, 21 5836:17,20,26 5854:12 5860:9 5867:10 5888:11 5917:7 5942:16 5967:18 discussions 5957:12 disease 5948:24 diseases 5950:3
depart 5866:15 departmental 5924:14 depend 5792:14 5807:10 5877:3 5901:23 5926:19 5928:19 5930:23 5965:1 dependency 5772:24 dependent 5773:23 depending 5914:23 5920:1,3 5930:26 5968:4 depends 5849:15 5885:8 deposition 5815:18 5816:1,	Des 5859:3,9 describe 5775:12 5796:9 5802:17 5804:5 5954:14 5955:6 describes 5800:2 5814:19 describing 5956:26 design 5833:13, 17,19 5835:11,18 5841:8,10 5842:6,8 5887:16 5888:1,16,21,24 designed 5774:9 5834:1 designing 5888:13	5872:26 5884:1 5919:4 5924:13 development 5785:23 5786:11, 13 diabetes 5949:6 dialogue 5875:15 diesel 5792:17 5793:1,5,6 5794:2,8 5798:9, 17,18,22 5803:10,14 5902:18 diesel-powered 5798:14 diet 5779:7,9 5873:10 5926:19 5931:16 5949:16	5968:15 directed 5892:22 5966:2 direction 5779:19 5782:12 5895:7 directions 5898:25 directly 5835:9 5876:23 5950:1 disadvantageous 5931:5 discharge 5890:19 5943:9 discharged 5966:16 discovered 5814:9 5817:11	disincent 5938:18 disincentive 5938:23 dispense 5905:17 dispersal 5779:15 disperse 5779:14 dispersing 5779:20 5943:25 5955:17 dispersion 5783:18 displaced 5780:12 5783:9 display 5776:10 5781:22

· · · · · · · · · · · · · · · · · · ·		14		
displays 5776:18 disposal 5956:6 disrupt 5851:8 dissolved 5849:16 distance 5776:7 5894:6 distill 5905:23 distinction 5808:9 distinctly 5818:3 5825:18 distinguish 5893:19,22 distribution 5772:23 5776:18 5914:13 5918:2, 8,10 5936:14 disturbance 5779:3 5790:1,2 disturbed 5787:6 ditches 5965:11, 26 diversity 5776:8 doable 5864:11 5865:6 5866:22 document 5785:19 5786:8 5799:11 5800:2 5811:15 5815:4 5833:5 5836:24 5848:25 5849:3 5940:16 5951:9, 10,12 5958:21 5959:16 documented	3,9 dominated 5868:10 5908:15 Donkersgoed 5858:1 dose 5926:6,23, 26 double 5893:7 5958:18 doubtful 5782:19 downstream 5893:26 5925:13 downwind 5901:15 drainage 5890:26 5942:25 draw 5776:24 5804:19 5843:26 drawing 5796:5 drawn 5891:13 drilled 5843:3 drilling 5851:7 drink 5846:26 5847:9,11 5882:1 5938:2 drinking 5837:6, 9 5840:6 5843:14 5845:26 5846:14, 23 5849:19,21 5851:19,21 5851:19,21 5853:7 5854:13, 22 5879:22 5881:26 5882:5 5883:1 5890:4 5893:3,16 drinka £981:22	drivers 5904:5 driving 5778:24 Drummond 5766:13 5857:8 5967:24,26 5969:5,6 dry 5831:2 dry/wet 5833:24 drying 5898:19 duck 5936:5,7,8 due 5768:9,11 5791:23 5831:5 5838:2 5875:6 5879:9 5897:8 5902:18 5908:4 5916:9 5933:16 5943:8 dump 5891:1 5962:26 dumps 5850:10 5853:20,23,25 5881:15 5887:6 duration 5790:13 5832:5 durations 5941:1 dust 5770:13 5859:26 5868:25, 26 5869:6,19,21, 24,25 5870:2,4,9, 12,16,22 5871:5, 16,26 5872:6,12 5873:20,22 5874:2,20,21 5875:1,6,21 5876:5,11,21 5877:7,9,15,19, 23 5878:2,5,24	5955:5 5957:10 5958:12 5959:18, 25 5960:3,13 5961:25 5962:7,9 dust-monitoring 5896:11 dustfall 5878:18 5895:19 5896:5, 12,16 dusty 5964:5 duties 5934:6 dynamic 5776:8 E earlier 5767:24 5788:18 5798:6 5806:7 5862:21 5864:19 5873:2, 13 5880:8,11 5881:7 5886:23 5895:18 5896:9 5921:10 5933:3 5940:18 5952:17 5958:3 5960:5 5968:25,26 5969:2,13 early 5875:5 5877:4 5952:7 5958:3 earth-moving 5805:18 easiest 5895:5 east 5851:16,20 eastern 5890:13 easy 5834:17 eating 5779:9	5858:23 ecologically 5775:16 economically 5797:18 economy 5794:6 ecosystem 5784:12 5785:3 edge 5783:19 5787:15 5890:13 5897:25 edges 5785:22 5786:22 5787:11 edit 5913:20 effect 5780:14 5781:5 5873:23 5883:21 5884:8, 11 5886:6 5895:5,10 5900:24 5901:5 5902:25 5916:10 5938:10 5939:13 5941:11 5943:26 5944:8 5948:21 5950:5,13 effectively 5898:17 effects 5820:9 5838:25 5869:5, 17,18 5873:4,15, 20,21 5874:2,6,8, 13 5879:1 5880:18,19 5883:17,18 5884:5 5888:4,7 5898:4 5900:20
diversity 5776:8 doable 5864:11 5865:6 5866:22 document 5785:19 5786:8 5799:11 5800:2 5811:15 5815:4 5833:5 5836:24 5848:25 5849:3 5940:16 5951:9, 10,12 5958:21 5959:16	5847:9,11 5882:1 5938:2 drinking 5837:6, 9 5840:6 5843:14 5845:26 5846:14, 23 5849:19,21 5851:19,21 5852:16,19 5853:7 5854:13, 22 5879:22 5881:26 5882:5 5883:1 5890:4	durations 5941:1 dust 5770:13 5859:26 5868:25, 26 5869:6,19,21, 24,25 5870:2,4,9, 12,16,22 5871:5, 16,26 5872:6,12 5873:20,22 5874:2,20,21 5875:1,6,21 5876:5,11,21 5877:7,9,15,19,	5958:3 5960:5 5968:25,26 5969:2,13 early 5875:5 5877:4 5952:7 5958:3 earth-moving 5805:18 easiest 5895:5 east 5851:16,20 eastern 5890:13	5950:5,13 effectively 5898:17 effects 5820:9 5838:25 5869:5, 17,18 5873:4,15, 20,21 5874:2,6,8, 13 5879:1 5880:18,19 5883:17,18 5884:5 5888:4,7 5889:20 5897:1
dollars 5952:12 domestic 5842:23 5843:1,	5907:3,12,18 5937:7	5898:15,16,18,22 5899:24 5902:5, 17 5954:7,14	eco 5821:19,21 5822:5,21 Eco-elders	5910:22 5912:4 5939:7,9,15,16, 26 5940:9,12,20, 24 5942:3,4

		15		
5943:4,17 5946:1	emission 5791:15	15 5846:18	ensure 5768:15	5799:1 5805:18,
5948:15	5793:24 5794:16	5848:15 5863:1,	5812:13 5826:6	21,23,24,25
efficacy 5791:17,	5795:7 5800:24	14 5871:19	5850:24 5851:11	5806:12 5877:18
24	5802:14,17,22	5873:11 5887:11	5852:9 5855:6	5957:2 5958:6
effort 5794:5	5803:4,11,19,23	5900:25 5904:15	5867:8 5877:18	ER 5933:12
5827:7 5860:14	5804:1,6,11	5910:12,24	5886:5 5937:19	error 5867:12
efforts 5766:8	5952:23 5953:13	5918:8,9 5934:16	5968:25 5969:18	5922:3
	emissions	5941:15,19	ensuring	errors 5814:8,13
egg 5923:12	5770:13 5790:9	5944:26 5951:9,	5864:15	5817:7,8,10
egg-laying	5793:17 5795:9,	12 5955:18	entering 5852:11	5864:18 5880:8
5926:2	10 5796:16	5964:21 5967:9	entire 5787:18,21	5921:3
EIA 5771:22	5798:10,11,13,	end-pit 5809:1	5919:22	escapes 5853:26
5772:2,8 5774:5,	17,24 5799:2	5818:1,2 5825:15	envelope	-
13	5800:10,12	5831:10,13,17,26	5891:12	essence 5941:6
EIAS 5917:21	5802:8,12,16,19,	5832:5,7,11,22		5944:8
eighth 5772:7	25 5803:10,17,25	5833:14,15,17,	environment	essential 5863:18
5776:10	5804:3,9 5805:4,	22,25 5834:3,9,	5778:1 5796:7,	essentially
EIS 5939:11	8,12,17 5806:8	20 5835:7,18,21	19,24 5798:20 5919:1,9 5920:7	5781:17 5837:8
Elaine 5922:10	5807:2 5808:26	5837:11,17	5919:1,9 5920:7	5852:5,10,18
Elders 5898:6	5809:2,5,17,19,	5841:7,15,16		5862:18 5865:2
	21 5810:10,26	5842:2,8,12	environmental	5896:3 5962:10,
electric 5798:22	5811:7,12	5861:2,4,7,16,21	5771:24 5792:20 5796:10 5801:26	13
5806:16,18,20	5859:26 5869:19	5862:14,17,22	5805:1 5939:6,9,	establish 5767:5
electricity	5878:26 5879:9	5863:1 5865:12	10,13,26 5940:5	5873:4
5794:13 5795:10	5890:10,11	5879:15,18	5947:20	established
5806:17,21	5899:17 5902:2,4 5912:5 5950:26	5881:7,10,11,17, 21,22,23 5882:1		5768:8 5803:11
5953:18,20,22	5951:24 5952:8,	5886:17 5887:3,	environmentally 5903:3	5883:25
element 5883:3	19 5953:17,21	9,11,16,18,22		establishing
elements	emitted 5801:14	5888:1,8,11,13,	environments	5780:19 5781:6
5884:19 5949:8		19,21,26 5889:4	5818:5 5918:26	establishment
elevated 5853:9	emitting 5800:8	5905:10 5912:17	envision 5813:24	5780:7,15
5928:25 5935:14	5801:1	5917:25 5918:24	epidemiological	esthetics 5849:11
elevation 5834:4	emphasis 5824:1	5919:8 5924:5	5872:21,23	estimate
eliminates	5833:23	5932:8,13	5873:2,5	5790:12,14
5922:19	employ 5937:11	5936:6,10	EPL 5879:26	5791:22 5793:15,
elimination	empty 5962:3	end-put 5862:4	5880:2 5886:19	20,23 5794:26
5942:1	encompass	Endangered	equal 5784:21	5795:6,13
elimitation	5831:5	5923:4	5936:4 5956:17	5805:21 5807:6
5941:26	encourage	endorsed 5884:2	equation	5821:3 5829:10
Elk 5919:5	5801:19	endorsed 3884:2 ends 5889:7	5814:19,21,26	5953:3 5959:1,21
	encouraging	ends 5889:7 5965:10	5815:16,26	5960:2 5963:11
Elmeligi 5858:18	5800:11 5801:1		5919:4	5968:10
Emard 5858:3	end 5767:2	Energy 5812:8	equations	estimated 5809:2
emerge 5924:8	5782:15 5783:20	5860:4	5814:19	5832:11 5952:9
emergency	5813:15,22	engine 5798:22	equipment	5960:11
5877:3	5828:13 5833:12,		5798:1,7,9,22,23	
				I

		10		
estimates 5804:6	evidentiary	5883:18	5960:23	5909:9,16,23,26
5805:3 5806:3	5767:13 5863:15	exhibit 5931:19	expertise 5876:2	5910:3,8,13
5814:11 5816:5	evidently	exhibits 5812:26	5931:2	5912:2,12,15,24
5833:5 5838:11	5881:13		experts 5875:22	5913:22,24
5913:9 5963:5	evolution 5795:3	exist 5924:16	-	5914:4,17
5966:7		5946:5	explain 5766:7	5915:6,12
estimation	ex-pit 5850:10	existing 5795:8	5773:15 5802:22	5916:15 5921:4
5792:13	5853:20,25	5908:21 5940:6	5823:21 5835:22	5924:4 5926:6,
estimations	5881:15 5887:6	expect 5767:20	5839:5,14 5905:7	11,16,17,21,23,26
	examples	5782:9,13,23	5919:16	5927:17 5928:6,9
5830:11	5814:10 5824:5	5789:2 5790:22	explained	5929:22,23,25
European	5912:19,22	5793:20 5795:1	5897:19	5931:9,23
5903:1	exceed 5837:26	5808:25 5809:4	explains 5825:1	5932:14,15
evaluate 5791:24	5846:23 5864:8	5827:15 5831:4	explanation	5936:4,9,15,18,
5792:7 5797:24	5880:14 5893:15	5842:1 5850:18,	5840:3	26 5937:20
5933:7	5901:11 5902:13	22,26 5851:3,7	explicit 5890:2	5939:24 5940:13,
evaluated	5904:11 5905:18	5852:23 5866:11	-	22,25 5941:14,25
5912:15 5914:5,8	5906:1,12 5909:8	5881:20 5891:15,	explicitly 5852:26 5853:4	5942:2,7,14,22
5919:19,23	5940:26	22 5904:3		5943:12,18
5927:1,12	exceedance	5933:8,22	exposed 5802:12,	5945:3,12
5932:3,4 5942:26	5906:12	5934:10 5945:9,	25 5809:18	exposures
5943:3,6 5945:1	exceedances	18 5960:1	5810:19 5811:7	5839:21 5868:8
evaluates 5897:8	5843:14 5893:5	expectation	5834:20 5835:7	5869:5 5883:10,
evaluation	5906:19 5907:12,	5891:9	5855:1 5897:2	11,14 5904:4
5810:16 5863:11,	18	expectations	5902:16 5909:11	5909:18 5912:26
18 5889:11	exceeded 5820:2	5921:23	5924:1,5,6	expressed
5897:7 5936:22	5861:25 5867:18	expected	5941:7 5943:17	5766:22 5870:20
evaporate	5891:26 5905:12	5777:13 5783:6,7	5950:10	5898:16
5961:11 5962:10,		5805:3,4 5823:3	exposure	extend 5791:2
13 5963:15	exceeding 5884:4 5893:2 5900:12	5838:4 5889:6	5810:24 5818:14	
		5902:14 5909:9	5819:15 5821:21	extended
evaporates	5941:17	5915:16 5926:17	5822:24 5835:23	5826:26 5851:4
5963:16,19	exceeds 5905:11	5932:26 5942:11	5838:11,14	5961:25
evenly 5955:22	exception 5862:2	5963:8	5839:8,12,16,20	extends 5787:5
5961:20	5863:6		5840:1 5842:3	extensively
eventual 5964:9	excessive	expects 5782:7	5853:6 5864:1,13	5841:18,21
eventually	5962:17	experience	5867:6 5868:26	extent 5780:6
5877:10 5888:22	exchange 5958:1	5810:21 5878:4,	5870:6 5872:5	5783:9 5787:15
evergreen	exclusion	12,19 5887:5	5873:7 5879:15	5866:12 5875:12
5797:6	5934:25	5888:16 5954:18	5884:3 5885:12	5877:15 5881:3
evidence 5771:18	exclusively	experiencing	5888:8 5897:4,5,	5888:11 5893:1
5797:10 5811:23	5826:25 5913:26	5898:7,9 5950:1	9,15 5898:3	5899:19,23,26
5812:22 5819:17	5920:12	expert 5784:11	5899:1 5901:19 5902:14 5903:4,8	5914:18
5872:21,23		5812:3 5818:20,	5902:14 5905:4,8	external 5956:5
5896:23 5909:13	excuse 5807:20	21 5825:7	5905:2,10,16	extra 5966:4
5917:8 5940:8	5815:20	5849:10 5922:13	5906:4,23 5907:3	extract 5853:20
5968:20	exercise 5833:9	5930:16 5951:1	5908:2,16	5964:24
			5700.2,10	5707.27

		17		
extremely 5837:12 eyeball 5863:17 F face 5804:10 5891:25 5953:5 5956:5 faces 5799:8 facilities 5805:1 5854:2 facility 5876:23 5890:14 fact 5838:3 5860:9 5869:9 factor 5780:7 5803:11,12 5804:11 5916:21, 23 5917:2 factors 5797:19 5800:4 5802:14, 17,22 5803:4,19, 24 5804:1,2 5854:24 5903:11 5917:12,24 5918:4,15,23 5947:13 fail 5915:19 fair 5798:12 5953:2 fairly 5823:4	farther 5823:17 fast 5911:10,12 fate 5964:9 feasible 5797:18 feature 5773:25 features 5785:25 5786:15 February 5789:15 fed 5899:22 5963:1 federal 5769:1 5770:21,23 5793:13 5807:16 5811:18 5893:3 5924:16,18 feed 5923:11 Feeder 5858:1 feeding 5925:6 5933:20,24 feeds 5872:24 feel 5914:9 5918:8 5925:23 feeling 5774:23 felt 5919:5 fencing 5934:25 5937:11 fertilizing 5789:25 fescue 5776:6 fewer 5911:2	17 filling 5842:12 filtered 5846:11 5849:7 final 5766:18,21, 23,24,26 5767:3, 12,19,23 5768:1, 9,16 5773:8 5809:12 5811:5 5835:18 5851:2 5835:18 5851:2 5835:18 5851:2 5835:18 5851:2 5854:11 5865:16 5951:13 finalize 5806:15 final 5836:18,21 5848:2 5893:8 5910:18 5953:20 5959:15,20 finding 5779:20 fine 5819:2,3 5840:16 5866:17 5875:23 5967:26 finish 5968:4,23, 25 5969:18 fire 5778:9,12,14, 22 5779:3 fish 5769:11 5897:17 5916:21 5926:20 5939:20, 22 fit 5792:4 Fitch 5858:8	flipped 5935:5 flow 5820:2,9 5852:6,7 5902:2 fluoranthene 5817:6 5904:18 fly 5923:26 flycatcher 5923:15,20 5924:10,17 5931:13 5937:2 focus 5772:11,18 5812:10 5869:24 5890:18 5892:12 focused 5875:26 focuses 5890:10 folks 5851:7 5954:5 5961:9 follow 5799:14 5813:3 5820:24 5883:4 follow-up 5788:1 5816:21 5841:26 5873:26 5874:17 5889:26 5895:15 5906:16 5909:6 5914:14 5930:8 5935:24 5943:13 5945:26 follow-up's 5902:8 food 5779:12 5781:18 5826:25	footprint 5775:20,24 forage 5783:10 5914:2 5920:1 foraged 5933:1 foraging 5773:26 5950:7 foregoing 5970:3 forest 5778:1 5779:21 forestry 5776:26 5777:2 form 5775:18 5924:19 5952:26 5963:23,25 formal 5848:16 5947:18 format 5766:20, 21 5921:17 formed 5888:14 forms 5772:19 5881:11 5924:8 Fort 5949:26 forward 5791:11 5806:16 5811:9 found 5860:26 5881:8 5892:14 5893:2 5908:1 5910:19 5930:24 fourth 5789:19 5792:20 5884:17 fourth 5789:19 5792:20 5884:17
5854:24 5903:11 5917:12,24 5918:4,15,23 5947:13 fail 5915:19 fair 5798:12 5953:2	feeling 5774:23 felt 5919:5 fencing 5934:25 5937:11 fertilizing 5789:25 fescue 5776:6	fire 5778:9,12,14, 22 5779:3 fish 5769:11 5897:17 5916:21 5926:20 5939:20, 22 fit 5792:4	5906:16 5909:6 5914:14 5930:8 5935:24 5943:13 5945:26 follow-up's 5902:8 food 5779:12	forward 5791:11 5806:16 5811:9 found 5860:26 5881:8 5892:14 5893:2 5908:1 5910:19 5930:24 fourth 5789:19
5834:1 5852:15 5877:1 5968:11 fall 5847:14 5954:25 fallen 5882:11 familiar 5878:5 5954:4 familiarity 5875:22 family 5775:5	fewer 5911:2 field 5775:1 5859:14 fight 5779:2,13 figure 5820:15,16 5824:20 5832:2 5922:20 5954:24 figures 5820:13 5824:1,8,14,22 filed 5785:20 filing 5768:16	five-year 5899:19 flag 5828:19 flagged 5848:7 flags 5937:12 flames 5778:12 fledgling 5775:2 fleet 5798:7,9,14, 18,26 flew 5784:16	5781.18 5820.25 5836:16 5892:8 5897:23 5911:24 5913:25 5918:18 5919:18 5920:12 5931:25 5932:26 food-ingestion 5932:7 foods 5891:4,18, 26 5892:8,24 5897:17 foot 5797:23	fraction 5806:13, 24 fractured 5887:14 frame 5775:15 5777:23 5794:26 5827:18 5854:3 5865:15 5888:15 framework 5951:21 framing 5781:13
Farms 5857:26	fill-up 5962:3	flighting 5944:17	foothills 5776:6	Fran 5851:16 5852:25

		18		
Frank 5859:16	fund 5953:12	5849:19 5879:2	global 5804:1	greater 5816:26
frankly 5895:4	funded 5874:18	5931:3 5950:9	goals 5801:11	5825:26 5837:19
Fred 5859:7	future 5773:14	generally	Gold 5817:26	5839:7,11,16,20
frequency	5783:15 5817:4	5771:17 5777:3,7	5819:20 5820:7	5840:20 5861:22
5892:26 5930:21,	5833:17 5924:18	5852:23 5878:6	5821:17,24	5869:3,9 5879:3,
25	5927:3	5887:14 5901:21	5829:24,26	5 5902:25 5903:7
frequently		5903:2	5830:1,6 5837:18	5905:6,13,20
5891:21	G	generate 5809:10	5841:17 5843:7	5906:3 5924:4
	<u> </u>	generated	5844:16 5852:4,6	5928:16 5931:10
Friday 5768:7,	Gail 5859:9	5803:7 5829:18	5854:16 5882:4	5932:15 5933:13
10,11,12 5874:16 5957:20 5958:1	gained 5888:16	5917:13 5927:2	5890:21 5905:16	5936:4 5937:20
	U	generating	5917:24 5918:25	greatest 5864:24
frog 5922:24	game 5897:17	5833:11 5909:3	5924:6 5928:7,	5865:4,26
5930:15 5944:1	5943:20	generation	14,16 5935:14,	5867:15
frogs 5925:4	Gary 5770:9	5869:25 5953:19	17,22 5936:7,10	greener 5953:20
5930:16,19,24	5859:22 5930:13		5937:21 5939:1	greenhouse
5931:3 5943:25	gas 5770:13	genetics 5873:10	5964:7	5770:13 5789:23
front 5846:16	5789:23 5790:9,	gentlemen	Goldsim 5816:14	5790:9,21
5848:25 5849:4	21 5791:11,15,	5953:25 5954:19	5819:26 5820:3	5791:10,15,17,
5875:4	17,22,25 5792:3,	5966:25	5821:5 5822:9	22,25 5792:3,8,9,
fruit 5868:9	8,9,11 5793:16,	geochemical	5829:11,18,22	11 5793:16,24
fuel 5793:2,14,21	24 5794:15,16	5819:26 5821:8	5830:9 5832:25	5795:6,9
5794:6 5798:22	5795:6,9	geochemistry	5833:7,21	5796:16,22
fuel-efficient	5796:16,22	5835:1	5867:17	5798:4 5799:2
5800:12 5801:2	5798:4 5799:2	geographic	good 5765:23	5800:3,23
fugitive 5802:2,8,	5800:3,23	5787:14	5771:10,13	5801:11,14,21
11,16,19,25	5801:11,14 5802:5 5803:13	geology 5844:3	5781:18 5782:18	5802:5 5803:13
5803:16,17,24		GHG 5789:23	5784:23 5791:5	5806:3 5807:1,7,
5809:17,20	5806:3 5807:1,7, 8 5808:26	5794:17,18	5794:11 5804:17	8 5808:26
5810:9 5811:11	5809:5,19	5798:10,12	5849:25 5865:10	5809:5,10,19
5869:19 5870:2	5811:15 5859:26	5804:24 5805:4	5894:7 5946:13	5811:15 5859:26
5890:10	5898:10 5950:25	5806:21 5952:8	5949:20 5950:21,	5950:25 5951:14,
full 5790:22	5951:14,21	GHGS 5806:25	22,24 5953:24	21 5952:2 5953:17
5818:12 5839:22	5952:2 5953:17	Gilmar 5847:14	5954:16 5956:11	
5955:21	gas-fired 5795:3	5851:16 5852:2	5965:22	grid 5794:19
full-time 5853:7	0	Gilmar's	Gourlay-	grizzly 5778:6
fully 5774:2	gases 5801:21 5809:10	5852:25	vallance 5858:23	ground 5778:25
5813:10 5915:3			government	5780:16,25
function 5932:1	gassy 5810:6	give 5816:17	5772:21 5793:13	groundwater
5933:6	gather 5892:9	5818:7 5819:4 5824:10 5830:25	5794:24 5857:8	5838:23 5842:21,
	gave 5863:22	5836:21 5849:9	Grassy 5778:21	22 5843:10,13,16
functioning	5951:14 5959:1	5870:24 5894:7	5804:3 5810:5	5846:3 5848:13,
5855:7	gears 5831:8	5921:23 5946:23	5857:25 5961:5	17 5850:2,8
functions	5842:20	5959:21	great 5789:20	5851:11 5853:10,
5827:20	general 5776:17	giving 5916:20	5914:6 5915:14	19,26 5854:14,
	5793:6 5840:12	giving 5710.20	5936:7	16,20,22,23,25
			I	I

		19		
5880:16 5890:17,	Gulamhusein	harvest 5897:23	5802:1,2	5947:5,7,10,12,
18,24 5894:10	5857:11	harvesting	5804:18,21	14,24 5948:13,
5964:19,21	guys 5954:24	5780:24	5925:9	14,21 5949:6,10
5965:9	5966:21	hatchability	health 5769:11	5950:12
groundwater-	0,00.21	5941:15	5770:15 5812:4,	health-based
dependent			11 5814:3	5892:4
5843:19	H	haul 5951:7,11 5954:1 5955:13,	5815:14 5816:5	healthy 5929:26
group 5775:5	habitat 5773:12	23 5956:2,7	5820:20 5821:3	hear 5769:21
5857:26 5858:9	5784:8,23,24	5957:19 5958:20	5822:3,5,12,16	5815:21 5969:3
5872:22 5897:14	5785:25 5786:14	5960:25 5961:2,	5823:2,7,8,20,23	heard 5822:15
5904:19,22	5911:25 5919:18,	15,16,19 5962:19	5824:23,25	
5907:1 5968:17	22 5920:1	5963:8	5825:5,11	5834:25 5851:15, 19 5860:13
groups 5784:4	5939:20,23	hauled 5956:16	5826:10,21	5906:14 5927:15,
5897:18 5904:15,	5942:1,3,6,9,10,	5959:22	5828:8,20	19 5933:11
16 5905:2,13,19	11,21 5943:6,9,		5829:11,13	
5909:22 5910:4	18 5944:7,10	haulers 5955:15	5832:10 5835:24	hearing 5766:1
growing 5780:18	habitat-related	hauling 5957:14	5838:6,13,24,26	5767:2,13,14,16, 18 5768:14,25
0 0	5946:2	hazard 5814:14	5840:22 5842:4,	5785:19 5851:15
guess 5806:19 5826:9 5878:13	habitats 5912:14,	5817:23 5818:1,	24 5844:12	5853:17 5856:6,7
5900:23 5902:25	24 5931:22,25	23 5825:17,24,26	5845:6,26	5863:15 5969:17
5900.25 5902.25 5916:4 5938:6,11	5932:9 5943:7	5826:11 5828:3,6	5846:18,23	
5943:16 5948:12	habits 5826:24	5837:16,18	5847:3 5848:15	heavily 5945:19
5953:15 5961:24		5839:7,11,16,19	5849:24 5851:24	heavy 5883:17
5962:17 5963:4	half 5775:20,21,	5840:19 5864:1,	5853:1,3 5855:1	hectares 5777:26
5964:23 5966:8	23 5800:1 5807:4	8,22 5867:14,25	5860:2,10	5778:2,3,5,8,10,
guessing 5950:26	hand 5891:16	5869:2,8,10	5863:11 5869:5 5873:4,15,20,24	16 5779:21
5954:11 5956:20	handle 5948:9	5879:3,4,16,19 5885:2,15 5898:1	5874:3,14	5919:25
5962:21 5965:7,	handling	5900:12 5902:13	5875:12 5878:25	helpful 5769:12
12,15	5810:23 5869:20,	5903:12 5904:26	5879:1,15,23,24,	5781:12 5809:13
guidance	25	5905:9,15	25 5880:3,6,17,	5834:24
5917:14 5925:25	hands 5771:18	5906:2,7 5909:8	20,23 5881:21	heron 5914:6
5927:11 5939:8,	hanging 5867:24	5910:7,11,12,14,	5883:5,25	5915:14 5936:7
25 5940:4,12,14,	happen 5920:4	20 5928:16	5886:20,26	high 5833:12
16,19	5964:9	5935:21 5941:8	5888:4,7 5889:8,	5848:13 5854:24
guideline	happened	5945:2	10,20 5890:3,9	5855:3 5877:23
5849:19 5892:1	5835:12 5867:10	hazards 5818:11,	5891:7 5897:1,8,	5879:18 5882:18
5939:18	happening	15 5839:22,25	24 5898:8	5884:22 5886:7
guidelines	5916:1,3 5945:25	5862:19 5868:11	5899:3,23 5900:4	5898:20 5900:11,
5837:6 5843:14	5960:18	5907:23 5908:9,	5901:12 5902:10,	14 5902:4
5846:15,24	happy 5910:26	18,26 5909:3	15,20 5904:12	5908:18,25
5890:5 5891:7	5911:2	head 5846:17,20	5909:10 5910:25	5909:3,18 5912:9
5893:4,16 5929:6	hard 5947:10	5960:9	5911:1,16,18	5914:9 5920:22 5929:16 5965:2
5938:21 5939:6,	111 5947:10 5949:20 5951:5	headed 5822:10,	5912:1,5,10	5929:16 5965:2
11		13	5913:6,12	
guild 5933:20,24	harm 5937:19	heading 5794:13	5915:4,5 5945:20	high-level
g		5796:3,14	5946:15,21,22	5834:15
		5770.3,17		
				I

high-selenium 5779:24 5781:21 5873:21 5874:4 5845:6,26 Lan 5770:10 5902:26 5786:7,19 5585:17 5876:9,1 5884:12 23 5859:23 5859:23 5825:13 5827:23 5789:13 5790:6,9 5586:22,2587:1 5863:11 5874:4,3 5873:15 5860:2 5863:11 5874:3,3 5787:121 5862:38.11,12 5799:20 5586:22,5887:1 5868:11 5874:3,5 5785:15 5861:1 5787:121 5785:15 5861:2,5 5786:13,860:2,5 5786:13,860:2,5 5786:14,897:10 5785:15 589:12,5 5780:12,590:14,590:12,590:14 590:2,25 590:12,590:12,590:14 590:12,590:13,587:13,5954:2,5954:2,5948:13 591:25,591:2,556:12,5954:2,594:12,590:10,584:12,580:13,5954:2,5953:6,5960:22,590:10,5968:8,11,5954:2,5959:11,5953:15,5954:2,5935:6,5960:22,590:16,5953:15,5964:2,5835:14,5966:13,5951:2,5864:12,5980:17,5968:8,11,5866:13,5966:2,5830:11,5866:13,590:12,590:12,590:15,5866:13,5951:2,5866:13,5951:2,5866:13,5951:2,5866:13,5954:2,5866:13,5954:2,5866:13,5954:2,5866:13,5954:2,5866:13,5954:2,5866:13,5966:2,5866:13,5956:12,5886:13,5966:2,5886:13,5966:2,5886:13,5966:2,5886:14,5865:12,5886:14,5865:12,5886:14,5865:12,5881:15,5962:2,580:15,5866:4897:19,5942:3580:18,5966:2,5882:1,6586:13,5861:16,5866:13,580:12,5882:16,5886:13,5866:1,5882:16,5886:14,5865:12,5882:16,5883:16,5862:13,5881:1582,582:1,581:13,581:15,582:2,12,582:1,582:1,582:1,582:1,5			20		
562:26 5783:25 5785:8, 5875:17 5876:9, 5846:18.22 5845:12.3581:23 585:23 582:23 bigher 5818:22 5791:61.9 5580:24 5847:35851:23 585:23 582:23 5842:13 5827:23 5791:61.9 5580:22 5887:11 5863:11 5874:3, ice 5920.4 5862:13 5867:11 5795:26 5796:13, 5895:15 5896:14, 24,25 5805.1 5863:15 5862.0, 5880:12 5881:23 5890:14, 5871:14, 5879:12 5902:16 5902:4, 6500:26 5800:14 5801:6, 5929:917 5887:12 5887:12 5887:12 5887:12 5901:14 5887:12 5901:12 5882:27 5901:12 5901:14 5887:12 5901:14 5817:25 5901:12 5912:5 5810:12 5814:16 5904:72 5901:25 5910:16 5825:10 5820:12 5820:12 5820:12 5820:12 5820:12 5821:16 5820:12 5820	high-selenium	5779:24 5781:21	5873:21 5874:4	5845:6.26	Ian 5770:10
higher 5818.22 15.26 5786.7,19 15 5880.24 5847.13 5851.23 5859.23 5849.12 5861.2 5771.619 588.22 5887.1 5863.11 5867.14 5863.11 5867.14 5863.11 5867.14 5862.3,8,11,12 5792.18 5794.10 5888.22 5887.1 5886.21 5867.14 5887.11 5887.12 5887.11 5897.17 5887.11 5897.17 5887.11 5897.17 5887.11 5897.14 5887.11 5897.12 5887.11 5897.14 5887.11 5897.14 5887.11 5897.14 5887.11 5897.14 5887.11 5897.12 5887.11 5897.12 5887.11 5897.12 5887.11 5897.17 591.12 591.17 591.12 591.17 591.12 591.17 591.12 591.17 591.12 591.17 591.12 591.17 591.12 591.17 591.12 591.17 591.12 591.17 <td< td=""><td>U</td><td></td><td></td><td></td><td></td></td<>	U				
5825:13 \$827:23 5789:13 5790:6.9 5882:22.23 5833:13 5860:2 ice \$920:4 5849:12 586:12 5791:6.19 5886:22 5887:1 5863:11 5874:3, 5785:1 583:16 5862:3, 112 5792:18 5794:10, 5888:25889:2 14 5879:14,23, 5785:1 583:16 5867:19 5897:16 26 5799:20 25 5915:17 5888:12 5886:20, 5806:12 5961:14 5900:4, 6 5906:26 5800:14 580:51 59393:1 5937:4 5809:3,9 5891:7, 5818:23 5825:17, 5901:12 5917:25 5810:12 5814:16 5944:5 5907:8,24 5899:3 5901:12 5902:15 5817:14 583:8 5918:15 5921:5 5820:24 5843:21 5930:22,23 5901:12 5902:15 5817:14 583:8 5918:15 5921:5 5820:24 5843:21 5995:21,925 5910:12 5902:15 5817:14 583:8 5926:17.21 5924:24 5931:18 5957:18,5954:2, 5948:13 5913:8 5933:51 5934:3 24 5957:16,5959:26,796:320 5807:13,5871:8 5982:25 5933:51 5934:3 5917:17,5958:27,9956:7 5956:6 hundred 5929:14 5922:23,5923:11 5938:15 1943:8 5797:257990:16 59956:5	higher 5818.22				5859:23
5849:12 5861:2 5791:6.19 5886:22 5887:1 5863:1 587:14 587:4.3, 5883:15861:1 idea 5771:21 5863:1 5865:11 5795:26 5796:13, 5887:19 5897:16 26 5799:20 25 5915:17 5881:12 5886:20, 5902:8.16 24,25 5880:1 5785:12 5961:14 5907:8.16 24 5803:21 5939:11,42 5939:11 5897:16 5889:12 5961:14 5889:12 5981:7 5889:12 5981:7 5889:12 5901:12 5901:12 5901:12 5901:12 5901:12 5902:15 5818:12 5961:14 5818:12 5961:14 5818:12 5901:12 581:15 5916:25 5917:25 5810:12 5814:16 5947:18 5949:12 5901:12 5902:15 5845:21 0847:2 5901:12 5902:15 5845:21 0847:2 5901:12 5901:15 5845:21 0847:2 5901:12 5902:15 5845:21 0847:2 5901:12 5902:15 5845:21 0847:2 5901:12 5902:15 5845:21 0847:2 5901:12 5902:15 5845:21 0847:2 5901:25 5913:2 5845:21 0847:2 5901:25 5913:2 5845:21 0847:2 5901:25 5913:2 5845:21 0847:2 5901:25 5913:2 5845:21 0847:2 5803:15 5851:1 5922:35 591:2 5845:21 0842:1 5902:22 5918:2 5845:21 0847:2 5803:15 858:12 5803:16 8580:13 5803:16 8580:13 5803:16 8580:12 5803:16 8580:13 5803:16 8580:12 5803:16	0	5789:13 5790:6,9	5882:22,23	5853:1,3 5860:2	ice 5920.4
5862:3.8.11.12 5792:18 5794:10 5888:2 5889:2 14 \$879:14,23, 5785:1 5833:16 5862:3.1 5865:11 5795:26 5796:13, 5895:1 5896:14, 24,25 5880:3 5850:12 5880:14, 5850:12 5880:14, 5850:12 5880:14, 5850:12 5880:14, 5962:15, 5902:4,6 5906:26 5800:14 5800:51,5 5934:45 5937.4, 5889:3,95891.7, 5889:3,95891.7, 5889:3,95891.7, 5818:21 5880:3,95891.7, 5818:21 5880:3,95891.7, 5818:21 5880:3,95891.7, 5818:23 5825:17, 5918:15 5954:2, 5904:12 5909:10, 5845:2,10 5847.2, 5845:2,10 5847.2, 5845:2,10 5847.2, 5918:15 595:1, 5918:15 595:1, 5918:15 595:1, 5918:15 595:1, 5918:15 595:1, 5918:15 595:1, 5918:1, 5845:2,10 5847.2, 5988:1,36 586:1, 5918:15 595:1, 5918:1, 5913:3, </td <td></td> <td>5791:6,19</td> <td>5886:22 5887:1</td> <td>5863:11 5874:3,</td> <td></td>		5791:6,19	5886:22 5887:1	5863:11 5874:3,	
5863:1 5865:11 5795:26 5796:13, 25 5915:17 2885:1 5896:14, 25 5915:17 2825:2 5880:3 5850:12 5961:14, 5887:19 5897:16 26 5799:20, 25 5915:17 5850:12 5961:14, 5881:21 5886:20, 5902:4,5 000:26, 5902:4,5 000:26, 5903:14,242,6 5800:14 5801:6, 5929:17,21, 5913:12,42,6 5800:14 5801:6, 5929:17,21, 5913:12,42,6 5800:12 5917.12,5, 5810:12 5814:16, 5947:8 5949:22, 5901:12 5902:15, 5810:12 5814:16, 5914:12 5814:16, 5914:12 5814:16, 5914:12 5814:16, 5914:12 5814:16, 5914:12 5917.11 5950:22,23, 5901:12 5902:15, 5817:14 5843:8, 5953:15 5924:2, 5910:25 5913:5, 5910:25 5913:5, 5910:25 5913:5, 5910:25 5913:5, 5910:25 5913:5, 5912:7 5913:13, 5957:18 5958:20, 25595:6, 5922:13 5955:6, 5923:13 5957:18 5958:20, 5953:65 5960:22, hours 5806:12, 5835:14, 5952:8, highlighted, 5835:14, 5912:7 5912:15 791:21, 5912:7 5912:15 791:21, 5912:7 5912:12 5912:25, 5801:12 5802:20, 5833:14, 5794:23 5795:25, 5905:25, 5905:25, 5905:25, 5905:24, historic 5831:19, 21 5832:10, 5805:12, 5801:12 5802:20, 5803:16, 5810:13 5813:4, Holds 5836:10, 5836:10, 5836:10, 5836:11, 5836:10, 5836:11, 5836:10, 5836:11, 5836:10, 5836:11, 5836:10, 5836:11, 5830:12, 5801:12 5802:20, 5836:14, 5830:12, 5801:12 5802:20, 5801:12 5802:20, 5801:14 5802:15, 5812:41,18844:3, 5815:13 5816:5, 5815:13 5816:5, 5		5792:18 5794:10	5888:2 5889:2	14 5879:14,23,	
5887:19 5897:16 26 5799:20 25 5915:17 5881:21 5886:20, 5902:15 5907:8,16 24 5803:21 5930:11,14 5889:7.10 5887:10 5907:8,16 24 5803:21 5930:11,14 5890:39 5891:7. 5897:8,24 5899:3. 5916:25 591:25 5801:12 5814:16 5947:5 5938:24 5897:3. 5916:25 591:25 5817:14 5843:2. 5929:17:17 5924:24 5843:21 5950:22,23 5904:12 5902:15 5887:14 5843:8. 5927:17 5935:13 5951:7.11 5951:7.11 5953:15 5954:2. 5991:17 5985:1.5 5938:21 5943:8 24 5957:1.15 5954:2. 5951:5.16 5951:5.16 5951:5.16 5952:8 hours 5968:8 Houston 5770:9 586:9 5827:13 5871:8 5885:10 5912:7 5913:22 5791:21 5792:25 5905:25 5903:25 5897:11 hydrogen 5968:9116 5885:16 5912:7 5913:22 5791:21 5792:25 5905:25 5905:25 5908:21 5968:911 5912:7 5913:22 5791:21 5792:25 5905:25 5903:25 5904:18 5809:16 5821:12 5802:20 58		5795:26 5796:13,	5895:1 5896:14,	24,25 5880:3	
5902:4,6 5906:26 5800:14 5801:6, 5929:9,17 26 5888:4 identical 5817:25 5907:8,16 24 5803:21 5930:11,14 5889:7,10 5889:7,10 5918:15 5912:25 5800:12 5814:16 5947:8 5949:22 5901:12 5902:10 5817:14 5843:21 5918:15 5921:5 5820:24 5843:21 5950:22,23 5901:12 5902:10 5817:14 5843:8 5926:17,21 5924:24 5931:18 5955:22,23 5901:25 5913:5 5847:81 2509:10 5938:15 5938:21 5951:7,11 5955:61 5948:13 5948:13 5918:15 5938:15 5938:21 5958:15,16 5958:15,16 5959:67.5 5959:67.5 5959:67.5 5952:8 hours 5968:8 Houston 570:9 5866:9 5837:14 5782:10 5786:26 Howard 585:26 hydraulic 5837:16 5850:12 5870:13 5871:8 5809:12 5870:13 5871:8 5866:4, 5897:11 hydrogen 5967:11,12 highlighted Houston 570:9 5866:125 5897:11 hydrogen 5866:4, 5897:13 5870:13 5871:6 5881:16 5850:12 5870:13 5871:6 5881:16 5850:12 58871:14 5822:25 5806:15 5810:13 5816:		26 5799:20	25 5915:17	5881:21 5886:20,	
5907:8,16 24 \$803:21 5930:11,14 5889:7,10 Identifies 3817.23 5909:18 5910:5 5804:15 5805:15 5934:25 5937:4 5890:3.9 5891:7 25.26 5918:15 5921:5 5820:24 5843:21 5950:22.23 5904:12 5909:15 5818:23 5825:17. 5926:25 5917:25 5820:24 5843:21 5950:22.23 5904:12 5909:15 5845:2108 5847:2 5927:17 5935:13 5957:18 5958:20, 25 5955:6 5918:13 5918:13 5953:6 5960:22 hours 5807:5 5958:15.16 5998:15.16 5922:13 5953:6 5960:22 hours 5807:5 5958:15.16 5999:17.11 identifies 5952:8 hours 5807:5 5958:15.16 5827:13 5831:16 5912:7 5913:22 5787:8 5788:4, HO stor's 5845:210 5827:13 5834:18 5911:17 22,25 5790:16 5838:10.17 5904:13 871:18 5904:13 5912:7 5913:22 5791:21 5792:25 5806:12 5827:13 identifies 5912:7 5913:2 5791:23 5792:25 5806:12 5827:13 5807:13 5812:19 582:10		5800:14 5801:6,	5929:9,17	26 5888:4	
5900:18 5910:5 5804:15 5805:15 5934:5 597:44 5890:5,9 2891:7,1 25.26 5913:12,24,26 5809:13,242,5 59394:5937:44 5890:5,2 2845893.2 5901:12 5902:15 5817:14 5843:8 5916:25 5917:25 5820:24 5843:21 5950:22,23 5904:12 5909:15 5847:14 5843:8 5845:210 5847:2 5845:210 5847:2 5845:210 5847:2 5845:210 5847:2 5808:45:200 5845:2 5918:45:200 5847:2 5808:45:200 5845:2 5918:45:200 5845:2 5918:45:200 5847:2 5808:45:200 5847:2 5808:45:200 5847:2 5808:45:200 5847:2 5808:45:200 5845:20 5918:45:200 5847:2 5808:45:200 590:12 5912:23 5922:23 5923:14 hundred-metre 5922:23 5923:14 identifies 5922:23 5923:11 5922:23 5923:12 ise11:16 5833:10 5835:12 5833:10 5835:12 5833:16 5856:12 5833:16 5856:12 5833:16 5856:12 5833:16 5856:12 5833:16 5856:12 5833:16 5856:12 5833:16 5856:12 5806:12 5802:12 5806:12 5802:12 5806:12 5802:12 5806:1	5907:8,16	24 5803:21	5930:11,14	5889:7,10	
5913:1,24,26 5809:13,24,25 5939:4 5945:15 5887:8,24 5893:1 identified 5810:8 5916:12 591:25 5810:12 5814:16 5947:8 5949:22 5904:12 5902:15 5817:14 5843:8 5926:17,21 5924:24 5931:18 5952:19,25 5910:25 5913:5 5845:2,10 5847:2 5938:15 593:12 5957:18 5958:20, 25 5955:6 hundred 5929:14 5913:8 20 5936:19 5957:18 5958:12, 5958:15,16 5948:13 5913:8 5938:15 5960:22 hour 5807:5 5958:15,16 5942:8 Hundred 5929:14 highleghted F787:8 5788:4 F088:17 5959:6,7 5963:20 Hurly 5859:17 5835:16 5850:12 highleghted 5787:8 5788:4 HQ 5837:20,26 5870:13 5871:8 5866:9 5870:13 5871:8 591:21 5931:2 5791:21 5792:25 5861:25 5897:11 5904:18 5906:12 5870:13 5871:8 591:21 5932:2 5791:21 5792:25 5905:25 5790:13,19 5846:12 5866:89,20 5832:1,23 5801:12 5802:20 5905:13,19 5846:12 5866:89,20 5866:9 11 5832:12 5805:13,14 HQS 5864:6 5905:13,19 5846:12 5866:89,20 5833:16 5810:13 5813:4 Huge 5952:4 Hydrogeology 5842:20 58292:1 5824:20 5929:4<	5909:18 5910:5	5804:15 5805:15	5934:5 5937:4	5890:3,9 5891:7	
5916:15 5917:12 5917:12 5917:14 5817:14 5843:21 5926:17,21 5924:24 5931:18 5950:22,23 5901:12 5901:12 5845:2,10 5926:17,21 5924:24 5931:18 5952:19,25 5918:15 5918:15 5948:13 5817:14 5845:2,10 5845:2,10 5845:2,10 5845:2,10 5845:2,10 5845:2,10 5845:2,10 5845:2,10 5845:2,10 5845:2,10 5912:2 5913:8 5913:1 5866:9 5866:9 5865:22 5866:89:10 5865:22 5866:89:10 5866:89:10 5866:89:10 5866:89:10 5913:12 5913:8 5969:13.14 5913:12 5914:12 5913:12 5968:913.1 5913:12 <td< td=""><td>5913:1,24,26</td><td>5809:13,24,25</td><td>5939:4 5945:15</td><td>5897:8,24 5899:3</td><td></td></td<>	5913:1,24,26	5809:13,24,25	5939:4 5945:15	5897:8,24 5899:3	
5918:15 5921:12 5924:24 5931:18 5952:19.25 5910:25 5913:5 5845:2,10 5847:2 5927:17 5935:13 5957:18 5958:20, 25 5955:6 humdred 5929:14 5913:7 5938:12 5943:8 24 5957:11,25 5948:13 5913:7 5953:6 5960:22 hour 5807:5 5958:15.16 5959:67, 5963:20 humdred metre 592:223 5923:11 identifies 5952:19.25 5811:8 5968:17 5959:67, 5963:20 Hurly 5859:17 5835:16 5850:12 5834:18 5911:17 5782:10 5786:26 Howard 5856:26 hydrocarbons 5827:13 5831:16 5834:18 5911:17 22,25 5790:16 5838:10,17 5904:12 5805:12 5805:12 5912:7 5913:22 5791:21 5792:25 5861:25 5897:11 hydrogen 5968:9,11 5912:7 5913:22 5791:21 5792:25 5864:6 5798:22 5969:13,14 historical 5790:1 5805:12 5802:20 5905:13,19 5846:12 5824:20 5929:4 hydrogenb 5914:15 5831:7 5815:13 5816:5 hydrologic 5904:15 5866:10 17 5814:2 5821:9 5815:13 5816:5 hydrologic 5801:15 5837:13 5914:15 5831:7 5812:4,11 584:3 5812:4 5812:4 5813:12 5813:4 Holds 5936:18 5826:15 5831:7 5812:4,11	5916:25 5917:25	5810:12 5814:16	5947:8 5949:22	5901:12 5902:15	
5926:17,21 5927:17,2935:13, 59517:11 5953:15 5954:2, 5948:13 5850:8 5867:13 5938:21 5943:8 24 5957:11,25 5948:13 5913:7,11 5922:23 5923:11 5938:21 5943:8 24 5957:11,25 5948:13 5913:7,11 5948:13 5938:21 5943:8 24 5957:11,25 5942:8 identifies 5952:8 hours 5807:5 5959:6,7 5963:20 Hurly 5859:17 5835:16 5850:12 5835:14 5782:10 5786:26 Howston's 5837:13 5871:8 5887:13 5871:8 5834:18 5911:17 522.25 5790:16 5838:10,17 5904:13 5837:13 5871:8 5915:27 5913:22 5791:21 5792:25 5861:25 5897:11 hydrogen 5968:9,11 5915:27 599:19 5801:12 5802:20 5866:4 5897:19 5846:12 5824:20 5929:4 historical 5790:1 5805:21 5831:7 5805:21 5831:7 5815:13,19 5820:15 5831:7 hold 5861:18 5809:4,11 14 5935:14 hydrologic 5801:26 5875:13 5919:19 5844:23 5845:11 5820:15 5831:7 5812:4,11 584:3 5801:26 5875:13 hold 5891:20 5851:14 5821:15 5822	5918:15 5921:5		,		
5927:17/5935:13, 5957:18/5958:20, 5957:18/5952:2 5957:11,25 5948:61 5922:23 5923:13 5938:21/5943:8 24 5957:11,25 5957:11,25 5948:61 5922:23 5923:13 highest 5805:12 5881:8 5968:81 5957:11,25 5942:8 hundred-metre 5922:23 5923:11 highlighted Hours 5766:26 Howard 5866:9 Hurly 5837:13 5837:16 5837:16 5837:16 5837:16 5837:16 5837:16 5837:16 5891:16 1938:85:16 5891:16 highlighted Foreital 579:25 5797:25799:19, HQS 5866:4 5904:18 5966:11,12 5905:25 5904:18 5966:9 5866:4 5978:12 5906:22 5968:9,11 5966:11,12 5905:25 5906:13,19 5942:8 1904rogen 5968:9,11 5966:9 5826:12 5866:4 5979:12 5905:13,19 5904:18 5906:13,14 1004rogen 5968:9,11 5966:9 5826:12 5866:4 5879:19 5846:12 5866:4 5897:19 5846:12 5824:20 5929:4 1004rogen 5916:12 5929:119 5922:2,1 5820:15	5926:17,21	5924:24 5931:18	/		· · · · · · · · · · · · · · · · · · ·
20 5936:19 3937.18 5937.20 20 5936.19 identifies 5938:21 5943:8 24 5957:11.25 5953:65 960:22 hour 5807:5 highest 5805:12 5881:8 5968:17 5959:67, 5963:20 Hurly 5859:17 identifies highlighted Houston 5770:9 5866:9 S837:20,26 587:13 5881:16 5875:9,15 s334:18 5911:17 52,25 5790:16 5838:10,17 5904:18 5967:11,12 5866:8,9,20 5912:7 5913:22 5791:21 5792:25 5861:25 5897:11 5904:18 5967:11,12 5866:8,9,20 5912:7 5913:22 5791:23 5795:25 5905:25 5905:25 5978:22 5968:9,11 historic 5831:19, 24 5800:19 5866:4 5897:19 5846:12 5824:20 5929:4 hydrogeology 5805:12 5831:7 5905:13,19 5846:12 5824:20 5929:4 hold 5861:18 5809:4,11 14 5935:14 5821:6 images 5766:2 s633:16 5810:13 5813:7 5815:13 5816:5 5815:13 5816:5 5815:13 581:5 hold 586:18 5820:15 5831:7 5822:4 5820:6 5835:2 5801:12 5827:13 holds 5936:18 5826:15 5831:7 5822:	5927:17 5935:13,		,	5948:13	
3538.213943.3213573111235731111000000000000000000000000000000000000	20 5936:19	,		hundred 5929:14	
5953:6 5960:22 hour 5807:5 5958:15,16 5942:8 5922:23 5923:11 highest 5805:12 5881:8 5968:17 5959:6,7 5963:20 Hurly 5859:17 identify 5833:16 system Hours 5968:8 Hours 5968:8 Hours 5968:8 Hurly 5859:17 identify 5833:16 system Formation 570:9 S866:9 S866:9 S877:13 S877:9 S877:13 system Formation 570:9 S866:9 S877:13 S877:13 S877:13 S877:13 S877:13 S877:13 S871:16 S877:13 S871:14 Hydrocarbons S870:13 5871:8 S904:11 Hydrogen S966:11,11 S906:13,19 S904:13 S904:13 S904:15 S82:12 S92:22 S98:11,14 hold 5861:18 S809:4,11 14 5935:14 Hydrogen S940:15 S830:126 S830:126 S830:126 S810:25 S977:124 5792:20 hold 5861:18 S806:17	5938:21 5943:8	24		hundred-metre	
Ingrist 3803.12 bours 59510 Houston's 5952:8 hours 59610 5866:9 hydraulic 5835:16 5830:12 highlighted 5782:10 5786:26 Howard 5835:12 5866:9 hydraulic 5875:9,15 5835:14 5787:8 5786:22 Frage Howard 5835:16 5820:12 5834:18 5912:7 5912:1 5792:25 5801:12 5801:12 5807:13 5870:13 5906:13 10 5906:13 10 5906:13 10 5906:13 10 5906:13 10 5906:13 10 5866:4 5907:13 10 5866:12 5866:4 5801:12 5800:12 5800:13 5907:13 11 14 5935:14 10 10 5801:12 5801:15 5801:15 5801:12 5801:15 5801:12 5800:13 5	5953:6 5960:22	hour 5807:5		5942:8	
5952:8 hours 5968:8 Houston's 5866:9 hydraulic 5866:9 5827:13 5835:16 5850:12 5875:9,15 highlighted 5835:14 5782:10 5786:26 Howard 5856:26 hydraulic 5867:13 5871:8 5827:13 highly 5820:2 5787:8 5788:4, 5912:17 5913:22 5791:21 5792:25 5836:12 5897:11 hydrocarbons 5870:13 5871:8 5806:3,9,20 historica 5831:19, 21 5832:1,23 5794:23 5795:25 5905:25 5795:22 5905:13,19 hydrogen 5846:4 5897:19 5846:12 5824:12 5846:12 5824:12 5968:9,11 historical 5790:1 5805:20 5806:1 5921:19 5922:2, 5905:13,19 HQS 5864:6 5978:22 5969:13,14 illustrated hold 5861:18 5809:4,11 14 5935:14 5821:6 images 5766:2 images 5766:2 home 5914:6 583:623,225 5800:25 5834:6 5815:13 5816:5 5820:20 5821:3 5915:21 5915:21 5915:21 homest 5891:20 5847:5,24 5822:3,12,25 5820:6 5835:2 5801:26 5875:13 5939:7 5949:10 5939:7 5949:10 5919:19 5844:23 5845:11 5822:2,0 5829:11, 13 5832:10 5828:2	highest 5805:12	5881:8 5968:17	5959:6,7 5963:20	Hurly 5859:17	•
highlighted 5835:14Houston 5770:9 5782:10 5786:26Joward 5856:26 HQ 5837:20,26Joward 5856:26 5870:13 5871:8 5870:13 5871:8 5870:13 5871:8 5904:18Jaylrocarbons 5870:13 5871:8 5891:10Jaylrocarbons 5870:13 5871:8 5891:10Jaylrocarbons 5870:13 5871:8 5866:8,9,20highly 5820:257787:8 5788:4, 22,25 5790:16HQ 5837:20,26 5883:10,17hydrocarbons 5870:13 5871:8 5904:18Jaylrocarbons 5870:13 5871:8 5904:18Jaylrocarbons 5870:13 5871:8 5904:18Jaylrocarbons 5870:13 5871:8 5906:21Jaylrocarbons 5866:8,9,20hire 5934:85797:2 5799:19, 24 5800:19HQS 5864:6 5806:12hydrogen 5905:13,19S846:12 5846:12S824:20 5929:4historical 5790:15805:20 5806:1 5801:12 5802:205905:13,19 5846:12S824:20 5929:4Julustratedhold 5861:185809:4,11 5810:13 5813:4, Holds 5936:185806:13 5813:4, 5826:15 5831:7huge 5952:4 5812:4,11 5814:3 5820:16 5835:2hydrology 5820:6 5835:2Jimpact 5767:25 5801:26 5875:13home 5914:65833:20 5834:6 5836:23,255812:4,11 5814:3 5820:20 5821:3hydrology 5820:20 5821:35771:24 5792:20 5821:31 5816:5homest 5891:205844:23 5845:11 5823:225822:3,12,255915:21J966:8hope 5806:20 5853:225850:7,17 5825:4 5826:21 5833:15 5854:105828:20 5829:11, 13 5832:10J5832:10 5838:6,13,24,26 5838:6,13,24,26Jimpacting 5947:14hope 5806:20 58773:1,205859:22 5860:15 5859:22 5860:155836:23,22 5823:12Jimpacting 5947:14 <td< th=""><th>U</th><th>hours 5968:8</th><th>Houston's</th><th>•</th><th></th></td<>	U	hours 5968:8	Houston's	•	
5835:14 5782:10 5786:26 Howard 5856:26 hydrocarbons 5891:16 highly 5820:2 5787:8 5788:4, 22,25 5790:16 5838:10,17 5903:13 5871:8 5866:8,9,20 5912:7 5913:22 5791:21 5792:25 5861:25 5897:11 hydrogen 5967:11,12 5968:9,11 historic 5831:19, 24 5800:19 5866:45 897:19 5866:45 897:19 5846:12 5969:13,14 historical 5790:1 5805:20 5806:1 5905:13,19 5846:12 hydrogeology illustrated 5863:16 5810:13 5813:4, huge 5952:4 hydrologic imagine 5875:13 images 5766:2 hode 586:10 17 5814:2 5821:9 5812:4,11 5814:3 5800:18 5812:4,11 5814:3 5830:18 impact 5767:25 home-range 584:12 5823:20 582:23,12,25 5820:20 5821:3 5820:26 5835:2 5801:26 5875:13 home-st 5891:20 584:13 582:15 582:24,22,25 582:23,12,25 5915:21 5939:7 5949:10 5939:7 5949:10 5919:19 584:12 582:15 582:24,23,25 582:24,22,25 5915:21 5939:7 5949:10 5877:12,4 5939:7 5949:10 5875:6 5938:7 hope 5806:20 5850	highlighted	Houston 5770:9	5866:9	•	
highly 5820:25787:8 5788:4, 22,25 5790:16HQ 5837:20,26inydrotanois 5870:13 5871:8Ignasiak 5856:22 5870:13 5871:85912:7 5913:225791:21 5792:255861:25 5897:115904:185967:11,12hire 5934:85797:2 5799:19, 24 5800:195866:4 5897:195968:9,115968:9,11historic 5831:19, 21 5832:1,235797:2 5799:19, 24 5800:19HQS 5864:6 5806:12 5807:19hydrogen 5866:4 5897:195969:13,14historical 5790:15805:20 5806:15921:19 5922:2, 1805:20 5806:1hydrographs5940:15hold 5861:185809:4,1114 5935:145821:6imagine 5876:225863:165810:13 5813:4, 17 5814:2 5821:9huge 5952:4hydrologicimagine 5875:13holds 5936:185826:15 5831:7 5833:20 5834:65812:4,11 5814:3 5820:20 5829:145820:20 5820:13 5820:20 5821:35820:20 5835:25800:26 5835:2home-range 5919:195844:23 5845:11 5842:23 5845:115822:3,12,255915:215939:7 5949:105919:195844:23 5845:11 5823:2,6,8,235823:2,6,8,235915:215966:8homest 5891:205857:7,17 5853:125823:2,6,8,235915:215966:8hope 5806:205855:2,105823:20 5829:11, 13 5832:105828:20 5829:11, 13 5832:105898:2 5918:245875:6 5938:7homest 5772:65855:2,105836:6,19, 22,24 5842:4, 5773:1,205859:22 5860:155840:22 5842:4, 5831:10 5954:75811:10 5954:7hormonal 5925:55859:20 5860:19, 22,24 5842:4, 5776:9,20,225869:19, 22,	8 8		Howard 5856:26		5891:16
5834:18 5911:17 22,25 5790:16 5838:10,17 5904:18 5866:8,9,20 5912:7 5913:22 5791:21 5792:25 5861:25 5897:11 5904:18 5966:8,9,11 historic 5831:19, 21 5832:1,23 5797:2 5799:19, 24 5800:19 24 5800:19 5866:4 5897:19 5846:12 5969:13,14 historical 5790:1 5805:20 5806:1 5905:13,19 5846:12 5846:12 5846:2 hold 5861:18 5809:4,11 5820:525 5905:13,19 5821:6 images 5766:2 holds 5936:18 5826:15 5831:7 5836:23,25 5812:13 5816:5 5820:20 582:4 hydrologic images 5766:2 home 5914:6 5833:20 5834:6 5836:23,25 5815:13 5816:5 5820:20 5821:3 5820:20 5821:3 5820:6 5835:2 5801:26 5875:13 home-range 5841:1 5842:19 5822:3,12,25 5820:20 5821:3 5915:21 5939:7 5949:10 5947:14 5853:22 5851:14 5852:15 5823:20 5829:11, 5828:20 5829:11, 5828:20 5829:11, 5875:6 5938:7 home 5912:0 5855:2,10 5823:20 582:21, 5823:20 582:21, 5825:4 5826:21 5915:21 5966:8 hope 5806:20 5857:17 58	highly 5820.2	5787:8 5788:4,	HQ 5837:20,26	•	U
5912:7 5913:225791:21 5792:255861:25 5897:11bydrogen5967:11,12hire 5934:85794:23 5795:255905:25hydrogen5968:9,11historic 5831:19, 21 5832:1,235797:2 5799:19, 5801:12 5802:20HQS 5864:6hydrogeology5968:9,11historical 5790:15805:20 5806:15921:19 5922:2, 5905:13,19hydrogeology5846:125824:20 5929:4hold 5861:185809:4,1114 5935:14hydrologicimages 5766:2images 5766:2bolds 5936:185826:15 5831:75812:4,11 5814:35830:18impact 5767:25holds 5936:185836:23,255815:13 5816:55820:6 5835:25820:16 5835:2home-range 5919:195844:23 5845:115822:3,12,255915:215939:7 5949:105919:195844:23 5845:115822:3,12,255915:215966:8homest 5891:205837:7,175823:2,0,8,23impact 5772:165855:2,10host 5772:65855:2,105838:6,13,24,265898:2 5918:245875:12host 5772:65859:22 5860:155844:225844:225953:125773:1,205863:9 5866:19, 5776:9,20,2221.666.99, 22,24 5844:121AAC 5856:15implement	0.	22,25 5790:16	5838:10,17		
hire5794:235795:255905:25Hydrogen5968:9,11historic5831:19, 21245800:195866:45797:25997:19215832:1,235801:125802:205905:13,195846:125824:20historical5790:15805:205806:15921:195922:2, 5805:14hydrographs5846:12hold5861:185809:4,11145935:14hydrologicimages5876:2hold586:10175814:25821:6images5877:13holds5936:185826:155831:75812:4,115814:35830:18home-sange5841:15820:205821:35820:205835:25919:195844:235823:2,6,8,235915:215939:75949:105919:195847:5,245822:3,12,255915:215915:215966:8homest5891:205851:145825:205823:2,6,8,235915:215966:8homest5891:205855:2,105828:205892:11, 135828:205898:25918:24homest57772:65855:2,105838:6,13,24,265898:25918:245811:105773:1,205859:225866:19, 22,245844:125838:6,155811:105934:7implement5863:95866:19, 22,24524.225856:155811:105934:7implement583:95866:19, 22,24524.245856:155811:105934:7		5791:21 5792:25	5861:25 5897:11		
historic 5831:19, 21 5832:1,235797:2 5799:19, 24 5800:19HQS 5864:6 5866:4 5897:19hydrogeology 5846:125809:13,14historical 5790:15805:20 5806:15905:13,195846:12hydrogeology5846:12hold 5861:185809:4,1114 5935:14hydrogeology5846:12images 5766:2hold 5861:165810:13 5813:4, 5826:15 5831:714 5935:14hydrologicimages 5766:2holds 5936:185826:15 5831:7 5833:20 5834:65812:4,11 5814:3 5815:13 5816:5hydrology5771:24 5792:20home 5914:65836:23,25 5836:23,255815:13 5816:5 5820:20 5821:3bypothetical 5993:7 5949:105939:7 5949:10fonest 5891:205847:5,24 5853:225823:2,6,8,23 5851:14 5852:155823:2,6,8,23 5823:2,6,8,23Iimaget 5792:10 5823:2,6,8,23homest 5891:205847:5,24 5853:125823:2,0 5829:11, 5853:15 5854:105823:2,0 5829:11, 5823:2,6,8,23Iimaget 5792:10 5875:6 5938:7host 5772:65859:22 5860:15 5863:9 5866:19, 5773:1,205859:22 5860:15 5863:9 5866:19, 5776:9,20,225863:9 5866:19, 22,24 5844:125875:13		5794:23 5795:25	5905:25	• •	
21 5832:1,2324 5800:195866:4 5897:1919 for egoing y18 for egoing y <th< td=""><td></td><td>5797:2 5799:19,</td><td>HQS 5864:6</td><td></td><td></td></th<>		5797:2 5799:19,	HQS 5864:6		
historical 5790:15801:12 5802:205905:13,195003125824:20 3929.4hold 5861:185809:4,1114 5935:14hydrographs5940:15s863:165810:13 5813:4,14 5935:14hydrologicimages 5766:2holds 5936:185826:15 5831:75812:4,11 5814:35830:18impact 5767:25home 5914:65836:23,255836:23,255815:13 5816:55820:20 5821:3home-range5844:23 5845:115822:3,12,255820:20 5821:35915:215919:195844:23 5845:115822:3,12,255915:215939:7 5949:10homest 5891:205857:14 5852:155823:2,6,8,235915:215939:7 5949:10homest 5891:205857:14 5852:155823:2,0 5829:11,i.e. 5826:24impacts 5792:10host 5772:65855:2,105838:6,13,24,265953:12implementformonal 5925:55863:9 5866:19,5840:22 5842:4,22,24 5844:12IAAC 5856:15implement			5866:4 5897:19	• • • • • •	
hold 5861:185809:4,1114 5935:14images 5766:25863:165810:13 5813:4,huge 5952:4hydrologicHolden 5856:1017 5814:2 5821:9human 5770:155830:18home 5914:65833:20 5834:65815:13 5816:55820:6 5835:2home-range5841:1 5842:195820:20 5821:3hydrology5919:195844:23 5845:115822:3,12,255915:21honest 5891:205847:5,245823:2,6,8,235915:21home 5925:55850:7,175823:2,6,8,235826:245853:225851:14 5852:155822:3,12,255915:21hormonal 5925:55853:15 5854:1013 5832:105898:2 5918:24host 5772:65859:22 5860:155838:6,13,24,265953:1257773:1,205859:22 5860:155840:22 5842:4,5838:6,13,24,2657776:9,20,225863:9 5866:19,22,24 5844:12IAAC 5856:15			5905:13,19		
5863:16 5810:13 5813:4, 17 5814:2 5821:9 huge 5952:4 hydrologic images 5760.2 holden 5856:10 17 5814:2 5821:9 huge 5952:4 huge 5952:4 images 5767:25 home 5914:6 5836:23,25 5815:13 5816:5 5820:20 5821:3 5820:20 5821:3 5820:20 5835:2 5801:26 5875:13 home-range 5841:1 5842:19 5820:20 5821:3 5820:20 5821:3 5915:21 5939:7 5949:10 5919:19 5844:23 5845:11 5823:2,6,8,23 5823:2,6,8,23 5915:21 5966:8 hope 5806:20 5850:7,17 5825:4 5826:21 5828:20 5829:11, 5828:20 5829:11, 5875:6 5938:7 host 5772:6 5855:2,10 5838:6,13,24,26 5838:6,13,24,26 5953:12 5811:10 5954:7 host 5772:6 5859:22 5860:15 5840:22 5842:4, 5840:22 5842:4, 5953:12 5811:10 5954:7 5776:9,20,22 5863:9 5866:19, 22,24 5844:12 1A ACC 5856:15 5811:10 5954:7			5921:19 5922:2,		5940:15
Holden 5856:1017 5814:2 5821:9huge 5952:4In guile 5830:18imagine 5875:13holds 5936:1817 5814:2 5821:95826:15 5831:75812:4,11 5814:35830:18impact 5767:25home 5914:65836:23,255836:23,255815:13 5816:55820:6 5835:25801:26 5875:13home-range5841:1 5842:195820:20 5821:35915:215939:7 5949:105919:195844:23 5845:115822:3,12,255915:215966:8honest 5891:205847:5,245823:2,68,235915:215966:8hope 5806:205850:7,175825:4 5826:215823:2,68,235947:145853:225851:14 5852:155828:20 5829:11,i.e. 5826:245947:14host 5772:65855:2,105838:6,13,24,265953:125875:6 5938:75773:1,205859:22 5860:155840:22 5842:4,5840:22 5842:4,5953:125811:10 5954:75776:9,20,225863:9 5866:19,21,596.21 4022,24 5844:12IAAC 5856:15implementation			14 5935:14		images 5766:2
Holden 5856:1017 5814:2 5821:9burnam 5770:155830:18impact 5767:25holds 5936:185826:15 5831:75826:15 5831:75812:4,11 5814:35830:18impact 5767:25home 5914:65836:23,255836:23,255815:13 5816:55820:6 5835:25801:26 5875:13home-range5841:1 5842:195820:20 5821:35815:13 5816:55939:7 5949:105919:195844:23 5845:115822:3,12,255915:215966:8honest 5891:205847:5,245823:2,6,8,235915:215966:8hope 5806:205850:7,175825:4 5826:215823:2,6,8,235947:145853:225851:14 5852:155825:4 5826:215828:20 5829:11,13 5832:105988:2 5918:24host 5772:65855:2,105859:22 5860:155840:22 5842:4,5953:125811:10 5954:75776:9,20,225863:9 5866:19,22,24 5844:12IAAC 5856:15implement			huge 5952:4	• 0	imagine 5875:13
holds5936:185826:15 5831:7Internation (11 5814:3)hydrology5771:24 5792:20home 5914:65833:20 5834:65812:4,11 5814:35812:4,11 5814:35820:6 5835:25801:26 5875:13home-range5841:1 5842:195820:20 5821:35820:20 5821:35919:195844:23 5845:115822:3,12,255915:215939:7 5949:10honest5891:205847:5,245823:2,6,8,235823:2,6,8,235915:215966:8hope5806:205850:7,175825:4 5826:215828:20 5829:11,5828:20 5829:11,5947:14hormonal5925:55853:15 5854:105828:20 5829:11,13 5832:105898:2 5918:245875:6 5938:7host5772:65859:22 5860:155840:22 5842:4,5838:6,13,24,265953:12Implement5773:1,205863:9 5866:19,22,24 5844:1214 ACC 5856:15implement	Holden 5856:10		0	5830:18	impact 5767:25
home 5914:65833:20 5834:650111,91001105820:6 5835:25801:26 5875:13home-range 5919:195841:1 5842:195820:20 5821:35939:7 5949:10honest 5891:205847:5,245822:3,12,255915:21home 5806:205850:7,175824:23,25I5853:225851:14 5852:155825:4 5826:215826:24hormonal 5925:55853:15 5854:105838:6,13,24,26I5773:1,205863:9 5866:19,5863:9 5866:19,5838:6,13,24,265898:2 5918:245776:9,20,225863:9 5866:19,22,24 5844:12IAAC 5856:15implement ation	holds 5936:18			hydrology	-
home-range 5919:195836:23,25 5841:15842:19 5844:235845:115820:205821:3 5822:3,12,25hypothetical 5915:215939:75949:10 5966:8honest5891:205844:235845:11 5847:5,245822:3,12,25 5823:2,6,8,23hypothetical 5915:215936:8hope5806:20 5853:225850:7,17 5851:145852:155824:23,25 5853:155854:10Iimpacting 5947:14hormonal5925:55853:155854:10 5855:2,105828:205829:11, 135832:10i.e.5826:24 5898:25918:24impactshost5772:6 5863:95866:19, 5776:9,20,225863:95866:19, 21,2955840:225842:4, 22,245844:12IAAC 5856:15implement 5811:105954:7	home 5914:6			5820:6 5835:2	5801:26 5875:13
5919:19 5841:15842:19 5822:3,12,25 5915:21 5966:8 honest 5891:20 5847:5,24 5823:2,6,8,23 5915:21 5966:8 hope 5806:20 5850:7,17 5824:23,25 5824:23,25 5947:14 5853:22 5851:14 5852:15 5825:4 5826:21 5828:20 5829:11, i.e. 5826:24 5875:6 5938:7 hormonal 5925:5 5853:15 5854:10 13 5832:10 5898:2 5918:24 5898:2 5918:24 5811:10 5954:7 host 5772:6 5863:9 5866:19, 5840:22 5842:4, 5953:12 111:10 5954:7 111:10 5954:7 implementation 5925:25 5863:9 5866:19, 22,24 5844:12 12 14AC 5856:15 5811:10 5954:7	home-range			hypothetical	5939:7 5949:10
honest5844:235843:215823:2,6,8,23impactinghope5806:205850:7,175823:2,6,8,235824:23,255947:145853:225851:145852:155825:45826:215826:21hormonal5925:55853:155854:105828:205829:11,i.e.host5772:65855:2,105838:6,13,24,265898:25918:245773:1,205863:95866:19,5840:225840:225842:4,5776:9,20,2221.50 (21.20)21.50 (21.20)22,245844:12implement	U			• 1	5966:8
Indust 3007120 5847:5,24 5824:23,25 I 5947:14 hope 5806:20 5850:7,17 5824:23,25 I 5947:14 5853:22 5851:14 5852:15 5825:4 5826:21 I 5947:14 hormonal 5925:5 5853:15 5854:10 5828:20 5829:11, I.e. 5826:24 5898:2 5918:24 host 5772:6 5859:22 5860:15 5838:6,13,24,26 5953:12 Implement 5773:1,20 5863:9 5866:19, 22,24 5844:12 IAAC 5856:15 Implement					impacting
hope 5050(1,1) 5805(1,1) 5805(1,1) 5825(2) impacts 5792(1) 5853:22 5851:14 5852(1) 5825(2) 5828(2) 5828(2) 5828(2) 587(2) <td< th=""><th></th><th>· · · · · · · · · · · · · · · · · · ·</th><th></th><th>T</th><th></th></td<>		· · · · · · · · · · · · · · · · · · ·		T	
bormonal 5925:55853:15 5854:105828:20 5829:11, 13 5832:10i.e. 5826:245875:6 5938:7host 5772:65855:2,105859:22 5860:155838:6,13,24,265953:125811:10 5954:75773:1,205863:9 5866:19, 21 5960 21 2022,24 5844:1222,24 5844:12IAAC 5856:15implementation	-		5825:4 5826:21	· · · · · · · · · · · · · · · · · · ·	
hormonal5925:55855:135834:10135832:105898:25918:24host5772:65855:2,105838:6,13,24,265898:25918:24implement5773:1,205863:95866:19,5840:225842:4,5953:125811:105776:9,20,225866:19,21,506021,2022,245844:12implement			5828:20 5829:11,	i.e. 5826:24	-
host 5772:6 5853.2,10 5838:6,13,24,26 5953:12 5811:10 5954:7 5773:1,20 5863:9 5866:19, 5840:22 5842:4, 22,24 5844:12 IAAC 5856:15 implementation			13 5832:10		
5773:1,20 5833.22 5800.15 5840:22 5842:4, IAAC 5856:15 implementation 5776:9,20,22 21 5969 21 22 22,24 5844:12 IAAC 5856:15 implementation			5838:6,13,24,26		
5776:9,20,22 22,24 5844:12 implementation					
5///:5,16 5/90:24 5954:0			22,24 5844:12		-
	5///:5,16	21 0000.21,22			5770.24 3734.0

	21		
including 5768:6	12 5835:22	inform 5833:17	insect 5924:8
5770:14 5800:4	5837:16 5840:26	5850:14 5855:8	insectivorous
5805:23 5816:4	5864:12 5867:5	information	5912:16
5832:11 5837:21	5897:11,20	5771:26 5774:16,	insects 5779:4,10
5854:15 5860:1	5905:1	18 5775:9 5786:3	5923:12 5932:5
5865:8 5869:15	index 5775:7,8	5789:14 5798:15	insignificant
5870:12 5871:7	Indian 5857:4	5819:11 5820:5	5805:5 5958:14
5880:7,18 5888:7		5836:10 5853:2	5964:13
5890:20 5897:10,	0	5899:15,22	
25 5898:9 5907:1		5900:2,3 5925:1,	installed 5890:22
		10,18,19,22	instance 5919:3
		5927:7 5945:6	5955:13
		5948:7 5949:18	instances 5957:6
5942:12		5955:3	integrated
inclusion		informed	5814:23 5816:24
5816:16 5890:2		5841:10	5890:24
incoming	U	infrastructure	intend 5785:3
5834:12			5894:8
incorporate			intends 5777:26
-		0	5968:20
	5947:9 5949:24		intensity
	Indigenous-		•
	based 5892:21		5794:17,18
	Indigenous-led		intent 5788:23
-	5945:18 5948:7		5833:8 5835:14
	indirect 5795.6		5875:14 5877:17
			5888:21,24
			intention
			5794:24
			interacting
			5962:9
<i>,</i>			interactions
		•	5940:2 5944:23
		5897:21	interchangeable
		initial 5778:12	5808:21
	·	5842:12 5960:10	interchangeably
		initially 5911:26	5808:9
		initiation 5799:5	interest 5766:22
	,		5812:20 5833:11
	5950:6		interested
	industrial	-	5820:25 5832:23
5864:5 5896:21	5934:26		5843:23 5875:23
increasing	inflows 5831:3		5952:5
5891:6		-	interesting
incremental		5820:3	5776:8 5896:18
			5964:14
5814:11 5825:10,	18,21		
	5770:14 5800:4 5805:23 5816:4 5832:11 5837:21 5854:15 5860:1 5865:8 5869:15 5870:12 5871:7 5880:7,18 5888:7 5890:20 5897:10, 25 5898:9 5907:1 5910:21 5922:23 5925:4,26 5939:20,23 5942:12 inclusion 5816:16 5890:2 incorporate 5791:16 5796:23 5821:7 5864:18 5890:8 5947:18 5949:19 incorporated 5816:7 5833:18 5864:19 5954:9 5965:13 incorporating 5922:3 increase 5828:7 5864:3,24 5865:5,26 5866:3 5867:15 5876:5 5892:26 5894:9 5896:22 5899:2 5914:18 5915:7, 16 5916:1,2 increased 5821:18 5825:13 5925:5,6,12 increases 5850:3 5864:5 5896:21 increasing 5891:6	5770:14 5800:4 5837:16 5840:26 5805:23 5816:4 5864:12 5867:5 5832:11 5837:21 5897:11,20 58585:8 5869:15 5905:1 5865:8 5869:15 index 5775:7,8 5870:12 5871:7 index 5775:7,8 5800:20 5897:10, 25 5898:9 5907:1 5910:21 5922:23 5902:15 5904:6 5942:12 indication inclusion 5816:16 5890:2 5834:12 5892:16,22 incorporate 5892:16,22 5791:16 5796:23 5892:16,22 5890:8 5947:18 5892:16,22 5890:8 5947:18 5892:16,22 5890:8 5947:18 5946:15,21 5949:19 based 5892:21 incorporated 5945:13 5864:19 5954:9 5945:18 5948:7 5864:19 5954:9 5945:18 5948:7 5864:3,24 5826:24 5846:6 5867:15 5876:5 5897:12 05961:8 increase 5828:7 5897:12 05961:8 5864:3,24 5826:24 5846:6 5867:15 5876:5 5897:2 5901:24 5892:26 5899:2 5919:20 5821:18 5825:13 5932:17,19 <td>5770:14 5800:4 5837:16 5840:26 5850:14 585:8 5805:23 5816:4 5864:12 5867:5 5870:12 5871:7 5865:12 5871:7 indian 5857:4 5836:10 5853:2 5800:7,18 5888:7 indicating 5830:11 5837:21 5800:7,18 5888:7 indicating 5836:10 5853:2 5890:20 5897:10, 25 5898:9 5907:11 5816:10 5853:2 590:21 5922:23 5900:15 5904:6 5942:12 5942:12 indicative 5897:13,23 5942:12 indigenous 5897:13,23 incorporate 5997:13,23 5946:15,21 5791:16 5796:23 5947:19 5949:24 infrastructure 5791:16 5796:23 5947:19 5949:24 infagenous-led 5891:16 indigenous-led 5903:12 5913:7 5921:2 incorporated 5945:18 5948:7 indiation 588:3 5912:22 5922:3 5871:20 5961:8 10 5897:4 5989:3597:4 5865:5,26 5866:3 5870:11 5871:6 5883:2 5880:17 inhalation 5865:5,26 5866:3 5870:11 5871:6 5883:2 5880:17 inherent 5835:20 5864:5,24 5894:2 5991:20 intial 5778:12 583:218</td>	5770:14 5800:4 5837:16 5840:26 5850:14 585:8 5805:23 5816:4 5864:12 5867:5 5870:12 5871:7 5865:12 5871:7 indian 5857:4 5836:10 5853:2 5800:7,18 5888:7 indicating 5830:11 5837:21 5800:7,18 5888:7 indicating 5836:10 5853:2 5890:20 5897:10, 25 5898:9 5907:11 5816:10 5853:2 590:21 5922:23 5900:15 5904:6 5942:12 5942:12 indicative 5897:13,23 5942:12 indigenous 5897:13,23 incorporate 5997:13,23 5946:15,21 5791:16 5796:23 5947:19 5949:24 infrastructure 5791:16 5796:23 5947:19 5949:24 infagenous-led 5891:16 indigenous-led 5903:12 5913:7 5921:2 incorporated 5945:18 5948:7 indiation 588:3 5912:22 5922:3 5871:20 5961:8 10 5897:4 5989:3597:4 5865:5,26 5866:3 5870:11 5871:6 5883:2 5880:17 inhalation 5865:5,26 5866:3 5870:11 5871:6 5883:2 5880:17 inherent 5835:20 5864:5,24 5894:2 5991:20 intial 5778:12 583:218

interfering 5904:2	irrespective 5904:23	journey 5813:6,	kill 5778:13	
		13,21	5779:11	
interim 5768:18	issue 5766:17 5789:1 5796:15	Judd 5858:12	killed 5784:19	Lacasse 5856:9
intermediate	5817:11 5823:11	judgment	kilometres	lack 5801:10
5813:15 5890:18	5827:19 5828:19	5960:23	5776:7 5779:15,	5825:20 5873:6,7
interpret	5836:26 5860:8	July 5775:4	17 5781:1 5949:25 5961:2	
5808:19 5828:20	5863:23 5864:5	jump 5780:1		lacking 5926:7
interpretation	5874:10 5875:11	5911:11 5915:17	kilotons 5793:23	lacquer 5876:21
5907:9	5878:24 5932:18	junction 5775:3	5795:11,14,21	lake 5809:1
interrupt 5788:6	5933:26 5952:4	June 5774:22	kind 5772:19	5815:18 5816:1
interrupting	5965:24	justification	5774:21 5778:12	5818:1,2 5825:15
5770:3	issues 5817:15	5916:14	5813:2,5 5816:9	5831:11,13,17,
intervene	5824:2 5825:1,16	justified 5870:7	5822:10,13	21,26 5832:1,5,7
5911:13	5875:4,10	justify 5835:22	5823:18 5827:18, 24 5828:9	11,22,23
inundation	5877:22 5880:7	juxtaposing	5833:23 5834:4	5833:14,15,17,
5964:17	5898:8 5899:13	5788:8	5835:3 5836:16	22,23,26 5834:3, 9,20 5835:3,7,18
inversions	5913:2,6 5915:20	5766.6	5842:8 5849:13	21 5837:11,17
5898:12	5949:7		5860:8,11 5861:8	5841:7,15,16
invertebrate	item 5766:18	K	5862:23 5863:24	5842:2,8,13
5919:6,11	5769:4 5786:5,6	Kansas 5770:11	5864:4 5866:26	5861:2,5,8,16,21
5920:15	items 5768:22	5771:8,10,20	5867:2,23	5862:4,14,17,22
invertebrates		5772:14,16	5870:15 5873:23	5863:1 5865:12
5779:10 5919:3,	J	5773:5 5774:1	5874:4,17	5879:15 5881:7,
20		5775:10 5776:14,	5875:18 5877:22,	10,11,17,21,22,
investigate	Janet 5770:10	15,23 5777:8,18,	24 5882:17	23,25 5882:1
5947:17	5779:26 5783:21	20 5781:8,11	5889:26 5907:17	5886:18 5887:3,
investigation	5859:23	5783:11 5784:9	5914:14 5921:16	9,11,16,18,22
5891:15	January	5785:7 5787:23,	5942:20,21	5888:1,8,11,13,
invisible 5896:3	5768:11,12	25 5808:11,14	5945:10 5949:9	20,21,26 5889:4
invite 5882:19	5827:17	5859:24 5866:13	5954:17 5963:24 5968:3	5905:10 5912:17
5959:19	Janusz 5800:21	5930:3,5,12		5917:25 5918:25
invited 5892:16	5858:14 5957:26	5931:1 5943:14,	kinds 5874:12	5919:8 5924:5
	Jasper 5784:14,	15,19	5902:1 5937:14 5950:12	5932:8,13 5936:6,10
involve 5806:12	17	Kapel 5856:10		
involved 5767:14	Jensen 5830:23	keeping 5944:17	Kirk 5770:19	lakes 5809:9 5831:19
5790:7 5818:8	5834:22	Ken 5859:11	knew 5771:3	
5826:25 5846:12	Jillian 5898:12	key 5861:1	knowing 5832:23	Lambrecht
5931:6	Jim 5858:16	5882:24 5887:2	knowledge	5768:25 5769:1, 3,18 5770:3,5,7,
IPCC 5802:13,	John 5770:11	kicker 5962:20	5894:10 5953:9	19,20 5772:6,12
17,22 5803:19,26 5804:12 5811:1	5771:8 5780:26	kidney 5898:4	Ktunaxa 5784:3	5773:1,5,19,21
	5859:24 5930:4	5905:12,18	5856:25	5774:19 5776:9,
iron 5843:15	Joint 5770:17	5910:4		13,20,23 5777:5,
5848:12 5849:5	5786:2 5811:24	kidneys 5949:8		8,16,18,24
irrelevant 5780:20	5856:12			5779:24,26

		25		
5780:5 5781:10,	largely 5956:1	5964:2	5835:23 5837:9,	23 5923:11,16
21,23 5782:11	larger 5787:6	legend 5776:22,	17 5847:10	5931:11,14,16,26
5783:11,25	5845:8 5935:19	25 5777:1	5853:5 5861:15	5932:16,21
5784:1 5785:8,	5957:14	legislation	5864:13 5867:5	5933:4,14 5937:1
10,15,17,26	largest 5798:10	5793:13	5883:2,13	5942:4
5786:8,18,20	e		5897:12,15,20	lists 5911:19
5787:1 5789:12,	larvae 5925:15	length 5960:25	5905:1 5938:2	literature
21 5790:5,11,19	larval 5923:12	lens 5937:5,6	5952:7	5870:21 5874:2,
5791:6,10,19	5925:5	lentic 5918:24	light 5770:14	12 5875:19
5792:1,18,23	late 5774:21,22	level 5784:21	5860:1 5901:22,	5920:3 5925:1,
5793:3 5794:9,12	5775:4 5788:3,19	5810:26 5812:14	26 5925:22	10,25 5926:8
5795:22,26	5874:16 5949:3	5819:13 5820:26	5938:16	lithium 5862:10
5796:5,26 5798:6	5967:20	5828:24 5829:22	likelihood	
5799:20,22	latest 5866:24	5836:16 5849:23	5879:7 5898:26	litre 5815:1
5800:14,17	laundry 5849:1	5854:12 5874:23	5917:23	5820:18 5824:16, 20 5831:24
5801:5,7,12,24	Lawson 5898:12,	5875:13 5880:5,	limber 5772:25	5832:15,16,17,
5802:4,21	16	22 5881:9,20	5773:11 5776:12	18,19 5844:17,
5803:2,20,22,26	layered 5932:22	5883:21 5884:22	5781:26	20,22 5845:15,
5804:14,19	leach 5834:21	5885:3,26 5886:7	limit 5782:5	20,22 5845.15, 20,23 5915:9
5805:14,16	5835:8 5887:19	5900:14 5901:3,6	5787:2 5886:4	5929:12 5963:10,
5806:5,23		5903:8 5909:16	5918:6	12
5807:5,13,23,25	leaching	5913:3,10 5914:9	limitations	litres 5959:13
5808:1,2	5834:14,19 5881:12 5887:2,	5931:14 5932:16	5926:5	5960:13 5963:13
5809:12,16,23 5810:1,11	10 5888:18	5938:8 5941:4		
5811:8,26 5813:4		levels 5823:4	limited 5770:18 5812:9 5856:22	live 5765:24 5897:23
5856:12 5952:18	lead 5784:26	5849:13 5850:12	5858:2 5860:5	
	5817:24 5826:2 5837:22 5838:18	5854:4 5875:2	5888:8 5898:17,	liver 5898:4
land 5775:18 5892:9 5938:19	5840:5,8,11,15	5880:19 5883:22	18 5932:17	5905:12,18
	5868:7,10	5884:3,4,8,18,23,	limits 5872:25	5910:4 5949:8
landforms	5898:23	26 5885:10 5886:11 5892:4	5879:16 5884:1	lives 5920:15
5784:5	leadership	5893:2 5895:17	5885:24 5886:9	living 5946:19
landing 5938:19	5948:1	5900:11,13	5892:5 5893:8	Livingstone
Landowners		5903:4 5913:17	5929:15	5858:8 5872:22
5858:8 5872:22	leads 5906:16	5926:17,21	Lindsey 5770:11	5968:16
5968:17	lean 5945:19	5933:3 5938:20	5821:12 5859:24	load 5816:15
lands 5784:9	learn 5887:4	lies 5937:8	5931:20	loaded 5813:8,9
5851:16	learnings	life 5795:1	linear 5836:4	loading 5829:24
landscape	5841:10	5796:17 5799:1,		5966:23
5773:25 5780:19,	lease 5890:14	15 5831:4 5882:6	lines 5792:7 5870:15 5900:22	loadout 5869:26
22 5781:4	leave 5771:18	5920:11 5934:11		5890:14
5805:19 5807:3	5820:23 5866:15	life-history	link 5803:16	local 5774:14
large 5768:6	5962:19	5779:5	lion's 5956:9	5775:21 5779:18
5800:11 5877:14	left 5778:13		listed 5786:4	5843:19 5897:17
5881:3 5895:24	5790:6 5867:23	lifestyle 5949:15	5800:4 5913:17,	5922:26 5923:13
5914:6 5917:2	5889:17 5961:22	lifetime 5790:2	18 5919:21	5934:18
5926:20 5957:2	5962:6 5963:18	5814:12 5825:12	5920:5 5922:22,	
	I	1	I	I

		24		
locate 5796:18	loop 5863:21	lowest 5800:8,26	5866:26 5883:20 5886:11 5890:2	5826:2 5837:22 5838:18 5843:16
located 5851:16	lose 5900:8	LSA 5897:15	5907:5 5914:16	5844:1,9
location 5826:26	loss 5790:12	lunch 5855:12		,
5844:19 5847:1	5791:12,16,22	5860:18 5863:23	5921:7 5941:21	5845:12,13,18,21
5869:11 5883:12	5792:8,13,14	5881:8 5907:25	5947:11 5949:1	5846:7,17
5887:23 5895:12	5807:6 5939:23	lung 5883:18,19	5959:12 5964:6,7	5847:20 5848:9,
5901:23 5933:1	5942:6,10,11,17,	5898:7 5903:26	5965:23	11,23 5850:6
locations 5837:2	21 5943:6,10,18		makes 5776:8	5898:24
5847:10 5848:9,	losses 5773:12		5828:1 5837:24	manifest 5874:7
17 5869:2,8	5789:23	M	5917:2	5964:23
5879:2 5890:22	lost 5768:4		makeup 5959:3,	manner 5766:26
5897:21,24,25		M-HM 5827:26	24	map 5776:11
	5790:15,21	5828:10 5830:22	making 5792:12	5777:6 5779:25
logical 5817:2	lot 5767:20	Madam 5911:9	-	
logically 5816:26	5818:14 5835:13	made 5769:8	mallard 5924:5,	maps 5776:16
long 5782:9	5837:3 5846:14	5789:22 5796:6,	6,7 5931:10	March-ish
5813:26 5852:19	5848:14,18	14 5810:2	5936:5,7,8	5774:21
5854:9 5880:24	5849:9 5873:11	5822:23 5833:6,7	mammalian	March/april
5882:10 5883:12	5887:5 5900:9,11	5834:16 5882:3	5923:9 5945:8	5788:20
5886:1,6 5899:5	5903:19,21	5912:21 5913:20	mammals	margin 5905:14,
5905:8 5913:14	5904:6 5906:8	5921:2,3,13	5779:11 5936:2	21
5934:4,25	5907:11 5917:7	magic 5783:20	manage 5801:13	
5941:1,6 5967:10	5932:5 5945:5	U	5842:3 5886:25	marginal
5968:9	5947:8 5955:2	magnitude	5889:17 5955:5	5822:23 5831:5
long-term	5956:21,23	5792:7 5839:9,18		margins 5879:22
5780:23 5806:18	5961:3 5964:1,5	5849:20 5864:6	managed	5880:5
5811:6 5847:12,	lotic 5916:20	5866:3 5885:4	5961:10	marine 5800:13,
18 5852:19	5918:25 5919:1,9	5907:16 5921:5	management	25 5801:2,9
5853:18 5883:10,	loud 5949:5	5929:10 5932:8	5791:11,15	Martin 5866:8
11 5889:19,22		main 5904:5	5796:22 5798:4	material 5767:25
5929:23 5930:10	love 5785:1	maintain 5798:4	5800:3 5801:11	5793:18 5809:6,
	low 5810:21	5813:21 5833:26	5802:6 5803:14	8,9 5838:25
long-toed	5838:2 5843:5	5934:6,19	5806:18 5807:8	
5922:24	5849:5 5871:10	maintained	5811:16 5841:5	materials
long-trap 5930:9	5879:7 5898:18	5797:6	5879:26 5886:17,	5808:19 5811:5
Longacre	5903:8 5913:11		24 5889:16	math 5910:10
5859:19 5970:3,	5915:4 5932:7	maintaining	5890:7 5893:5	5968:3
14	5943:5 5945:4	5854:8	5934:7 5937:18	matter 5769:15
longer 5854:9	low-tech 5895:21	maintenance	5947:20 5951:14	5812:3 5818:19,
longwinded	lower 5775:22	5834:4	5952:2	21 5825:7
5779:22	5784:17 5793:1,	majority 5811:2	manager	5869:15 5871:4
	21 5824:3,18	5812:16	5868:18	5898:14 5902:18
looked 5815:16	5848:20 5861:10	make 5766:7	managing	5922:13 5929:18
5868:6 5870:9	5862:20 5880:11	5767:1 5768:1	5791:16 5805:25	matters 5766:11
5871:11,25	5897:22 5912:26	5769:12 5772:25	5961:13	5768:23 5782:7
5872:13 5875:20	5935:21 5953:6	5777:19 5791:12		Matthews
5883:9 5925:22	5960:22	5792:3 5812:25	manganese	5812:6 5856:7
5959:15	5700.22	5817:12 5824:10	5817:24 5824:6	5012.0 5050.7
				1

		25		
5946:9,11,13	24 5842:15,17	methane 5802:2,	Milligan 5858:20	minimizing
5949:23	5850:14,23	8,12,16,19,25	milligram	5790:2
mature 5783:5	5851:11 5855:9	5803:7,16,17,24	5929:12	mining 5770:13
matures 5799:17	5869:22,24	5809:17,20	milligrams	5798:7,9,14,26
	5875:1 5876:26	5810:4,7,10,19,	5832:15,17,18,19	5804:23 5805:2
maximum 5820:16 5824:18	5877:11 5892:13	21,26 5811:11	5844:17,20,22	5812:8 5856:22
5820:16 5824:18 5901:18 5911:22	5938:13	5952:19	5845:14,20,22	5860:4 5882:12
	measuring	method 5895:21	5963:10,12	5887:5 5956:13
mayfly 5923:25	5896:6 5948:23	methodologies	million 5959:13	minor 5769:4
Mccoy 5770:10	mechanics	5883:6,25	5960:13 5963:13	5939:17
5859:23 5954:11,	5956:26	methods		minus 5836:14
16,20 5955:6	mechanism	5895:16,20	mind 5874:24	5837:3,5
5957:17 5959:8,	5903:21	5957:11	5899:8	
10 5960:16			mine 5777:3	minute 5766:1
Mcgillivray	mechanisms	methylmercury	5781:4 5783:10	5790:17,18
5857:18	5853:11,17	5837:22 5941:2	5789:2 5790:2	5795:19 5802:2
Mchugh 5857:9	5903:16,21	metres 5881:11	5799:7 5803:18	5819:4 5821:9
Mcintyre 5859:5	5904:7	5959:4,13 5960:7	5804:10,22	5833:3,20 5834
U	media 5908:20	metres' 5887:10	5805:12 5813:6	5841:1 5845:4
Mckay 5949:26	meet 5801:11	micrograms	5841:13 5843:2,4	5863:16 5872:2
MD 5857:14	5854:22	5815:1 5820:18	5850:26 5851:6,	5881:1 5908:10
meaning 5782:4	mental 5874:6	5824:16,20	12,18 5852:9	5915:18 5936:2
meaningful	5947:7 5949:6	5831:24 5832:14	5869:3,19	minutes 5968:
5947:2 5949:20	mention 5784:2	5915:9 5929:14	5877:8,12,13,17	16,17
means 5797:6	5946:18	microns 5896:2	5879:6,8 5890:13	minutes'
5944:16	mentioned		5901:15 5911:25	5866:13
meant 5910:7	5775:11 5810:25	microphone 5766:2	5925:13 5931:22	misconstrued
5959:11	5811:14 5854:21		5954:13,21	5882:20
	5887:9 5937:10	mid-depth	5955:19 5956:22	mislabelling
measurable 5899:2	5941:16 5947:20	5843:17	5957:1,8,13,15	5928:3
	5949:7 5952:17	middle 5786:6	5960:18	missed 5959:19
measure 5791:17		5949:26	mine-exposed	
5802:8,11 5954:5	merit 5896:9,15	migrate 5914:3	5923:25	mistaken
5955:3,5	message 5825:6	migration	mine-face	5862:24
measured	5910:15	5795:2	5952:19	Mitchell 5770:
5838:3,19	meta 5958:19	migratory	mineral 5809:8	5812:17 5815:
5844:21 5846:21	metabolic 5904:2	5770:14 5786:15	mines 5803:8	20 5823:1
5878:17 5880:1	metabolized	5860:1 5922:22	5874:19 5878:4,	5824:24 5825:2
5886:18 5908:19	5904:2	5924:23 5937:23	13,14 5955:11,14	5835:26 5836:2
5952:11	metals 5850:5	5938:1,5,7,14,23	5960:20 5961:1	25 5837:13
measurement	5867:26 5870:13	5939:1,22 5941:5	minimal 5809:6	5840:10,16
5802:19,24	5872:13 5904:17	Mike 5770:9	5879:10 5900:20	5846:5,25
5806:9 5873:7		5858:12 5859:22		5847:22,23,25
measurements	meteorological	5934:21	minimize 5800:9,	5848:6 5851:20
5804:7 5878:19	5901:18		12 5811:11	5852:13,14
measures 5805:7	meteorology	millennia	5853:24 5877:14	5853:8 5859:24
5833:18 5840:21,	5899:18	5778:22 5810:20	5887:21	5860:18,23,24
2022.10 2040.21,		1	1	5866:19 5867:2

		26		
5868:13,21	mixture 5870:4	5827:3,6 5828:14	16,17,21,23,25	5857:26 5878:14
5870:8 5871:18	5880:18	5841:23 5845:6	5891:17,18	5902:2 5939:21
5872:2,19	mixtures 5897:3	5879:12 5950:2	5892:7,9,17,19,	5960:20
5873:18 5875:18,		modified	21 5893:1,7,11	mountains
20 5881:2	mobile 5798:26	5955:14	5894:16 5895:2,	5785:2 5898:11
5882:8,19,22	model 5816:15		3,17,19 5923:23	
5884:25 5886:13	5818:26 5819:25,	modify 5917:19	5924:15,20	move 5781:15
5899:7 5900:6,7	26 5820:3	5918:20	5930:18 5934:11	5783:24 5789:10
5901:8 5902:8,20	5825:9,10	molecules	5937:17 5945:17,	5792:16 5819:6
5904:8 5911:3	5827:11,13	5963:17 5964:1,2	18,22 5948:8,26	5849:26 5866:11
5946:16,23	5829:7,11,19,23,	moment 5787:23	5954:14	5886:14 5887:22
5948:10	26 5830:8,9,13,	5788:6 5799:5	montane 5775:3,	5927:25 5928:20,
mitigate 5773:12	26 5833:2,7	5807:14 5809:22	11,13,14,23,25	21
5778:15 5811:11	5835:14 5838:14,	5811:19 5815:20,	5776:6 5781:13	movement
5850:15 5875:14	24 5839:23	24 5816:17	5784:7,8,20	5931:3
5877:11	5864:25 5868:5	5818:7,24 5819:1		moving 5837:14
	5884:20 5913:24	5822:21 5826:15	Monte 5831:1	5860:7 5920:2
mitigated 5898:17	5914:21 5917:13,	5830:14 5836:21	monthly 5815:7	multi 5803:12
	14,19 5920:19	5840:2 5846:25	5816:13 5819:22	multimedia
mitigating	modelled 5820:6,	5852:24 5853:8	5820:3,14,17	5818:12,26
5916:10	17 5823:25	5854:6 5855:2	5821:6 5823:25	5839:22,26
mitigation	5826:7 5864:16	5866:6 5870:24	5824:18 5829:4	5840:19 5868:4
5786:4 5787:12	5950:6,8	5899:8 5921:15,	months 5788:26	5884:20 5885:11
5789:18 5790:8	modelling	20 5926:14	Mooney 5770:11	5897:4 5898:2
5792:2,5,12	5815:8 5820:11	5927:14 5932:11	5812:17 5821:12,	5899:1 5902:14
5809:20 5810:9	5821:5,6 5822:9,	5935:1 5941:12	13 5823:11,14	5904:9 5906:4,9,
5833:18 5840:20,	10,11,18 5824:4,	5946:23 5953:23	5859:24 5866:19	22 5909:9
24 5842:9	26 5825:3	momentarily	5911:1 5913:14	5914:21 5917:13
5850:14,22	5826:5,13	5828:16	5916:6 5925:25	5928:6,10
5851:10 5854:21	5827:21 5830:5,	Monica 5859:14	5931:20 5935:2	multiple 5870:15
5855:8 5869:22,	6,24 5831:1	monitor 5781:25	5937:24 5941:12	5883:22 5884:8
24 5875:1	5832:5,24,25		5944:25 5946:4	5885:13 5888:22
5891:16 5898:18	5833:13,22	5782:9 5788:11	Mooney's 5937:5	
5924:19 5936:16,	5834:5 5840:13	5852:7,8 5878:21 5891:3,11,26	Morehouse	5899:1 5900:22, 24 5941:7 5944:9
25 5938:8,13,15	5841:22 5860:11		5858:19	
5944:22 5955:5	5862:24 5863:4	5892:24 5934:9		Municipality
mitigations	5864:2,4,15	5947:5	morning 5765:23	5857:11
5796:16 5801:10	5866:1 5867:7,17	monitoring	5766:14 5769:13	mute 5927:20
5841:2,6,15	5872:16 5876:7	5767:16 5781:24	5771:10,13	5930:4
5842:7 5853:23	5880:11,12	5782:1,3,7,13,16,	5867:24 5907:24	MW15-12-7
5854:8 5876:22	5881:4 5885:24	24,26 5783:3	5921:10 5967:25	5844:2,3,19
5924:14 5934:23	5886:1 5891:10	5788:8,10,23	5969:18,23	Métis 5857:1
5937:3,11,14,16	5900:1 5901:21	5789:3,6 5804:7	mortality	
5945:24	5916:16 5921:17	5805:2 5850:8,9	5925:6,9,14	NT
mitigative	5922:3 5946:1	5851:10 5854:19	Moulins 5859:3,	N
5892:13	5954:9 5965:14	5855:5,6 5878:7,	9	Nakoda 5857:6
202-10	models 5821:7	16 5889:13,19,25	mountain 5804:4	1 101000 1037.0
		5890:1,6,9,12,15,	5810:5 5854:18	
	1	1	1	1

		28		
older 5821:15 5822:22 5935:8 Oldman 5817:26 5828:26 5829:9, 17,25 5830:4,6, 11,18 5837:18 5859:16 5917:25 5918:24 olive-sided 5923:15,20 5924:10,17	5805:6,10,13,17, 20 5806:25 5813:26 5819:23 5829:6 5879:8 5889:23 5894:9, 14,21 5934:11 opinion 5788:5 5850:21 5870:20 5882:16 5907:20 5927:16 opportunities	5917:2 outputs 5830:9 5916:9 overestimate 5793:25 overland 5835:9 OVERLAPPIN G 5847:6 5871:20 overstatement 5793:17	5802:4,16 5803:23 5804:19 5806:26 5808:2, 25 5809:16 5810:2 5811:17, 21,23,24 5812:1, 8,13,18 5813:7 5820:25 5825:8, 22 5827:19 5828:1,2 5829:17 5856:12 5860:4	5910:6 5918:13 5947:25 5969:10 participant 5768:10 participants 5766:22 5767:1, 8,11,17 5768:20, 23 5967:16,21 5968:22 5969:3, 15 participate
5931:13 5937:2 omnivorous 5779:9 5912:17 on-site 5793:21 5798:17 5811:3 5953:13	5778:26 opposed 5818:16 5847:12 5945:6 5949:15 option 5916:4 options 5953:15	owners 5851:20 ownership 5813:13 oxidation 5963:24 oxides 5890:10	5862:5 5863:14 5866:14 5868:17 5921:18 5946:8, 12,13 5950:20,21 5954:3 5966:26 5967:10,15,16, 20,25 5968:7	5766:7 5892:17 participating 5767:16 participation 5811:23 5892:18 particle 5870:5
on-the-ground 5954:6 ongoing 5810:4 Ontario 5967:22 onwards 5806:20 Oops 5766:19	oral 5897:5 5898:2 5904:24 5905:2,9,15 5906:22 5909:23, 25 5910:2,12,21 order 5798:23	5898:14,15,22 P Pacific 5800:7,26 package 5786:3	panel's 5767:25 5827:12 5828:9 5967:14 paragraph 5772:9,10,13 5773:3,8	5895:25 particulate 5869:15 5898:14 5902:18 5903:22 particulates 5869:17 5872:13
open 5766:9,12 5799:8 5865:20 5875:14 5947:26 5953:16 open-forest 5778:1	5799:2 5820:8 5839:9,17 5863:12 5864:6 5893:4 5907:16 5915:1 5929:12 orders 5929:10	5789:14 5791:7,8 5801:26 5804:15 5809:14 5951:9 pages 5768:7 5814:7 5832:3 5837:15 5904:25	5793:2 5794:12 5804:20 5838:1 paragraphs 5924:26 parameter 5878:20 5929:6	5896:12 5901:20 parties 5766:20 partly 5773:22 5933:16 partners 5801:19
operating 5854:1 5878:4 5889:11, 21 5931:21 5952:7 operation	organ 5904:16 organic 5809:6,9 5904:4 original 5821:5 5864:25 5866:1 5867:16 5868:5	5928:23 5929:4,8 5951:13 5970:4 pairs 5919:21 panel 5766:15,19, 23,25 5767:1,4, 10,22,26 5768:3,	parameters 5817:8,9 5824:24 5828:3,5 5854:23 5913:8 5914:11, 18,23 5928:25 5929:3 5932:21	parts 5789:8 5801:22 5914:2 5920:10 5940:4 Pass 5857:12 passages 5785:10 past 5940:6
5790:13 5806:14 5841:11 5876:18 5877:5,26 5882:13 5888:5 5929:22 operational	originate 5798:13 originating 5897:3 otter 5915:14	5,8,19,26 5769:2, 10,18 5770:17, 19,20 5771:1,4,6, 16,19 5772:12,14 5783:24 5784:1,6 5785:10 5786:2,	<pre>park 5784:14,18 5828:16 parked 5877:13 Parks 5857:20 5923:6</pre>	pathway 5825:22 5842:22 5860:19 5908:12,14,15 5922:15 pathways 5814:22 5816:12,
5876:13 5877:22 operations 5776:26 5777:2,4 5782:14 5795:12 5800:9 5804:25	5936:6 outer 5783:18 outlined 5768:19 output 5913:25	20 5789:10,22 5791:10 5792:23 5793:23 5794:12 5796:5,11 5798:6 5799:22 5801:7	part 5782:1 5797:5 5802:5 5803:13 5807:8 5821:25 5852:5 5877:26 5890:24	24,25 5817:1 5867:9 5880:16 5885:11,12 5897:9,10 5898:4

		29		
5904:3,10 5912:2,11 5922:16 patience 5811:22 patterns 5775:17 pay 5892:18,20 payments 5953:12 PDF 5772:8 5773:2 5776:21 5781:22 5785:9 5786:5 5789:16	5897:2 5901:13 5902:16 5909:11 5946:19 perceived 5875:6 percent 5778:2 5793:16 5794:7, 17,20 5795:14 5798:11,19 5837:8 5911:24 5915:8 5919:18 5920:8 5943:2 percentile	29 permit 5843:2,4 5851:18 5869:3 5879:6 5901:15 perpetuating 5780:22 person 5771:3,4 5815:23 5897:23 5954:4 personally 5875:20 5946:4 perspective 5875:24	piles 5802:13,26 pilot 5888:17 Pincher 5857:18 pine 5772:25 5773:10,11,16, 22,24 5774:1 5775:4 5776:12, 18 5777:9 5778:1,3 5779:7, 21 5780:4,8,22 5781:2,16,19,26 5782:20 5783:5	<pre>plans 5797:4 5798:25 5915:26 5924:19,20 5953:22 plant 5774:2 5778:23 5805:1 5956:17 planted 5781:5 planting 5773:10 5780:15,17,25 plants 5773:24 5777:9</pre>
5791:9 5792:21 5796:2,14 5802:1 5803:5,6 5804:16 5809:15 5814:7, 17 5815:3,12,16 5817:20 5818:6 5820:4,15,21 5832:24 5829:1 5831:20,22 5832:3,12 5836:19,21,24 5837:26 5838:8, 15 5839:1 5843:23 5844:5, 12 5848:4 5869:23 5871:17 5886:15 5897:26 5904:14,25 5905:3,11 5906:17,25 5910:19 5911:19, 20 5912:18 5924:3,25 5925:17 5928:22 5929:4 5940:17 5941:3 5958:23 peak 5774:20 5804:25 peer-reviewed 5870:20 peers 5899:9	5815:7 5816:13 5819:22 5821:24 5824:22 5829:4 5834:26 5835:1 percentiles 5824:4 perception 5896:21 percolates 5853:25 perform 5934:6 perimeter 5789:6 period 5767:3,6 5788:21 5819:23, 24 5820:10 5826:26 5829:6,7 5832:5 5842:2 5850:20 5851:5 5854:15 5861:14 5865:6,20 5882:10,14 5883:2,13 5888:7 5889:7 5929:23 5934:2,3,4 5961:26 periodic 5797:7 5930:18 periods 5888:5 permanent 5852:19	<pre>pertaining 5771:26 pescavorian 5926:22 Peterson 5858:26 ph 5872:13 phase 5777:10 5794:24 5804:18 5805:17 5842:3 5889:11,13,21,23 phaseout 5795:7 phases 5777:10, 11 5780:9 phonetic 5941:26 phrase 5808:5 phrases 5808:7, 17,18 physical 5874:8 5876:1 5947:7 5948:12 physically 5887:22 pick 5813:23 5867:18 5911:4 picked 5774:23, 26 picture 5872:14 piece 5884:13 5968:19</pre>	pines 5773:6 pit 5831:19,21 5832:1,23 5851:6 5862:4 5869:11 5887:11 5897:25 5930:15 5956:3, 5,12 5964:4,7,22, 24,25 5965:2,10 pits 5930:17,19 5937:11 place 5806:13 5836:18 5841:19 5850:7,23 5853:26 5854:21 5853:26 5854:21 5853:26 5854:21 5853:26 5854:21 5855:7 5930:1 5934:23 5938:1 5934:23 5938:1 5954:14 5958:1 plains 5784:8 5898:11 plan 5791:11,16 5792:3,5,12 5796:22 5798:4 5799:7 5800:3 5801:11 5802:6, 7,8,11 5803:14, 15 5804:6 5807:8 5811:10,13,16 5812:20 5813:19, 24 5841:14 5850:15 5890:1, 7,23 5951:15 5952:2	plastic 5783:17 plausible 5903:16 play 5947:21,22 PM 5855:13,15 5859:21 5869:1, 7,16 5870:6,7,10, 14 5878:6,7,16, 19 5890:11 5895:18,24 5896:11 5901:20 5902:18 point 5776:1 5779:5 5782:16, 21,25 5799:1,13 5801:18 5806:16, 19,24 5812:23 5813:12,16 5823:12,20 5826:11 5846:19 5885:15 5894:7 5896:18 5900:26 5904:15 5934:10, 16 5941:15,19 5942:14 5944:2 5947:10 5953:1, 16 5956:14 5964:14 pointed 5793:18 5797:11,21 5882:8
people 5818:26 5850:18 5873:9 5874:24 5876:3	permeable 5843:6	5968:19 Piikani 5898:6	5952:2 planned 5790:13 5805:21 5809:21	pointing 5871:21 pointless

5788:19 **points** 5826:20 5848:15 5852:3,9 5873:11 5896:16 5910:12 5913:18 5944:26 **Poitras** 5857:1 pollutants 5898:15 pollution 5950:4 polycyclic 5870:12 5871:7 5904:17 **pond** 5809:1 5932:12 5962:24. 25 5963:9 5965:4.6 5966:19 ponds 5809:7,10 5843:19 5928:24 5929:22,25 5931:16.21 5934:12,17 5937:10 5938:18. 24 5944:6 5964:26 5966:2. 14,19 population 5772:26 5775:8 5919:5 5948:20 populations 5873:9 5883:15 5932:17 port 5813:9,20, 22.23 **portion** 5767:13 5775:22 5895:9, 26 5964:4 portions 5819:17 pose 5770:23 5771:16 5785:12 5879:1 **position** 5787:26 5795:5,18 5806:10

possession 5801:17 possibility 5884:15 **possibly** 5801:16 5883:2 5951:2 **post** 5768:19 5888:26 5889:12 post-filling 5842:15 post-operation 5889:13 postreclamation 5807:3 postclosure 5819:24 5820:10 5829:6 5842:3 5850:20,23,26 5854:15 5888:7 5889:1 5929:23 5934:3 potential 5784:23 5793:23 5795:6 5803:7,17 5804:3 5809:2,19 5810:9 5814:13, 15 5815:13 5816:4 5817:6 5818:4 5819:15. 19 5820:7,14,19 5821:2 5822:5 5823:22 5825:14, 18.20.25 5828:26 5830:3,17 5831:10,13,17 5832:7.21 5833:16 5834:21 5835:8,16 5837:21 5839:3, 7,15 5840:23 5842:3,14 5843:3 5845:25 5850:4 5860:12 5864:23 5865:5 5866:3 5867:14 5869:4

5870:4 5875:9 5880:9,15 5881:5 5887:3 5888:18, 19 5890:3.19 5891:3,4 5892:25 5893:1,15 5897:8 5898:22 5901:10 5902:11,12 5904:10,21 5906:25 5909:7 5910:1,3,8 5912:4,13 5913:4 5916:18 5917:9 5918:3 5921:1 5925:2,14 5929:21 5931:15 5936:9 5937:1 5938:7,10 5940:23 5941:7, 10,24 5943:5 5949:7 5953:19 5963:26 potentially 5847:2,13,25 5874:7 5887:19 5897:2 5917:6 5927:17 5934:2 5963:13.15 5964:1 5966:4 **power** 5794:25 5795:2,3 practical 5810:7 **practice** 5796:11 5931:4 pre-cleared 5788:9 pre-disturbance 5785:18,21 5786:10 5808:6, 17 pre-existing 5879:9 precipitation 5964:3 precision 5853:21

predict 5814:23 5854:3 5881:4 5902:9 predicted 5805:17 5819:18 5820:13 5826:5 5830:2,16 5831:25 5832:6 5837:2,5 5844:10 5862:4,12 5864:24 5867:15 5868:8 5869:8.10 5879:1,4,14 5880:10,13 5881:18 5885:14 5898:5 5900:12, 18 5902:13 5906:24 5908:2, 7,20 5909:8 5910:20 5911:22 5912:26 5913:3 5915:2.12 5928:6,9,24 5929:2 5932:8 5936:5 5937:21 5943:7,10 predicting 5854:6 prediction 5832:20 5834:8 5912:8.26 predictions 5831:9 5838:21 5860:25 5861:4 5864:25 5884:24 predictive 5904:26 preexisting 5901:14 prefer 5819:3 preferred 5969:10 preliminary 5766:11 5768:23

predation 5925:7

preparation 5772:2 5774:5 5939:6 **prepare** 5767:17 prepared 5772:1 5802:6 prescribe 5853:21 presence 5879:7 5881:4 present 5785:11 5835:17 5859:12 5899:15 5919:11 5922:25 5923:13 presentation 5772:19 presented 5816:6 5818:11 5820:21 5821:15 5822:19 5823:26 5826:6 5830:1 5833:1 5839:4 5872:21 5873:2 5904:14. 26 5905:10 5936:13.14 presents 5815:2 5831:20 5832:3,9 5837:16 5928:25 pressure 5944:1 presumption 5834:12 pretty 5798:19 5846:17 5896:4 5914:9 5917:8.20 5920:13 5931:6 5932:4 prevailing 5898:24 prevalence 5780:6 prevent 5931:23, 24 5945:24 **previous** 5809:24 5868:15 5888:12

5931:19 5953:7

5957:12 previously 5769:13 5770:12 5815:16 5859:25 5866:10 5867:12	5963:24 processing 5869:20	project 5767:23 5775:20 5777:11,	5906:24 5908:8	proposing
5769:13 5770:12 5815:16 5859:25	1 0		projections	5798:8 5863:9
5815:16 5859:25	5X64-7/1	15 5782:4,8,14	5793:5 5795:8	protect 5883:20
		5783:7 5785:23		5938:13
3800.10 3807.12	produce 5826:8	5786:13 5790:1,	projects 5898:9	
5907:10	5830:9 5864:16	13 5792:10	5950:1	protected
	5902:14 5909:9	5795:1,8 5796:17	prolonged	5926:9,12
primarily	produced	5797:5,15,22,26	5842:2 5889:6	5927:13,18,19
5834:10 5838:10	5814:26 5816:14	5798:2,11,13	5934:2	5933:4
5841:2 5848:10	5829:11 5880:11,	5799:2,3,6,15,18	prompt 5789:26	protection
5876:17 5906:13	12 5912:23	5800:9 5801:1,	propensity	5884:23 5886:4
5943:1	5941:14	14,15,18	5887:19	5890:8 5931:14
primary 5784:26	producing	5803:10,25		5932:16 5938:8
5821:4 5841:6	5780:23 5781:2	5811:9 5831:4	proper 5849:22	5941:4
5843:8 5874:21	5782:21 5793:4,5		properly 5855:8	protective
5876:10,22	5814:10	5838:7 5840:19	5923:8	5861:5,17
5877:7 5892:12	production	5841:6,20	property	5862:14 5863:5
5934:24	5782:22 5802:14	5851:17,20	5851:18,19	5872:18 5883:15
prior 5767:8		5853:9 5854:15,	proponent	5886:12
5768:16 5786:12	5803:18 5804:10	17,26 5875:5	5773:5 5774:4	
5790:13 5804:7	productions	5878:26 5879:11	5780:9 5781:24	proven 5797:18
	5802:18	5880:13 5888:17	5786:21 5791:11	provide 5790:11
probability	professional	5889:7 5893:26	5794:14 5795:5	5792:26 5795:5,
5916:1,2	5788:4	5894:5,7 5895:6,	5798:8 5800:2	16 5806:2
probe 5823:11	profile 5871:15	10 5900:21		5823:16 5825:23
problem 5770:8	program 5782:1	5902:19 5905:5,	proponent's	5833:9 5834:7
5808:14	5788:23 5797:7	26 5906:5 5907:7	5785:11 5800:3	5840:3 5852:18
problematic		5908:25,26	5808:18	5863:13 5864:12
5969:9	5807:11 5850:8	5909:4 5912:5	proportion	5887:20,25
	5851:10 5890:9,	5924:19 5937:9	5798:12 5916:7	5909:24 5921:22
problems 5898:7	17,25 5891:22	5939:8,17	5926:20	5968:10
5915:19	5892:21,24	5947:11,23	proportional	provided 5803:4
procedures	5893:8 5894:12	5948:6 5949:10	5921:6	5820:10 5823:13
5877:4 5883:5	5945:17,18	5950:7,8,10	propose 5792:2	5826:12 5831:25
proceed 5792:10	5948:8 5951:23	5952:11,14	5811:13 5861:7	5842:25 5894:17
proceeding	5952:3,21	5953:5,18	5911:3	5909:21 5913:9
5765:25 5768:6	5959:18	5965:24		5921:18 5923:23
5769:25	programs 5789:3	project's	proposed	5932:1 5955:2
proceedings	5797:4 5841:19	5804:25 5879:17	5780:10 5789:18	
5765:21 5855:15	5924:15 5945:23	5939:15 5952:6	5790:8 5797:11	providing
5856:1 5859:21	progress 5767:13	project-affected	5805:19 5807:3	5876:12 5912:19
5969:25 5970:5	5790:23	5893:24 5894:2	5840:25 5841:20	5936:14
	progressed		5843:2 5851:17	province
process 5766:10	5793:4	project-case	5876:16,18,19,20	5772:23 5775:15,
5790:23 5797:7		5838:20	5877:11 5890:1,	19 5776:2 5970:8
5811:24 5827:6	progresses	project-related	6,9,17,22,23	provincial
5841:8 5882:25	5781:15	5829:24 5839:2,	5960:11	5893:3 5951:20
5883:24 5888:24	progressive	6,14 5853:11	proposes 5773:6	proximity
5952:21 5953:23	5787:19 5870:1	5893:19,23	5781:25	5852:4

		32		
psychological 5873:23 5874:22 5950:11 public 5765:26 5766:9 5878:6 5879:2,7 5948:26 5957:4	pyrene 5848:8 5904:18,19 Q QC 5856:12	5780:2,5 5782:12 5785:12 5786:17 5787:1 5788:1,8, 9,10 5789:10 5790:4,18,20,24 5791:2,21,26 5792:16,26	questions 5768:25 5769:2, 10,17 5770:22 5771:5,7,11,16 5798:7 5807:15 5808:2 5811:17, 21,22 5812:1,3,5,	5869:2,9,10 5879:3,5,17,20 5898:1 5900:12 5905:1,9,15 5906:3,7 5909:8 5910:11,12,14,21 5928:16 5935:21
publicly 5766:4 published 5874:1 5875:19 5916:24 pull 5772:7 5779:25 5785:9 5786:1 5789:13 5791:7 5792:19 5796:2 5799:21 5800:15 5801:25 5809:13 5812:20,	5857:14 5858:8 qualifications 5771:21,22 qualify 5935:7 qualitatively 5874:20 quality 5770:13 5791:8 5802:1 5803:3 5804:15 5809:14 5816:15 5834:9 5842:13,	5801:4,7 5802:15,21,23 5805:13 5806:26 5807:4,18 5808:4,13,16 5809:12,17 5810:8 5813:3,18 5815:15 5816:9 5817:4,23 5818:10 5821:26 5822:7,8 5825:19	7,8,10,16 5813:2 5814:4 5816:22 5819:13 5822:2, 3,14 5823:10 5831:9 5842:21 5855:11 5860:4,7 5866:12,18 5868:24 5889:25 5891:2 5896:26 5901:9 5904:13 5910:25,26	5945:2 quoting 5958:17 R radar-controlled 5944:16 rail 5800:10,24 5801:9 5869:26 rail-loading
26 5814:17 5836:18 5843:22 5844:13 5871:18 5927:26 5929:7 5940:17 pulled 5826:20 pumped 5964:26 pumping	5854:95342:13, 175843:11,12 5846:45850:24 5851:135852:8, 10,115854:20,23 5859:265860:11 5862:245864:14 5867:75887:7,17 5889:5,14,22 5890:4,6,13	5822:7,8 5825:19 5830:20,23 5837:14 5839:5, 13 5841:24 5844:14,24 5845:12,16 5847:14 5849:26 5853:15 5854:11 5867:23,25 5870:3 5873:26	5910:23,26 5911:2,15 5913:6 5922:19,21 5924:22 5928:2 5939:5 5946:8, 10,12,14 5950:16,19 5953:26 5962:21 5965:22 5966:25 5967:3,9,15	5876:19 railcars 5813:8 5876:20 Railway 5800:7, 26 rainfall 5898:18 raise 5768:24 5848:18 5964:14
5934:14 5965:10 pumps 5806:17 pupae 5923:12 purpose 5812:12 5883:8 5895:19 purposes 5769:9 5921:11 pursue 5800:23	5891:6,11,26 5893:3,16,25 5894:6,19,21 5899:13,15,21 5915:2,25 5926:1 5928:25 5929:5 5937:15 5939:19 5965:13	5870:35873:26 5880:4,255885:7 5895:155898:20 5899:5,75900:8 5905:85906:16 5907:5,24 5908:115909:6 5913:2,14 5914:145915:12 5917:45918:11,	596 7:3,9,15 5968:5,8 quick 5784:13 5827:5 5899:8 quickly 5815:23 5965:23 quote 5787:10 quotient 5828:4, 6 5864:22	raised 5929:19 raises 5814:12 ran 5818:26 Ranchland 5857:14 RANDY 5770:9 5859:22 range 5828:6
<pre>put 5778:4 5791:11 5812:21 5841:19 5850:7 5855:7 5860:11 5863:24 5871:16 5873:25 5885:18 5886:8 5902:26 5915:25 5954:4 5961:23 5962:15, 17 5967:3 5969:2 putting 5811:4 5930:1</pre>	quantification 5794:1 5806:2, 10,23 quantified 5790:20 quantify 5926:6 quantitative 5790:12 Quebec 5967:22 question 5770:24 5777:8,22	3917.4 3918.11, 13 5928:12,19 5930:8 5933:22 5938:6 5940:11 5941:6 5943:13 5944:19,20 5945:14,26 5947:26 5948:4 5950:25 5951:5 5968:2,24 questioning 5800:20 5823:19	5867:14,18 5885:2 5902:13 5903:12 5910:7 5941:8 quotients 5814:14 5817:23 5818:1,23 5825:17,24,26 5826:11 5837:16, 19 5839:7,11,16, 19 5840:19 5864:1,9 5867:25	5831:3,23 5836:14 5844:16, 17 5845:14,19, 21,22 5846:3,8 5870:5 5874:5 5914:2 5919:24 5920:5 5924:1 5955:16 ranges 5779:15 5914:6 rate 5897:16 5932:7
			5007.1,7 5007.25	5754.1

		33		
rated 5923:1,2,3, 17,18,21 rates 5949:6 ratio 5778:17 5822:24 5928:6 5932:15 5945:3 ratio's 5937:20 ratios 5821:21 5912:13,15,24 5914:17 5915:6, 13 5921:4 5924:4 5928:10 5931:9 5936:4,18 5940:26 5941:14	realistic 5882:16 reality 5901:4 realize 5824:8 realms 5884:15 reason 5774:18 5868:6 5876:25 5908:17 5928:14 5959:22 reasonable 5767:19 5796:16 5864:11 5885:17 5891:8 5893:11 5903:5 5960:24 5961:6	recently 5898:7 receptor 5897:13,14,18,24 5913:22 5914:11 5920:3 5926:3,4 5927:11,23 5933:6,8,16,17 receptor-specific 5932:2,21 receptors 5890:20 5897:21 5913:23 5914:1 5919:17 5913:23 5914:1 5919:17 5919:17 5926:11 reclaim	recommended 5796:8,24 5798:21 recommends 5890:15 reconcile 5824:21 record 5865:19 5865:19 5827:7 recorded 5924:4 recordings 5765:25 5766:3	reevaluation 5821:23 5921:4 refer 5799:25 5900:23 reference 5777:19 5781:23 5786:3 5791:12 5792:4 5796:15, 18 5812:21,22,24 5815:9 5831:20 5848:2 5869:1,7 5883:14 5889:4 5890:2,4 5894:7 5896:18 5905:17
5945:12 raw 5962:24,25 5963:9 5965:6 5966:18,19 re-direct 5967:11 re-establish 5780:3 re-establishment 5773:22 5780:8 5784:3 5788:12 5807:2,10	reasons 5768:7 5848:14 reassessment 5912:9 recalculated 5825:24 5922:2,14 recalculating 5864:22 recalculation 5867:5,13	reclaimed 5773:11 5777:14 5780:19 5781:4, 25 5782:4,8,18 5783:7 5789:7 reclaiming 5811:3 reclamation 5777:11 5780:9 5782:15,17 5783:2 5789:26 5790:14,23	5790:22,26 5792:13 5810:4,7 5924:12,16 recruitment 5777:14 5783:6 redirected 5966:18 redo 5865:8,9 redone 5921:1 reduce 5793:14 5798:23 5799:2	5924:1 5929:7 5951:6 5958:4,18 5960:9 referenced 5824:9 5839:24 5872:22 5873:13 5900:10 5946:17 references 5831:11 5869:12 5890:7 5951:15 5952:1 5954:1
reach 5834:22 read 5772:20 5773:9 5785:20 5786:9 5789:22 5794:14 5800:6, 22 5802:10 5804:21 5810:3 5814:20 5815:6 5829:2 5831:15 5838:1,9,16 5842:26 5865:23 5869:14 5886:16 5902:26 5904:20 5905:4 5906:18 5911:20 5923:7 5939:12 5940:1 5958:10 reading 5845:15 5958:2,4	recall 5848:20 5874:20 5920:25 5946:16 5951:17 5958:15 5963:9 5964:25 5966:1 receive 5913:23 5914:4 5920:21 5926:21 5928:24 5932:26 5956:23 received 5768:17 5878:5 receiving 5768:14 5818:4 5926:11 5943:1 5962:25 recent 5793:18 5822:19 5824:26 5827:24 5833:6 5925:19	5791:17,25 5792:15 5804:18, 22 5805:8,25 5806:4,15 5807:11 5811:5 5853:22 5870:1 recognize 5827:12 5842:11 5863:19 recognized 5768:5 5822:21 5926:8 5927:11 recognizing 5967:21 recollection 5848:26 recommendatio n 5796:3,6,8,12, 20,25 5902:21	5801:20 5809:21 5810:9 5811:6 5840:21,25 5854:4 5870:2 5936:26 reduced 5794:20 5925:6 reduction 5793:16,24,26 5794:2 5795:15, 24 5841:4 5853:18 5951:24 5952:23,26 5963:24 reductions 5795:7 5800:24 5953:13 reevaluated 5821:19 5822:22 5921:11	referring 5806:5 5873:22 5940:18 5943:22 Refinery 5793:3 reflect 5820:8 5824:26 5830:18 5844:17,26 5845:8,20 5846:3 5895:25 5910:7 5952:3 reflecting 5845:7 5849:16 reflective 5895:22 5906:8 reflects 5849:8 reforestation 5789:26 5791:1 regain 5790:14

		34		
regard 5795:17 5841:26 5854:12 5880:6,23 5884:26 5946:14 regimes region 5777:3 region 57775:12, 13 5778:9 5781:13 5784:8 5857:2 5874:19 5948:17 regional regional 5774:15 5776:12 5778:4, 20 5779:16 5783:19 5843:20 regions 5776:4 Registry 5951:9 regrowth 5779:10 5919:4 regrowth regrowth 5779:11 regulation 5951:17,23,25 5953:6,7 regulations 5890:8 Regulator 5812:8 5860:4 regulators 5873:1 regulatory 5836:10 5883:4,26 5890:16 5890:16 5926:24 5951:21 reintroduction 5784:12 relate relate 5812:3 5816:1 5812:3 <td>5943:11 5948:11 relates 5770:25 5788:10 5802:15 5819:13 5825:9 5839:21 5929:18 relating 5899:13 5949:14 relationship 5836:5 relative 5775:7 5840:18 5864:25 5867:16 5912:21 5914:20,25 5916:7 5932:6 5935:16 release 5916:7 relegated 5942:14 relevant 5819:17 5903:3 reliably 5913:13 reliant 5774:2 relocate 5930:19 relocate 5930:19 relocating 5930:2,10 5933:26 rely 5895:17 5924:11 5948:25 relying 5779:6 5822:20 remain 5783:17 5865:20 remainder 5941:21 remained 5889:22 remaining 5779:20 5808:3</td> <td>5936:12 remind 5962:22 reminder 5765:24 5915:11 Remote 5856:1 removal 5791:23 removal 5791:23 remove 5777:26 5930:19 removed 5807:9 5943:23 5944:4 removing 5805:24 Rennie 5858:16 repeat 5808:12 5818:9 5839:13 5899:6 repeatedly 5882:13 repeatedly 5882:13 repeatedly 5882:13 repeating 5775:17 replaced 5794:15 5944:5 5951:23 replaced 5794:15 5944:5 5951:23 replacement 57715:17 replacing 57778:15,17 replacing 5778:15,17 replating 5778:15,17 replacing 5778:15,17 replating 5778:15,17 replating 5778:15,17 replacing 5778:1</td> <td>representing 5914:12 represents 5778:8 5798:9 5918:5 reproductive 5905:12,19 request 5786:2 5820:5 5951:13 requested 5789:15 requested 5774:17 requests 5771:26 5774:17 require 5860:13 5877:23 5930:17 5939:7 5944:21 required 5767:17 5780:3 5805:18 5817:7, 8,16 5842:18 580:23 5851:11 5854:9 5855:9 5893:6 5907:4 5926:6 5934:1 5936:16,25 5937:3 5938:13 5941:4 requirement 5952:23 requires 5939:18 requires 5939:18 requiring 5811:10 reread 5802:9 5867:2 5827:3 5863:11 5921:8 rerunning</td> <td>resembling 5853:13 reserve 5968:12 reservoir 5817:26 5829:1, 9,18,25 5830:4,7, 11,18 5837:18 5917:25 5918:24 residents 5874:21 resolve 5766:16 respect 5766:18, 21,25 5783:17 5784:11 5829:22 5837:24 5895:1 5901:12 5914:11, 21 5917:10 5917:10 5919:10 5917:10 5919:10 5917:10 5919:10 5917:10 5919:10 5917:10 5919:10 5916:17 5942:9 5945:6 respiratory 5901:14 5903:26 respond 5771:18 5803:1 responding 5811:22 response response 5780:2 5782:5,6 5786:2 5789:13 5791:7 5797:10 5800:20 5820:4 5827:4 5</td>	5943:11 5948:11 relates 5770:25 5788:10 5802:15 5819:13 5825:9 5839:21 5929:18 relating 5899:13 5949:14 relationship 5836:5 relative 5775:7 5840:18 5864:25 5867:16 5912:21 5914:20,25 5916:7 5932:6 5935:16 release 5916:7 relegated 5942:14 relevant 5819:17 5903:3 reliably 5913:13 reliant 5774:2 relocate 5930:19 relocate 5930:19 relocating 5930:2,10 5933:26 rely 5895:17 5924:11 5948:25 relying 5779:6 5822:20 remain 5783:17 5865:20 remainder 5941:21 remained 5889:22 remaining 5779:20 5808:3	5936:12 remind 5962:22 reminder 5765:24 5915:11 Remote 5856:1 removal 5791:23 removal 5791:23 remove 5777:26 5930:19 removed 5807:9 5943:23 5944:4 removing 5805:24 Rennie 5858:16 repeat 5808:12 5818:9 5839:13 5899:6 repeatedly 5882:13 repeatedly 5882:13 repeatedly 5882:13 repeating 5775:17 replaced 5794:15 5944:5 5951:23 replaced 5794:15 5944:5 5951:23 replacement 57715:17 replacing 57778:15,17 replacing 5778:15,17 replating 5778:15,17 replacing 5778:15,17 replating 5778:15,17 replating 5778:15,17 replacing 5778:1	representing 5914:12 represents 5778:8 5798:9 5918:5 reproductive 5905:12,19 request 5786:2 5820:5 5951:13 requested 5789:15 requested 5774:17 requests 5771:26 5774:17 require 5860:13 5877:23 5930:17 5939:7 5944:21 required 5767:17 5780:3 5805:18 5817:7, 8,16 5842:18 580:23 5851:11 5854:9 5855:9 5893:6 5907:4 5926:6 5934:1 5936:16,25 5937:3 5938:13 5941:4 requirement 5952:23 requires 5939:18 requires 5939:18 requiring 5811:10 reread 5802:9 5867:2 5827:3 5863:11 5921:8 rerunning	resembling 5853:13 reserve 5968:12 reservoir 5817:26 5829:1, 9,18,25 5830:4,7, 11,18 5837:18 5917:25 5918:24 residents 5874:21 resolve 5766:16 respect 5766:18, 21,25 5783:17 5784:11 5829:22 5837:24 5895:1 5901:12 5914:11, 21 5917:10 5917:10 5919:10 5917:10 5919:10 5917:10 5919:10 5917:10 5919:10 5917:10 5919:10 5916:17 5942:9 5945:6 respiratory 5901:14 5903:26 respond 5771:18 5803:1 responding 5811:22 response response 5780:2 5782:5,6 5786:2 5789:13 5791:7 5797:10 5800:20 5820:4 5827:4 5
relate 5802:18,24		-	rerun 5823:2	5889:14
	remaining	Reporter		rest 5839:26

		55		
result 5774:6	review 5768:16	5867:6,18	5954:7,13,21	Rudolph 5770:9
5793:21 5816:11	5770:17 5786:2	5868:26 5869:4	5955:5,23	5793:9,11
5838:19 5842:13	5796:17 5797:7	5870:22 5871:24	5956:2,22 5957:4	5803:1,2,22,26
5853:9 5862:5	5811:24 5856:12	5872:5 5875:25	5959:18,25	5804:5 5810:25
5869:17 5879:11	5918:3	5878:25 5879:1,	5960:3,8,13	5859:22 5878:10,
5899:2 5906:4,20	reviewed	23,24 5880:3,6,	5961:2,3,15,19,	12,22 5885:25
5940:6 5945:3	5771:24 5796:12	23 5881:22	21 5962:7,9,16,	5894:25 5895:14,
resulting	5797:20 5799:10	5883:23 5884:10,	19 5964:18	16 5899:11
5814:11 5815:18	reviews 5872:9,	13,19 5885:5,8,	5965:18	5900:5 5901:17
5850:3 5898:8	10,20 5902:26	22 5886:21,26	roads 5955:24	5950:26 5951:2,
5968:18	revised 5827:16	5888:6 5889:8,10	5956:4,6,12	4,18 5954:8,17
results 5820:11,	5830:5,9 5861:3	5897:6,8,12,20,	5958:12 5960:25	ruled 5810:9
16 5823:3,25	5863:4 5866:1	24 5899:23	5961:11 5962:1	run 5789:3
5824:4 5825:9	revisit 5860:8	5900:4 5901:7,12	5963:14,18	5821:23 5828:12
5827:11,13	5880:2 5886:20	5902:9 5904:12	5964:2,5,10	5864:10 5881:21
5830:1 5838:10	reworked	5905:1 5908:8,12	5965:9	5933:19,20
5840:13 5846:1	5912:22	5909:24 5910:2,	Robert 5969:5	5961:12 5962:8,
5861:8,16		5,15,25 5911:1, 16,18 5912:1,4,9,	rock 5805:24	15,17 5964:19
5862:16 5864:12,	riparian 5942:9	20,23 5913:6,9,	5810:17 5834:14,	5966:21
15 5866:1,2	risk 5770:15	12 5915:22	20 5835:7	running 5828:13
5867:7 5877:2	5812:4,11	5920:26 5923:18,	5850:1,10	runoff 5835:9
5879:20,24	5814:3,10	21 5924:12,23	5881:14,15	5928:24 5962:26
5897:12 5898:1	5815:14 5816:5	5925:9,24 5926:7	5887:14,17	5966:1
5900:2 5905:1,5,	5819:14,21	5927:4 5929:21	5890:26 5928:24	
26 5912:22,25	5820:20 5821:3	5932:1,8,10,18	5956:5,16	S
5914:17 5916:11	5822:3,5,12,16	5933:6,15	5962:26	<u> </u>
5928:26 5937:22	5823:4,20,23	5936:3,9,26	rocks 5887:7	safety 5879:23
resume 5807:21	5824:2,23 5825:5,10,12	5937:8 5938:26	role 5771:22	5880:6 5886:11
5855:13	5826:10,21,22	5939:3,24	5772:2 5947:21,	salamander
retrofitted	5828:8,21	5940:22 5941:5,	22	5922:24
5955:15 5961:16	5829:3,10,13	24 5948:13	roll 5797:25	sample 5849:5
return 5809:16	5832:10 5833:10,	5949:2	rolled 5797:19	5943:23
5853:13 5889:6	16 5835:17,23	risk-based	room 5766:1	
5920:10 5933:25	5836:5 5837:2,4	5893:4		samples 5843:16
returned 5783:5	5838:24,26	risks 5814:12	roughly 5953:17	5844:1 5845:9,22 5846:7,10,22
returning	5839:3 5840:22,	5836:8,12	round 5789:4	5840:7,10,22
5791:25 5896:8	26 5842:24	5837:17 5879:14	route 5904:24	5894:20
reveals 5939:16	5844:12,15	5898:5 5899:3	routes 5898:3	
revegetating	5845:13,19,26	5908:9 5909:21	5910:9	sampling 5810:16 5848:17
5789:25	5846:23 5847:3	5915:4 5923:8	routine 5934:6	
revegetation	5849:10,12,24	5931:11 5936:1	row 5789:18,19	sand 5936:20
5777:13 5790:26	5851:24 5852:23	5942:22 5944:21	RPR 5859:19	satisfactory
5870:1	5853:1,3 5855:1	river 5784:17	5970:14	5840:17
	5860:2,10 5861:4	5915:14 5936:6	RSA 5778:6,21	satisfies 5917:4
reversible 5883:19	5862:11,12,17	road 5869:24	5897:15	satisfy 5953:11
3003:19	5864:13 5865:22	5877:9,15 5879:6	5077.15	

5851:4 5934:14 second Sawyer 5858:11 5874 SBZ 5889:15 Second 5963:1 5964:22 secred 5965:20 5966:20 5770 Scan 5958:24 5967 scenario 5815:8 section 5819:25,26 5833 5829:7 5964:16 5853 scenarios 5923 5943:16 sector schedule 5767:14 sector 5768:8,13,18,19 sedin 5766:6 5866:10 5944 5766:6 5866:10 5944 5870:20,21 5960 scientific sedin 5870:20,21 5960 scientific sedin 5821:16 5822:21 seed screen 5772:15 5780 5821:16 5822:21 seed 5880:15 5937:6 seed screening 5779 5830:15 5937:6 seed screening-level 5779 5833:9 5912:1 17,2	nentation	5916:8,9,19 5917:7,8 5919:14,15 5921:1 5924:3 5925:2,12,20 5926:1 5927:7,10 5928:26 5929:11 5935:20 5936:3 5938:20 5941:2, 14,18 5945:3 5963:9,16,17 5964:2,9,13,18 5965:1,3,8,17 5966:4,15,17,23 send 5768:20 sense 5953:4 5959:12 sensitive 5801:20 5870:23 5883:15 5897:14 5899:3	 set 5819:13 5821:15,19 5822:4,22,23 5827:12 5828:12 5860:7 5890:21 5899:19 5920:19 5921:12 5935:8,9 shallow 5843:17 5890:18 share 5794:19 5956:9 shift 5779:7 5831:8 5842:20 ship 5813:10,23 shipping 5801:9 short 5776:7 5797:3 5815:26 5863:12 5865:6 5939:2 	5899:14 significant 5790:23 5792:9 5809:5 5860:13 5916:9 5933:23 5941:21 5942:17 5948:14,21 5966:22 significantly 5806:22 5810:18 5907:7 5935:18 5936:21 5960:22 silver 5824:6 similar 5803:15, 16 5818:17 5823:2 5824:21 5843:11 5845:11 5852:23 5884:16 5890:22 5898:3
screens 5792:24 5782 5799:23 seepa scroll 57773:2 5852 5789:19 5790:6 5854 5794:9 5804:16 seepa 5848:5 5958:25 selen sealing 5887:21 selen seams 5802:12,25 selen	5782:22 ling 5778:26 0:15 lings 5774:2 0:18 5781:5 3:12 s 5773:24 9:6 5780:15, 23,24,25 1:3,19 2:21 5877:19 age 5850:1 2:3 5853:18 4:1 ed 5810:19 et 5872:25 hate 5963:23 hium	5901:13,19 5902:15 5909:10 5923:1,2,17 5926:3,9 5927:12 sensitivity 5926:15 sentence 5772:10,18 5773:7,8 5810:1 5959:26 separate 5895:12 5909:21 separately 5853:4 sequestration 5791:18 series 5774:16 5814:4 5817:21 5820:12 5924:21	short-term 5883:10 shorthand 5970:5,6 shortly 5847:14 should've 5767:12 5952:17 show 5908:25 5960:3 showed 5923:24 showing 5900:17 shown 5814:25 5816:10 5818:5,6 5820:15 5821:16 5822:20 5891:5 shows 5938:10 Shukalkina 5856:20 Shuswap 5857:4	5900:26 5901:1 5903:14 5909:12 5910:22 5914:18 5919:6 5931:11 5932:7,24,25 5933:18 5936:1 similarly 5889:9 5908:3 simply 5893:23 5895:6 5940:9 simultaneous 5940:13 simultaneously 5899:1,20 single 5798:10 5870:17 5871:2, 25,26 5872:12 5918:11 sink 5784:26 5789:11,23
seams5802:12,25selen5809:185810:18,583245811:4,714season5788:3,1758505919:225930:235912seasonal5820:85913				

		57		
5777:25 5789:9	5913:1	songbirds 5783:1	20	specific 5774:8
5792:1 5795:20	slog 5967:10	Soren 5830:23	span 5777:3	5788:24 5790:24
5806:11 5808:23	small 5778:9,11	sort 5836:11,14	Sparwood	5796:18 5823:19
5866:20 5867:20	5779:11 5806:24	5849:9 5861:1	5874:15,18	5825:15 5840:4,
5967:12 5968:1	5823:4 5861:26	5871:22 5872:9,	5875:11	13 5845:9
5969:14	5896:5 5900:19	15 5875:26	spatial 5845:8	5886:24 5887:25,
sit 5961:11	5905:14,20	5883:22 5884:18	5892:26 5914:8	26 5893:10
5963:15	5906:5 5907:22	5900:23 5903:3,8	5920:12	5901:18 5916:18
site 5781:4	5908:7 5909:1	5933:2 5947:1		5919:22 5927:9
5789:7,8 5791:23	5914:7 5917:1,18	5948:12 5955:19	spatially 5846:9	5933:1,6,8,20
5792:15 5804:4	5918:19 5919:19	5956:25 5957:4,	speak 5772:1	5936:25 5937:3
5805:22 5810:5,	5920:12,15	16 5959:26	5788:4 5812:19	5938:12 5940:24
20 5811:3,6	5932:5 5939:3	5960:16,18,21	5822:25 5846:10	5941:19 5942:2
5844:19 5850:26	5962:18 5965:16	5961:20 5962:10	5881:1 5937:24	5947:1 5949:14
5851:2,12	smaller 5776:1	sound 5812:23	5954:5,8 5967:1	specifically
5877:16 5889:17	5806:22 5872:13	5963:10	SPEAKERS	5786:5 5799:25
5894:16 5895:3,	5896:2 5948:20	source 5781:18	5847:6 5871:20	5826:9 5832:22
8,12 5909:15	smallest 5919:24	5783:12 5793:26	speaking 5777:3	5840:11 5847:19
5930:20 5954:13,	snow 5857:6	5794:2 5798:10	5944:14	5871:11 5883:7
21 5964:20	5898:19	5809:19 5819:26	special 5917:15	5895:1 5897:7
5965:12,26		5821:8 5834:11	5923:4	5916:19 5926:5
site-specific	snowball 5885:1	5835:1 5837:10,	specialist	5932:12 5935:20
5917:18,23	snowballing	11 5841:12	5865:23 5874:14	5942:10 5946:15
5918:17 5919:2	5884:11	5849:21 5851:19,	5933:25	speeds 5902:6
5929:15	social 5874:23	21 5853:7	speciation	spend 5920:8
sites 5773:11	5950:11	5854:16 5855:4	5918:20	spending 5939:2
5890:16 5930:2	Society 5857:21	5861:13 5883:1	species 5770:15	spent 5947:8
5934:26 5944:18	5858:6,12,19,21	5891:15 5952:22	5772:24 5773:13	spilling 5876:25
5960:18	5923:7	5953:20	5774:11 5778:19	spoke 5886:22
sitting 5767:14	sodium 5862:10	sources 5793:7	5782:1 5788:24	5895:18 5900:9
5963:18	soil 5789:24,26	5805:4 5816:8	5860:2 5912:14	5959:25
situation	5790:3 5868:10	5854:14 5869:18	5914:5 5918:2,11	
5842:12 5850:16	5869:20 5908:5,	5898:25 5899:26	5919:13,19,21,23	spot 5894:19,20
5892:13 5930:26	20 5911:22	5902:19 5911:25	5920:14 5922:22,	spots 5943:11
situations	sole 5861:13	5913:25,26	23,26 5923:11,	spotted 5922:24
5944:21	5883:1	5919:18 5920:12	14,18,20,21	5925:4 5943:25
size 5778:8	solid 5881:14	5931:25 5952:20	5924:8,12,22	5944:1
sizes 5870:5	solution 5888:25	5965:17	5925:24 5931:11,	spray 5961:10,17
5895:25	5934:4	sourcing 5826:25	14,17,26 5932:3,	sprayed 5962:6
	solutions 5875:9	south 5854:18	9,16,21,23	5964:10 5965:8
skepticism		southeast	5933:4,14,19	spraying
5898:16	somebody's	5895:10	5937:1,23	5959:18 5961:15
skill 5970:7	5837:9 5882:9	southern	5938:14 5939:22,	5963:13
slightly 5787:6	5883:1	5775:22 5857:21	24 5941:5,9	spread 5877:7,20
5821:21 5849:18	songbird	southwest	5942:4,5,6,10	5961:19
5862:3 5887:23	5774:10,22	5776:3 5778:10,	5944:9 5945:8	
		<i>5110.55110.10</i> ,		

		39		
summarized	5852:22 5853:5	5901:20	5869:23 5875:5	tank 5961:17
5823:24 5869:22	5879:18 5881:15	sustainable	5904:25 5905:11	tanks 5955:16
5871:22 5882:24	5887:21 5890:20,	5842:16	5907:13 5921:19	tape 5944:17
summary	23,24 5894:10	swallow 5931:12	5924:3 5928:5,9,	target 5825:11
5825:23 5826:13	5896:4 5911:22	5937:2	12,13 5935:25	5835:24 5837:19,
5921:19	5925:26 5939:19	swallows	5958:24 5963:11	20 5903:11
summer 5781:15	5943:7 5962:19	5923:14,16	tables 5786:4	5910:6 5915:8
summing	surfaces 5852:3	5924:9	5817:21 5818:5,	
5941:20	surficial 5843:6,		12 5837:15	targets 5916:4
Sun 5858:2	17 5844:1,4,18	sweep 5787:18	5906:1 5928:1,4,	team 5840:14
	5846:1,4 5850:2,	sweeping	17 5935:3,19	5865:13,21
super 5881:24	19	5787:21	5936:11 5940:18	5866:5
supplemental	surge 5928:23	sweeps 5786:10,	takes 5773:15,24	technical 5939:8,
5771:26 5774:16	5929:22 5931:16,	24 5787:2	5827:6 5828:14	25 5940:11,19
supplemented	21 5932:12	5808:5,17	5934:9	technique 5831:1
5934:24	5934:12,16	switch 5779:9	talk 5790:17	technologies
supplementing	5937:10 5938:18	5812:2	5799:12 5803:6	5797:11,14,21
5957:9	5944:6 5965:4	switching	5834:17,21	5799:4,12,15
supplies 5898:18	5966:19	5779:12	5840:13 5842:21	5801:20
supply 5847:10	surmised 5824:3	synergies 5945:6	5870:24 5874:10,	technology
5852:20	surrogate 5870:6	synergistic	15 5875:21	5797:16,23,26
	5871:1,2,25	5902:15,23,24	5876:16 5884:11	5799:10,13,17
support 5893:5	5912:14 5932:4,	5903:7,17,24	5886:14 5929:19	5951:24
supported	14,24 5933:12,21	5904:7 5909:10,	5930:3 5957:9	technology/best
5926:24		14,17 5944:22	talked 5797:13	5796:10
supporting	surrogates 5870:22 5923:10	synonymous	5807:5 5810:15	Teck 5874:18
5846:16 5848:25	5932:25 5933:16	5808:8,20,22	5825:16 5841:18,	5923:23 5925:19
supports		system 5841:5	21 5874:16	telling 5872:4
5766:24 5900:19	surroundings	5876:26 5916:20	5908:14 5929:26	e
suppose 5784:9	5766:3	5920:2 5934:7	5930:14 5937:25	tells 5818:21
5847:13 5892:10	survey 5787:4,15	5938:23 5954:7	5946:16 5957:11	5849:10
supposed	surveyed	5964:19	5958:5 5959:24	temporary
5964:25 5966:1,2	5787:13		talking 5778:11	5842:17 5847:16
suppress	surveys 5774:4,7,	systems 5890:19 5938:18	5797:2 5806:19	5883:19
5962:10	9,22 5785:18,21	3938.18	5824:11 5825:20	ten 5885:5,19
suppresses	5786:10,22,25		5826:10 5841:3	5886:9 5951:13
5962:7	5787:11 5788:2,	Т	5847:8,9,11	tend 5776:4
suppression	9,16 5808:6,18		5852:2 5881:6	5878:1
5957:10	survive 5781:20	table 5805:7,9,11	5885:4,9 5888:12	tenth 5801:25
	surviving	5809:18 5810:2	5899:12 5907:6	term 5797:17
surface 5803:8,	5781:17	5815:3,12	5915:20,24	5854:9 5934:25
18 5814:22,23	susceptibility	5816:6,7,11,26	5929:15 5937:26	termed 5896:5
5815:1,2,17 5816:15,20,23,	5925:7	5817:20 5825:23	5938:26 5948:12,	terms 5775:7
24,25 5839:24	suspect 5954:3	5826:13 5831:21 5832:14 5839:23	20 5952:18	5776:18 5780:18
5843:12 5844:11	suspended	5832:14 5839:25	5954:10 5955:24	5781:3 5791:17,
5846:2 5850:19	5869:16 5896:12	5845:25 5844:25	5958:1 5960:3	25 5793:6 5820:1
5070.2 5050.17	3809:10 3890:12	5047.2,20	5965:8	25 5775.0 5020.1

Dicta Court Reporting Inc. 403-531-0590

		40		
5821:8 5826:23	5965:25	5899:24,25	5808:4,15	tracked 5877:15
5828:20 5834:11,	thinks 5968:9	5920:8,15	5819:18 5854:11	
19 5835:1		5934:2,4 5939:2	5875:19,21	tracking 5877:9, 21,24
5841:3,11,12,20	thought 5769:11	5944:3 5947:8	5927:25 5928:21,	
5842:18 5850:25	5771:2 5863:22	5949:2 5951:20	22 5944:19	Tracy 5868:17
5876:18 5885:4	5916:16 5953:23	5956:14 5961:26	topics 5770:22	traditional
5894:19 5903:20	5969:11	5962:13 5969:7,9	5868:23 5878:23	5890:16 5897:16
5910:4 5921:18	thoughts	timeline 5790:26		5948:13
5932:13,18	5878:10	5921:23	topography	traffic 5877:8,21
5935:11 5937:9,	thousand		5775:17	train 5784:19
15 5942:12	5929:13	timely 5766:26 5767:22	total 5795:10	5813:21
5943:5	thread 5900:8		5814:23 5824:9	trains 5784:22
terrain 5799:7	threatened	times 5779:13	5826:8 5849:8,16	trajectory
terrestrial	5923:18,21	5795:14 5825:11	5864:17 5869:16	5782:19
5779:10	threshold 5836:8	5835:24 5837:3,4	5896:11,12	transcribed
	5926:6,23,26	5853:16 5885:6,	5901:20 5908:7	5970:6
tested 5966:16	5932:10 5936:19	19,20 5886:8,9	5909:24 5910:1,5	
testimony	5941:18	5929:13,14	5943:2	transcript
5800:18	thresholds	5930:24	totally 5822:6	5800:17 5957:20,
testing 5854:19	5901:12 5904:12	timing 5766:21,	5944:20	22 5970:1,4
thallium 5817:24		25	touch 5769:10	transcripts
5826:2 5837:23	throw 5949:11	tissue 5917:16	5943:21	5768:7
5838:18 5867:26	throwing	tissues 5914:22	tough 5948:8	transfer 5813:13,
5868:6,8 5898:24	5943:21	toad 5922:25	Town 5857:18	20 5916:15,21,23
5908:1 5941:2	TIER 5951:23	5923:3 5925:15	townsite 5876:17	5917:1,11,24
theme 5772:19	5952:3,20	today 5769:9	tox 5871:15	5918:4,15,23
thick 5887:11	till 5766:15	5771:5 5954:3		transferred
thing 5774:21	5928:20	toe 5890:26	toxic 5944:15	5813:16
5779:14 5893:11	Timberwolf	told 5959:16	toxicity 5836:2	transparent
5926:15 5949:22	5858:11		5838:2 5869:1,7	5766:9
5950:9 5959:26	time 5766:6	tomorrow	5870:7,10,22	transport
things 5779:4	5767:2,7,11,17,	5862:7 5865:15,	5872:25 5876:1	5800:25
5784:20 5813:26	20 5768:3,15	17 5866:23	5883:14 5884:1	transportation
5835:11 5841:3	5790:14 5794:26	5968:4,23,25	5885:24 5886:4	5800:10,13
5846:5 5873:10	5799:16 5812:20	5969:17,19	5904:15,22,23	5801:22
5874:5 5876:1	5813:26 5826:21	tonnes 5952:11	5905:2,13,19 5907:1 5909:22	transported
5880:23 5883:16	5827:1,7,18	tool 5936:15	5907:1 5909:22	5801:16
5887:15,24	5828:14 5830:7,	tools 5946:1	5910:4 5925:20	
5903:13 5919:25	10 5846:10	5947:4		trap 5898:12
5935:16 5948:26	5848:13 5851:5	top 5785:14	toxicological	trapping 5930:9,
5963:16 5968:21	5853:12 5854:2,3	5792:22 5846:17,	5872:5 5945:7	10 5933:26
thinking 5829:13	5861:14 5864:11	19 5874:24	toxicologists	traps 5930:1,15
5833:25 5840:4	5865:6,15,20	5876:20 5884:21	5870:25	5934:9,19,22
5861:19 5865:15	5880:2 5882:10,	5960:8	toxicology	traversed 5956:6
5876:17 5931:12	14 5883:3,13	topic 5769:14	5944:2	treat 5841:13
5938:17 5949:4	5884:17 5886:19	5770:25 5771:2	track 5803:13	5842:15 5851:3
5960:17 5962:5	5888:15 5895:4	5774:17 5777:23	5804:9 5878:2	5903:13
	1	l	I	1

		41		
treated 5903:4 5965:19 treating 5870:16 5889:15 treatment 5841:4,11,19 5937:17 5963:1 5966:20 tree 5774:1 treed 5942:17 5944:4,7 trees 5778:18,23 5780:23 5781:3 5787:2 5807:9 trend 5840:12 tributaries 5924:2 trickier 5876:4 trigger 5885:15 5933:13 trips 5775:1 trophic 5916:15, 21,22 5917:1,10, 23 5918:4,15,23 trouble 5938:17 trout 5858:26 5916:23 5939:21 truck 5955:12,21 5957:5 5961:16 5962:3,6 trucks 5784:22 5955:8 5956:7 5957:14 true 5881:13 5882:7 TSP 5878:17 5895:24 5896:2 Tuesday 5768:14 turn 5812:1,5 5824:13 5828:24 5844:6 5889:26	turned 5766:2 Turner 5856:18 5898:9 Turning 5814:3 5904:9 turnover 5798:1 type 5892:17 5909:15 5943:24 types 5886:24 5909:14 5910:13 typical 5950:3 5955:12 typically 5879:5 5909:16 U ultimately 5775:18 5784:18 unacceptable 5889:10 unaccounted 5806:3 uncertainty 5783:8 5880:17 5886:10,12 5919:10 unclear 5942:18 uncommon 5775:26 underestimated 5872:6 understand 5774:4 5781:24 5782:11 5785:19 5786:1 5802:5 5804:5 5812:14 5844:23 5866:3 581:25 5887:26 5893:10 5896:19	5938:9 5944:5 5962:5 understanding 5773:26 5798:8, 12 5814:6 5825:3 5853:6 5862:21 5863:26 5870:19 5877:6 5887:7 5893:18 5927:22 5930:16 5937:8 5942:8 understands 5767:22 5812:13 5813:7 understands 5767:22 5812:13 5871:23 5906:10 5942:16 undertaking 5823:15 5860:12 5867:1 5868:14, 15,18 5883:17 5922:11 unique 5776:2 unit 5801:1 5843:5 unity 5800:8 5843:5 unity 5800:8 5885:19 Unlimited 5827:15 5884:14	unsupervised 5888:23 untreated 5882:5 unusually 5877:23 upcoming 5767:18 update 5791:14 5793:1 5796:22 5842:24 updated updated 5820:5 5821:5,19 5822:10,11,18, 19,23 5823:9,12 5824:26 5825:3, 4,5,9,23 5826:5, 11,13 5827:21,25 5829:23,26 5838:26 5838:26 5860:10, 11,25 5862:5,23 5864:2,3,14 5867:7 5864:2,3,14 5867:7 5805:12 5921:12,19 5935:19 5952:3 updates 5794:21 updating 5792:11 5798:1 upper upper 5815:8 5819:24,25 5821:8,24 583:7 583:7 593:21 5914:12 5936:14 upper-end 5793:20 upset upstream 5893:24,25	usage 5847:12 USEPA 5916:24 5917:15 USEPA's 5925:26 users 5854:25 utilize 5798:26 utilized 5794:3 Utting 5856:15 5868:17 V valid 5793:24 valley 5784:17 5895:11 5898:10 5919:5 valued 5790:7 5939:22 5940:21 values 5804:12 5821:23 5830:11 5833:8 5834:19, 26 5835:2,15 5838:17 5844:10, 26 5845:7 5883:15 5897:20 5916:15 5917:11 5918:6 5935:7 5936:11,13 vanadium 5826:2 Vancouver 5813:20 variability 5820:9 5830:18, 25 5831:3 5893:18 5894:2, 11 variables 5814:9 varies 5957:7 vary 5846:9 5876:3 5930:25
turn 5812:1,5 5824:13 5828:24	5804:5 5812:14 5844:23 5866:3 5881:25 5887:26	unreasonable 5827:15 5884:14	upstream 5893:24,25	varies 5957:7 vary 5846:9

		42		
VC 5940:7	vulnerable	19 5835:6	5956:11 5957:5,	weight 5932:6
vectors 5882:7	5772:26	5836:15 5837:6,9	15 5958:6,8,12,	well-established
5950:13		5839:24 5840:6	14 5959:2,4,5,16,	5782:18 5917:20
vegetation	W	5841:5,11,17	24,25 5960:2,7,	well-known
5770:25 5771:1,2		5842:13,15,16,23	10 5961:6,10,17,	5917:21
5775:18 5776:17	waiting 5818:19,	5843:9,12,14	20 5962:6,8,11,	well-studied
5778:6 5791:23	25 5825:6	5844:11 5845:26	12,22,23,24,25	5926:23
5818:15,22	5865:19	5846:2,14,26	5963:7,9,14,15,	
5840:1,5 5882:11	walking 5819:16	5847:9,12	18 5964:24,25	wells 5843:1,3,9,
5897:18 5908:3,	walking 5817.10	5849:19,21	5965:2,6,10,13,	18 5845:1,9
14,20	5887:11	5850:9,18,24	19,20 5966:1,3,	5851:7 5854:1
vehicle 5784:19,		5851:10,19,22	14,15,17,18,19	5890:21 5898:10
22	walls 5879:18	5852:7,10,16,19,	water-based	westerly 5895:9
	wanted 5780:1	22 5853:5,7,19,	5867:8 5897:10	5898:10
vehicles 5801:3	5813:3 5860:8	24 5854:13,22	5908:12 5912:2,	western 5783:18
5869:19 5877:12, 13,21,24	5921:23 5922:14	5860:11 5861:12,	10	5922:25 5923:2
	5953:1 5966:8	13 5862:23	waterborne	5925:14
vehicular 5877:8	5968:24 5969:1	5864:14,16,17,24	5816:12 5904:9	westslope
verify 5804:6,8	Warden 5856:25	5867:7,16	5922:16	5916:23 5939:20
Vern 5858:3	warranted	5868:3,12	watered 5956:4,8	wet 5831:2
version 5822:20	5880:1 5886:18	5879:13,18,22	5961:4 5964:6	wetland 5942:17,
5960:5	wash 5877:16,17	5880:9,10,13	watering 5954:7,	24 5943:22,24
versus 5918:25	5958:5,7 5959:2,	5881:6,23,26	21 5956:10,21,24	5944:4,7
5935:14 5936:21	3,5,17,24	5882:1,5,26	5960:8,14,26	Wheaton
5953:13	washed 5964:4	5883:1,2 5885:11	5962:2,17 5964:3	5856:19
vertebrates	5966:4	5887:3,12,20	5965:18,19	
5926:2	washes 5965:10	5889:5,13,15,22	Watershed	whitebark
		5890:4,20,23,24,	5859:16	5772:25 5773:6,
vessels 5800:12	washing 5964:17	25 5891:5,6,11		10,16,22,24
vicinity 5775:4	waste 5850:1	5893:3,16,21,25	waterways	5774:1 5775:4 5776:11,18
5850:25 5939:2	5917:15 5928:24	5894:10,19,21	5925:13	5777:9 5778:1,3
video 5765:24,25	5956:7,15	5898:17,24 5905:10,17	ways 5803:7	5779:6,21
5766:4 5856:1	watched	5905:10,17	weather 5779:8	5780:4,8,22
view 5776:1	5954:13,21	5909:5 5911:23	weather-related	5781:2,16,18,25
5779:5 5799:13	watching	5909.3 5911.25	5876:14	5782:20 5783:5
5885:3 5891:3	5945:20	5915:2,7,24	website 5765:26	whitefish
5892:25 5944:2	water 5769:14	5915.2,7,24	Wednesday	whiterish 5939:21
5947:10	5806:18 5814:22,	5925:26 5926:1	5866:24	
views 5811:8	23 5815:1,2,17	5928:25 5929:5	weed 5877:19	wide 5870:5
virtual 5766:1	5816:14,15,20,	5931:21,24		wild 5897:17
visible 5896:4	23,25 5817:1	5934:6,14	week 5767:15	Wilderness
volume 5803:14	5818:8,13,16,17,	5936:10 5937:9,	5830:20 5851:15	5857:21,25
5834:1,4 5835:4	22 5819:16,23	15,17,18 5938:2,	5874:16 5881:26	5858:11,21
5957:22 5960:11	5825:19,22	22 5939:19	weekend 5769:8	5923:6
	5826:7,13	5943:7 5944:15	weeks 5767:15,24	wildlife 5770:14,
volumes 5833:23	5827:21 5829:4,	5950:4 5955:12,	weigh 5949:23	15,22 5774:15
5961:24	5,17 5834:9,13,	13,16,18,20,21,22		5775:19,21
	1	I	1	1

5779:18 5784:16 word 5804:8 5789:4 5795:11, 20 5776:9,20,21 5789:4 5787:2, words 5803:8 5952:6,7,8,9 5777:24 5781:21 14.22,4 5787:2, swords 5767:3,21 5905:5,13 5779:24 5781:21 5808:4,5,15,17 5768:2 5783:20 5999:5,13 15,26 5786:6,7, 5812:4,11 5814:18 5827:14 5963:14 5790:5,9 5791:6, 5823:3 5826:10, 5894:18 5930:17 year-by-year 19 5789:13 5833:10 5845:6 sworkable 5777:7.8 5800:12,5 5914:4 5838:19 5800:1,2 5921:25 5934:48 5779:7.8 5803:12 05800:14 5923:4 592.2, syncked 581:10, 5801:5,24 5802:3 5801:5,24 5802:3 5923:4 592.2, syncked 581:10, 5801:5,24 5802:3 5801:14 5923:4 592.2, syncride 5976:12 5881:2 5832:1 5881:4 5832:3 594:11 5945:16, works 5866:24 years 5773:14 5803:12 5930:13, 594:12 5942:12 5940:7 works 5866:24 years 576:20 5881:16 5802:24 s381:12 5902:6 5940:7 works 5866:24 years 576:20 5958:20,24 wind 5895:7 work 5866:7 years 576:20 588:13 580:61 5953:20,552 s381:12 5902:6 5899:18 s889:10,8 588:14 5820:20			43		
5898:19 5901:26 worst-cased windy 5902:5 5899:18 Z wins 5953:19 worth 5965:25 zinc 5824:7 winter 5774:21 would've 5826:2 5832:4,18 5781:14,20 5767:20 5837:23 5838:18 5785:4 5788:3,26 wrap 5967:1 5839:10,18 sishes 5852:1 wrestle 5853:16 s898:24 5912:20, witnesses 24 5767:5,8 5914:19 5921:1 5967:17 5969:8 5768:9,10 zone 5775:3,4,23 somdering wrong 5846:19 5834:2 5851:4 5788:14,16 5862:25 5956:20 5893:24 5934:14 5808:19 5825:22 Y zoned 5808:12	5785:25 5786:10, 14,22,24 5787:2, 10,15 5789:5 5808:4,5,15,17 5812:4,11 5815:14 5820:20 5822:12,16 5823:3 5826:10, 22 5832:10 5833:10 5845:6 5858:19 5860:1,2 5886:26 5911:1, 16,18,24 5912:5, 10,14 5913:9,12 5915:5 5919:17 5923:4 5926:2 5933:25 5940:22 5942:12 5943:16 5944:11 5945:16, 19 wind 5895:7 5898:10,25 5901:22 5902:6 windblown 5870:2 winded 5779:22	5938:17 words 5830:8 work 5767:3,21 5768:2 5783:20 5814:18 5827:14 5836:11 5860:14 5865:5 5891:17 5894:18 5930:10 5947:17 5967:14 workable 5921:25 5934:4,8 worked 5814:10, 25 5912:19 5913:8 working 5767:12 5770:21 5812:2 5887:8 works 5866:24 world 5836:7 worried 5931:15 worsening 5940:7 worst 5795:12 worst-case 5861:9 5899:17,	5789:4 5795:11, 12,21 5798:16 5805:22 5914:4 5952:6,7,8,9 5959:5,13 5960:7,13 5963:14 year-by-year 5787:19 year-round 5789:6 years 5773:14 5779:7,8 5784:15,24 5806:14 5813:25 5831:2 5833:24 5841:11 5883:13 5888:13 5896:16 5952:7 Yewchuk 5857:20 5929:18, 24 5930:6 yield 5849:20 young 5775:2 5784:14 Youtube 5765:26	5777:5,16 5779:24 5781:21 5783:25 5785:8, 15,26 5786:6,7, 19 5789:13 5790:5,9 5791:6, 19 5792:18 5794:10 5795:26 5796:13,26 5799:20 5800:14 5801:5,24 5802:3 5803:20 5804:14 5805:15 5809:13, 23,25 5810:12 5814:16 5820:24 5843:21 5924:24 5931:18 5951:7, 11 5957:18 5958:20,24	
wins 5953:19 worth 5965:25 winter 5774:21 worth 5965:25 5781:14,20 5767:20 5785:4 5788:3,26 5767:20 5831:23 wrap 5967:1 witnesses 5898:24 5912:20, 5967:17 5969:8 written 5766:23, 5788:14,16 5768:9,10 5788:14,16 s862:25 5956:20 5788:14,16 5862:25 5956:20 5808:19 5825:22 Y 5942:20 5946:20 Y	5898:19 5901:26	worst-cased			
winter5774:21 5781:14,20would've 5767:205826:2 5832:4,18 5837:23 5838:18 $5785:4 5788:3,26$ 5831:23wrap 5967:1 wrestle 5853:16 $5839:10,18$ 5898:24 5912:20, 23 5913:10witnesses 5967:17 5969:8 $24 5767:5,8$ 5768:9,10 $5914:19 5921:1$ 5862:25 5956:20wondering 5788:14,16wrong 5846:19 5862:25 5956:20 $20ne 5775:3,4,23$ 5833:24 5934:14winesses 5942:20 5946:20Y $20ne 5808:12$	· ·				
201eu 3808.12	<pre>winter 5774:21 5781:14,20 5785:4 5788:3,26 5831:23 wishes 5852:1 witnesses 5967:17 5969:8 wondering 5788:14,16 5792:4 5806:9 5808:19 5825:22</pre>	<pre>would've 5767:20 wrap 5967:1 wrestle 5853:16 written 5766:23, 24 5767:5,8 5768:9,10 wrong 5846:19 5862:25 5956:20</pre>	5826:2 5832:4,18 5837:23 5838:18 5839:10,18 5898:24 5912:20, 23 5913:10 5914:19 5921:1 5929:1 zone 5775:3,4,23 5834:2 5851:4 5893:24 5934:14 5946:18		
year 5767:3,6 year 5767:3,6 5775:5 5794.16 5772:6,9 5773:1,	5954:12		zoom 5769:13		