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Concerns with Benga EIA results

Knowledge of the geological and hydrogeological regime and its influences (with a
heavy reliance on models attempting to mimic complex systems)

The use of “average” conditions (that do not honour the considerable range of
variability in historical records resulting in “not significant” impact ratings)

Geochemical implications for waste rock areas, SBZs, and mine related water bodies
(without a full exploration of potential effects and/or viability)

Certainty that mitigation measures will be successful (without clear evidence or
exploration of long-term feasibility)

Climate change considerations (that are not fully representative of conditions that could
occur and negatively impact the water balance and reliant ecosystems)

Benga’s assessment of impacts is predicated on modelled results



Models in the context of decision-making

Models are a gross simplification of natural geological, hydrogeological, hydrological, and
geochemical conditions (it is hard to mimic nature with high degree of accuracy).

Models require a suitable amount of base information to reduce assumptions and lead to
better results (less data = less accuracy).

Model outputs are highly influenced by complexities in actual conditions, and are subject
to propagating errors where conditions are not well-known or constrained.

Models produce non-unique results, with similar results being achieved using different
combinations of input parameters (i.e. curve-fitting).

Models can be helpful in determining the direction things may go, but are challenged
when trying to simulate absolute magnitude.

Models are only as good as the individuals building them, and are not meant to replace
human intelligence (different results will be obtained by different modellers, and some modellers
are better than others).



Model assumptions used by Benga (CR #3, pdf pg. 36, CIAR #42)

“For the purposes of the assessment, the entire rock/sediment package may be treated effectively
as a homogeneous, anisotropic medium”.

o an understandable assumption; however, the complexity of the strata and likely presence of active and
open faults and fractures will adversely affect this condition

“The system will largely behave as a confined aquifer, although it can effectively represent
unconfined conditions where these occur’.

o a reasonable assumption

“On the scale of the assessment, groundwater system flow, which is expected to occur dominantly
via fracture flow, can be approximated by an Equivalent Porous Media (EPM) model”.

o a reasonable assumption

‘K (hydraulic conductivity) is largely anisotropic, with highest K parallel to bedding planes/coal
seams and to thrust fault strike with lowest K perpendicular to bedding. In general terms, K, in all
orientations, decreases with depth, according to the model proposed by Wei et al. 1995”.

o the presence of faults and fracture networks acting a groundwater flow pathways will adversely affect this
assumption



Model assumptions (continued)

“‘Apart from preferential flow parallel to fault strike, there is no major fault acting as a significant
conduit and no major regional deep flow influences”.

o this is an unrealistic assumption; there is no proof to substantiate this claim as no investigation was
conducted

‘Recharge follows the same spatial trend with elevation as precipitation. The precipitation,
evaporation and evapotranspiration mechanisms are not explicitly modeled but assumed to be
integrated as “net recharge”. It is assumed that this approach will not unduly bias the model’.

o the assumption of recharge has not been substantiated with any documented or field-based evidence

“‘Water level data and creek flow data collected between late 2013 and early 2016 are
representative of the pre-mining steady-state conditions and long-term trends”.

o the time horizon used is in no way representative given the extreme variability noted in creek flows as
evidenced by the Water Survey of Canada gauging station “Gold Creek near Frank”



Complex geological setting
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Benga has indicated that the Project area is geologically and structurally complex, with fault and fracture control on
groundwater flow, including west-east faults (as reinforced by AQ#5 - Coalition - Cooley_veins_AAPG - Water
Topics.pdf). This type of conditions is nearly impossible to mimic accurately within a modelling framework.



Drainage patterns as evidence of fault patterns

“4 drainage pattern in which tributaries join at high angles, often approaching right angles, which
is common in areas with rocks of different strengths (thus resistance to erosion) and in areas with
regular series of folds (anticlines and synclines).”

Figure 1, PDF pg. 72
of CIAR #553

The occurrence of trellis-style drainage in the Project area is direct evidence of north-south and west-east
trending fault systems, which is consistent Benga’s site investigations. West-east faults have not been
included, explicitly, in Benga’s modelling.



Changing hydraulic conductivity conditions
From Figure 3-4, PDF pg. 214 of CR#3 in CIAR #42
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Benga’s groundwater modelling has not sufficiently considered the increase in hydraulic conductivity that will occur
when the mine pit is excavated (i.e. an order of magnitude or so vs. £50% used in model sensitivity analysis). The
K values in the model have been dominated by measurements in the coal zone (to be removed), but information is
lacking for the other formations.
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Benga has applied too much recharge (up to 50% or more) to certain parts of the model domain, which will
reduce the effects and extent of drawdown, and lead to lower magnitude baseflow reductions in some locations.



Transient Callbratlon Monthly Hydraulic Heads

(“Linear” Calibration)
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Despite Benga'’s contention that the model calibration is acceptable, comparisons of modelled vs. observed
hydraulic heads is not very good in some parts of the model domain. This leads to concern regarding the ability of

the model accurately simulate future conditions.
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Transient Calibration: Monthly Baseflow Variability
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Baseflow estimation is challenging at the best of times, and subject to a number estimation techniques that infer
rates from existing streamflow data (i.e. indirect method). Benga’s comparisons of modelled vs. observed results
over- or under-represents peaks and lows indicating that the model is not accurately representing timing and rate.




End of Mine conditions

0 2,000 4,000 8,0%)

— — eters
Legend
Budget rate at BC nodes ¢ Deactivated seepage node
m3/d (>0 inflow, <0 outflow) CJIModel Domain

° +9to +40 i— IMine Permit Boundary

° Oto+9 [ Historical Mine Footprint

e 9to0

e -86to-9

@ 660 to -86

From Figure 22-1, PDF pg. 221
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(re-oriented for easier viewing)

Removal of Grassy Mountain will permanently decrease the watertable by up to 430 m and “dry up” springs and
wetlands, but the model suggests sustained flow immediately adjacent de-activated seepage nodes which is

difficult to rationalize.
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Benga’s 400 m limit of drawdown around mine pit is overfly optimistic, and the occurrence of isolated areas of
drawdown outside the main area of drawdown is difficult to rationalize. The limit of 0-5 m drawdown is not defined.



Projected groundwater
residence time
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Benga’s Mean Life Time Expectancy (or residence time) of groundwater in the area of the Central and South
rock dumps, Sedimentation Ponds east of the mine, and the End Pit Lake is on the order of 0-10 years,
meaning contaminants originating from these areas could reach Gold Creek in a relatively short period of time.



Seepage risk
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Unlined rock dumps are situated in upland areas, up to 200 m above the creek valleys, which promotes a
significant downward flow potential. Unlined ponds are also located near, or on top of, tributary streams. Both
are situated on top of heavily fractured rock which translates to “high risk” for contaminant movement.



Modeled reduction in baseflow

Table 3-6: Monthly Base Flow Reduction, Baseline to LTC

Blairmore Gold
D1 BLO3 BCO7 BLO2 BCO03 BLO1 Crask GC13 GC09 GCo4 GCo02 GCo1 Crask
15 16 17 18 19 20 21 22 23 24 25 26 27
Month
Percent Percent Percent | Percent Percent | Percent Percent Percent | Percent Percent Percent Percent Percent
Change Change Change Change Change | Change Change Change Change Change Change Change Change
k) kg From PDF pg. 250 of
February 0.29% .
March 0.29% -13.4% -16.7% -11.1% -10.1% -9.8% -11.3% I -15.8% C R#3 In C IAR #42
April 0.12% 023% | -129% | -16.0% -11.9% -8.8% -18.62 -5.9% -5.8%
May 0.12% 0.20% 113% | -10.2% 9.8% . ' and
June 0.12% 0.21% ] \ -160% | -11.1%
July 0.12% 0.21% -16.2% -11.1% 2% -18.6%
August 0.12% | 021% | -132% | -163% | -11.1% 89% | -179% | -62% | -61% Table 2, PDF Pg. 80 in
September 0.12% 0.21% -13.3% -16.5% -11.0% -8.6% -17.4% -6.0% -5.9% C IAR #553
October 0.12% 0.21% -13.4% -16.6% -11.1% -8.2% -16.8% -5.8% -5.8%
November 11.1% -7.9% -16.3% -57% -5.6%
December -11.1% -7.8% -16.0% -5.6% -5.5%
Average
Transient 0.12% 0.23% -13.2% -16.4% -11.1% -10.1% -9.8% -10.7% -11.3% -8.4% -17.2% -5.8% -5.7%
Change
Seady Stass | oo 0.02% 13.1% 16.2% 10.7% 9.6% 9.2% 9.5% 11.3% 8.5% 17.5% 6.0% 5.9%
Change =u. =-.! 0 - . - » 0 - . 0 = -.. 0 =J. 0 - R =0. - o =-0.! =2J.

Benga’s reliance on “average” conditions under-represents the higher magnitude modeled impacts that occur to
certain stream reaches during critical times of the year (i.e. July to March low flow period).



Model sensitivity

Table 3-8: Sensitivity of Baseline “Linear” Model

Effect on Hydraulic

Effect on Base

order of magnitude lower than background

Parameter Parameter variation Head % NRMSE Flow
Reduced by 50% Null g
K&R
Increased by 50% Null g
Reduced by 50% Null Null
K
Increased by 50% Medium Null
Reduced by 50% g g
Recharge
Increased by 50% Null g
Isotropic (Kxy = Kz, K xy oriented horizontally) Null Null
] Isotropic within layers: K decreasing with
Kanisotropy | depth. No influence from bedding and coal g Null
seam orientation
Anisotropic: primary K (Kx and Ky) parallel to Null Null
bedding. No influence from thrust faults
) Low K Thrust faults (barrier to flow): 2.5 order Null Null
Geological | of magnitude lower than background
Structure -
Low K Thrust faults (conduit to flow): 2.5 T Null

From Table 3-9, PDF pg. 258
of CR#3 in CIAR #42

and

Table 1, PDF pg. 74 of CIAR
#553

Benga’s model is highly sensitive to recharge, so not getting this parameter correct will have serious ramifications
for the water balance calculations, baseflow reduction estimates, and resulting water quality modelling.



Impact to modeled outputs

PDF pg. 295 of CR#3 in CIAR #42

Table C-20: Relative difference (%) : Long-term closure sensitivity models to the long-term closure base case model

RIVER / CREEKS

IF"° v D1 |BL03 BCO7 BLO2 BCo3 BLo1 BRI™OT® |5cq3 Geos Geoa Geo2 ceor ool | Small  West  Crowsnest

Cree! reek | Creeks Creek River

Sensitivity: KIR ratio increased by 50%

Sensitivity: K/R ratio reduced by 50%

Sensitivity: Isotropic layer K distribution

Sensitivity: No influence from bedding / K decrs. With depth
Sensitivity: Kx = Ky (no influence from thrust faults)
Sensitivity: Faults with low K (Kxyz /2.5)

Sensitivity: Faults with high K (Kxyz x2.5)

Sensitivity: K increased by 50%

Sensitivity: K reduced by 50%

Sensitivity: R increased by 50%

Sensitivity: R reduced by 50% -34% -339 o -18%
Sensitivity: R Dump increased by 50% 6% 0% -1% 0%
Sensitivity: R Dump reduced by 50% 0% | 0% -4% -4% -4% -4% -4% 0% 0% 0% 0% -1% -1% -1% 0% 0%

PDF pg. 261 of CR#3: “It is conceivable that recharge values, and hence, base flow could vary by as much as
50% higher or 33% lower than currently estimated values, hence base flow reductions due to mining could vary by
a similar amount.”

Reducing recharge by 50%, which is more reasonable given documented values (i.e. less than 11%), results in a
decrease of 33-36% in modelled projections. This produces a further reduction in baseflow estimates provided in
the impact assessment (e.g. -20% becomes -27%).



Flow [m*s/month]

Monthly flow at Gold Creek near Frank — 05AA030

From PDF pg. 66 of CR#4 in CIAR #42 same Gold Creek data from Water Survey of
Monthly time series at Gold Creek Near Frank - 05AA030 Canada data portal
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Benga’s reliance on a protracted flow period (2013-2016) to capture pre-mining steady-state conditions and
long-term trends (or the range of variability) in stream flows is not sufficient to capture the magnitude and
duration of historical low flow conditions. This produces overly optimistic model results for baseflow
reductions and future water quality impacts.



Change in June snow cover over N. America
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Figure 5, PDF pg. 81
of CIAR #553

Benga has not considered how the continued loss of snowpack and increase in rain-on-snow events (resulting in
shorter & higher magnitude runoff periods and longer low flow periods) will influence future hydrologic conditions

and resulting water quality in Blairmore and Gold creeks.



Snow water equiv. (mm)

Influence of ENSO and PDO on snowpack & streamflow
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Benga has not considered the effects of recurring climate phenomena on their model projections for baseflow
reduction and future water quality in Blairmore and Gold creeks.



Tree-ring reconstruction of water-year flow

South Saskatchewan River, Water-Year Flow
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Benga has relied on selected return periods to bracket climate extremes. They have not considered, in their
model projections, results from paleo-records in southern Alberta that indicate significant periods (multiple
decades) of above and below average conditions.



Climate model projections for precipitation and streamflow
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Benga has not adequately addressed the anticipated shift in timing and magnitude of precipitation and streamflow
conditions in response to future climate change, and how this will affect their model projections. This includes
implications for shortening of return periods for extreme events (i.e. increased probability).



BC Approved Water Quality Guidelines: . .
Aquatic Life, Wildlife & Agriculture 2019 Threats to aquatic environment

Table 42B. Optimum temperature ranges of specific life history stages of salmonids and other cold-

water fishes for water quality guideline application. F rom F i g ure 5.20 _1 , P D F pg i 283 of Adde n d um 1 0 ,

Speci | incubation (°C) | Rearing («¢) | Migration (°C) | Spawning (°C)
Saimon Package 5, CIAR #251
Chinook 5.0-14.0 10.0-15.5 3.3-19.0 56-13.9 20
Chum 4.0-130 12.0-14.0 83-156 72128 BC-HO3
Coho 40-13.0 90-16.0 72156 44128 18
Pink 4.0-13.0 9.3-155 7.2-156 7.2-12.8 —— BC-HO1 . . . .
otk L T T S i Optimum range according to BC guideline
Trout
Brown 1.0-10.0 60-17.6 724128 14
Cutthroat 9.0-12.0 7.0-16.0 | 9.0-12.0 o 2
Rainbow 10.0-12.0 16.0-18.0 10.0-15.5 an 12
Char 2
Arctic Char 1.5-5.0 5.0-16.0 4.0 = -
Brook Trout 1590 12.0-18.0 7.1-128 E i
Bull Trout 2060 6.0-14.0 5090 5
Dolly Varden 8.0-16.0 ‘z .
Lake Trout 50 6.0-17.0 10.0 =
Grayling 6
Arctic Grayling 7.0-11.0 10.0-12.0 4090
Whitefish 4
Lake Whitefish 4060 12.0-16.0 >8.0 ‘
Mountain Whitefish <B6.0 9.0-12.0 <60 2 ‘ ‘
Other Species - | Lw__w : _—
Burbot 4070 156-18.3 06-17 v
White Sturgeon 14.0-17.0 140 g S8 i 9 9 9 i = 5 9 2 3 3 4 :c_’ = % a3 9
= Source: Water Quality Guidelines for Temperature: Overview Report (2001). 5' E 'Ef E :{ ﬁ- 2:" E\ 2 e% E 3 qE(P 6 8 E E =:EL E
;g‘;;ggghj;ﬂ;@*mﬂgl%g}%ﬂ

https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/water-
quality-guidelines/approved-wqgs/wgg_summary aquaticlife_wildlife_agri.pdf

Benga has not adequately assessed the impact to stream temperatures, DO conditions, and implications to WSCT
considering the anticipated increase in “Long Spells of +30°C Days” (AQ#2 - Coalition - region-crowsnest 30 degree
days - Geology Topics) and number of “Extremely Hot Days” (AQ#3 - Coalition - region-crowsnest +32 degree days
- Geology Topics) combined with changing flow conditions, longer low flow periods, and baseflow reduction from
mine dewatering and permanent lowering of the water table.




Influence of redox conditions on element
speciation, mobility, and toxicity
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Benga proposes to create and maintain sub-oxic conditions in the SBZs to sequester Se (with high efficiency), but
they have not considered how this might mobilize other harmful trace elements that will eventually discharge to
local water bodies. They have also not explored how Se mitigation success might be hampered by lower than
anticipated redox, or Eh, conditions (e.g. HSe", hydrogen selenide).
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Benga’s testing of the various bedrock formations indicates that mobilization of harmful trace elements is possible
under oxic conditions, but they did not investigate mobilization potential under sub-oxic or anoxic conditions. They
also did not assess mobilization potential from formations beneath the mine footprint, unlined rock dumps and
water management ponds.



Table B6, PDF pg. 127 of CIAR #3 in CIAR #42 aseline water quality

Table B6. Field Measured Parameters.

Table BS. Dissolved Metals Results
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MWI15-12-7 GW MEMS 2016 11.71 MEMS 32372016 FD 0.0285 <0.0005 0.00091 25 0.101 0000025 <0.0005 <0.001 <0.00025 0363 <0.000005 <0.0025 0.00122 <0.00005 0.000265 <0,005
GW MEMS 2016 6.69 MWIS115 W MEMS 7/29/2015 N 0.218 0.0003 0.0002 0.154 0.072 0.00002 0.0006 0.002 0.0002 0.141 <0.000005 0.0022 0.0004 <0.00001 0.0009 0.004
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v | IPIEEED 5 | Exova | N 0.008 0.0005 0.0002 0.09 | 0053 0.00009 <0.0005 0.003 0.01 <0.0001 0026 | <0.000005 | 0.0012 0.0038 <0.00001 0.0013 0.003
i - ! MEMS | 372172016 ALS N | 00164 | <0.0005 [ <0.0005 | 0.03 <0.05 <0.000025 | <0.0005 <0.001 0.047 | <000025 | 00093 | <0.000005 | <0.0025 0.00508 | <0.00005 0.00107 <0.005
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Value exceeds freshwater aquatic life guidelines i i MEMS 32172016 ALS N 8.8 <0.0005 | 000064 | 0455 <0.05 0.0004 0.0203 0.0106 <0.03 0.0044 <0.005 | <0.000005 0013 0.00358 | 0.000289 0.00188 0.0552

Value exceeds drinking water guidelines

e e SR G Table B8, PDF pg. 137 of CR #3 in CIAR #42

Benga has identified that the groundwater is quite oxygenated (oxic), and that there are already elevated
concentrations of harmful trace elements present in the area. This is an indication of their ability to be mobilized
under the right geochemical conditions.
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Benga has not assessed the dynamics of the water management ponds & end pit : > f‘
lake in relation to nutrient cycling (e.g. nitrate and phosphorous), stratification and ) e A
the creation of sub-oxic to anoxic conditions (including generation of GHGs), shift - AL
in trophic levels, and potential mobilization of redox-sensitive (and harmful) trace 0 L — 2

elements. ] _
Figure C.5.3-5, PDF pg. 251, Section C of CIAR #42



GoldSim modelling
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Unlike the groundwater numerical model, Benga has not provided a satisfactory explanation of how the GoldSim
model was configured, or how hydrologic and climatic variability has been included. Contaminant capture
efficiencies are also overly optimistic. Elevated levels of some harmful elements are noted for the water
management ponds, with levels approaching harmful values in the creeks.



Permit 107517
Annual Water Quality Monitoring Report Teck experience in the Elk Va"ey

March 29, 2019

AQ#4 - Coalition - Elk-Valley-Water-Quality-2018-Annual-Report - Water Topics.pdf; See also CIAR #854,
Transcript Vol. 17, pdf pg. 195-202

In addition to Se: excursions of Cd, Cr, Co, Ni, U, and Zn above Alberta guidelines for protection of freshwater aquatic life
(stations listed as “Receiving Environment” are shown in red):

€.g. « Coal Mountain: CM_CC1, CM_CCPD, CM_MC1, CM_MC2, CM_SOW, CM_SPD
« Elk Valley: EV_BC1, EV_GT1, EV_SP1
* Fording River: FR_CC1, FR_EC1, FR_EC1H, FR_FRCP1, FR_KC1, FR_LMP1, FR_LP1, FR_NL1H
* Greenhil: GH_CC1, GH_SC1, GH_WC1
 Line Creek: LC LC3, LC_LCUSWLC, LC_WLC
+ Lake Koocanusa: RG_DSELK, RG_ELKORES, RG_USGOLD

Note: Station LC_WLC (Receiving Environment — West Line Creek), in bold red text above, is listed in Table 4 of AQ#4 on pdf pg. 25
as “Receiving Environment — West Line Creek”, and is also located in the lower left inset panel on Map 3 (pdf pg. 160 of AQ#4 ) at the
south end of the Tech Operation. Concentration exceedances for freshwater aquatic guidelines are noted at this surface water
monitoring station for Cadmium (pdf pg. 4858), Mercury (pdf pg. 4860), Selenium (pdf pg. 4862), and Uranium and Zinc (pdf pg. 4864).

Benga has placed considerable focus on Se, and less so on others. However, there is direct evidence at other
nearby metallurgical coal operations mining the same rocks (Mist Mnt. Fm.) that the release of other harmful
trace elements is occurring, and at concentrations exceeding freshwater aquatic guidelines (including NORMS).



1.

Major conclusions

Benga’s conceptual models of the Grassy Mountain area are not consistent with
actual conditions, which are much more complex and variable than considered.

Benga’s findings are predicated on model simulations that are subject to many
assumptions and limitations that substantially affect the final results (e.g. overly
optimistic capture efficiency for Se in SBZs).

Benga’s physical and chemical models are constrained with limited information
(i.e. control points), and do not honour the range of variability expected for the
geologic, hydrogeologic, hydrologic, and climatic conditions of the area.

Benga’s models have concluded that the effect of drawdown from the mine
development, and release of contaminants to the local water bodies, will not
results in adverse impacts. This is predicated on overly optimistic conclusions.



Major conclusions

. Benga has not used a suitable range of variability in their assessment of
hydrology and climate consistent with historically-measured values or paleo-
records.

. Benga has not fully assessed how geochemical conditions will influence the
mobility and toxicity (i.e. speciation) of metals and trace elements likely to be
released from the mine development and closure landscape.

. Benga has relied on “average” conditions in many cases and has not sufficiently
provided conservative, or “worst-case” scenarios to support the decision-making
process.

. Benga is overly confident that their monitoring will be successful in detecting
contaminants originating from the mine and closure landscape, and that
mitigation measures will be successful well into the future.



Major conclusions

9. Benga has relied too heavily on “Adaptive Management” to deal with a limited
understanding regarding irreversible changes to the water table, water balance,
and geochemistry that will permanently impact area ecosystems.

10.Benga’s consistent impact ratings of “not significant” are inconsistent with the
removal of a mountain, re-distribution of the waste rock, creation of large Se
management areas, and permanent disturbance to the local watersheds.

11. The risk of creating another “Elk Valley” situation, where attempts are still being
made to mitigate the impacts, is “significant” and needs to be considered in any

decision regarding this Project.

Thank you



