JOINT REVIEW PANEL PUBLIC HEARING

IN THE MATTER OF Application Nos. 1844520, 1902073, 001-00403427, 001-00403428, 001-00403429, 001-00403430, 001-00403431, MSL160757, MSL160758, and LOC160842 to the Alberta Energy Regulator

GRASSY MOUNTAIN COAL PROJECT - BENGA MINING LIMITED

VOLUME 17

VIA REMOTE VIDEO

November 17, 2020

1		
1	TABLE OF CONTENTS	
2		Data
3	Description	Page
4		2444
5	November 17, 2020 Morning Session	3444
6	GARY HOUSTON, DANE MCCOY, MIKE YOUL, MIKE	3448
7	BARTLETT, CORY BETTLES, DAVID DEFOREST, SOREN	
8	JENSEN, MARTIN DAVIES, LEIF BURGE, DAN BEWLEY,	
9	Previously Affirmed	
10	STEPHEN DAY, NANCY GRAINGER, Previously Sworn	3448
11	(Water, including surface and groundwater	
12	management, quantity and quality, selenium	
13	management and aquatic resources, including fish	
14	and fish habitat and fish species at risk)	
15	Mr. Secord Cross-examines Benga Mining Limited	3448
16		
17	November 17, 2020 Afternoon Session	3538
18	GARY HOUSTON, DANE MCCOY, MIKE YOUL, MIKE	3542
19	BARTLETT, CORY BETTLES, DAVID DEFOREST, SOREN	
20	JENSEN, MARTIN DAVIES, LEIF BURGE, DAN BEWLEY,	
21	Previously Affirmed	
22	STEPHEN DAY, NANCY GRAINGER, Previously Sworn	3542
23	Mr. Secord Cross-examines Benga Mining Limited	3542
24	Certificate of Transcript	3651
25		
26		

	3443	
1	EXHIBITS	
2	Description	Page
3		
4	EXHIBIT CIAR 849 - AQ#1 - COALITION - AEP	3603
5	ENVIRONMENTALQUALITYSURFACEWATERS - 2014 - WATER	
6	TOPICS	
7	EXHIBIT CIAR 850 - AQ#2 - COALITION - AEP	3605
8	ENVIRONMENTALQUALITYSURFACEWATERS - MAR28 -	
9	2018 - WATER TOPICS	
10		
11	AQ#3 - COALITION - WILSON, J.L., & GUAN, H.	
12	(2004). MOUNTAIN-BLOCK HYDROLOGY AND	
13	MOUNTAIN-FRONT RECHARGE - WATER TOPICS	
14	AQ#4 - COALITION ELK-VALLEY-WATER-QUALITY-	
15	2018-ANNUAL-REPORT - WATER TOPICS	
16	AQ#5 - COALITION - COOLEY_VEINS_AAGP -	
17	WATER TOPICS	
18		
19		
20		
21		
22		
23		
24		
25		
26		
1		

		3444
1 2	Proceedings Taken via Re	emote Video
3	November 17, 2020	Morning Session
4		
5	A. Bolton	The Chair
6	D. O'Gorman	Hearing Commissioner
7	H. Matthews	Hearing Commissioner
8		
9	M. LaCasse	AER Counsel
10	B. Kapel Holden	AER Counsel
11		
12	K. Lambrecht, QC	Joint Review Panel Secretariat
13		Counsel
14		
15	T. Utting	IAAC Staff
16	E. Arruda	AER Staff
17	D. Campbell	AER Staff
18	T. Turner	AER Staff
19	T. Wheaton	AER Staff
20	A. Shukalkina	AER Staff
21		
22	M. Ignasiak	For Benga Mining Limited
23	C. Brinker	
24		
25	R. Warden	For Ktunaxa Nation
26	T. Howard	

_		3445
1	K. Poitras	For Métis Nation of Alberta
2		Region 3
3		
4	Chief B. Cote	For Shuswap Indian Band
5		
6	B. Snow	For Stoney Nakoda Nations
7		
8	R. Drummond	For Government of Canada
9	S. McHugh	
10		
11	A. Gulamhusein	For Municipality of Crowsnest
12		Pass
13		
14	M. Niven, QC	For MD of Ranchland No. 66
15	R. Barata	
16	J. Nijjer (Student-at-La	lw)
17		
18	B. McGillivray	For Town of Pincher Creek
19		
20	D. Yewchuk	For Canadian Parks and
21		Wilderness Society, Southern
22		Alberta Chapter
23		
24	R. Secord	For Coalition of Alberta
25	I. Okoye	Wilderness Association, Grassy
26		Mountain Group, Berdina Farms
1		

Ltd., Donkersgoed Feeder 1 Limited, Sun Cured Alfalfa 2 3 Cubes Inc., and Vern Emard 4 R. Cooke For Crowsnest Conservation 5 6 Society 7 G. Fitch, QC For Livingstone Landowners 8 9 C. Agudelo Group 10 For Timberwolf Wilderness 11 M. Sawyer 12 Society and Mike Judd 13 14 (No Counsel) For Barbara Janusz 15 (No Counsel) For Jim Rennie 16 17 S. Elmeligi For Alberta Chapter of the 18 A. Morehouse Wildlife Society and the 19 Canadian Section of the 20 S. Milligan 21 Wilderness Society M. Boyce 22 J. Gourlay-Vallance For Eco-Elders for Climate 23 24 Action 25 For Trout Unlimited Canada 26 L. Peterson

For Coal Association of Canada 1 R. Campbell 2 3 (No Counsel) For Alistair Des Moulins 4 (No Counsel) 5 For David McIntyre 6 7 (No Counsel) For Fred Bradley 8 9 For Gail Des Moulins (No Counsel) 10 For Ken Allred 11 (No Counsel) 12 (Not Present) 13 For Monica Field 14 (No Counsel) 15 S. Frank For Oldman Watershed Council 16 17 A. Hurly 18 C. Longacre CSR(A) Official Court Reporter 19 20 21 (PROCEEDINGS COMMENCED AT 9:04 AM) 22 THE CHAIR: Okay. Good morning, everyone. Just a reminder that live audio and video -- oh, 23 24 just making sure I'm not muted. Yeah. Just a reminder that live audio and video streams 25 26 and video recordings of this proceeding are available

1 to the public through the AER's website and YouTube. 2 Anyone in the virtual hearing room with their camera or 3 microphone turned on will be captured, and images and recordings of you and your surroundings will be 4 broadcast to a publicly available YouTube video. 5 6 If you have concerns about this, please contact 7 counsel well in advance of the time you're scheduled to 8 participate to explain your concerns. We will try to 9 accommodate your concerns considering the need for an open and transparent public process. 10 11 Is there any -- are there any preliminary matters 12 before we return to cross-examination? 13 Hearing none, Mr. Secord, you can continue your cross-examination of the Benga panel. 14 15 MR. SECORD: Good morning. Thank you, sir. GARY HOUSTON, DANE MCCOY, MIKE YOUL, MIKE BARTLETT, 16 17 CORY BETTLES, DAVID DEFOREST, SOREN JENSEN, 18 MARTIN DAVIES, LEIF BURGE, DAN BEWLEY, Previously Affirmed 19 20 STEPHEN DAY, NANCY GRAINGER, Previously Sworn 21 (Water, including surface and groundwater management, 22 quantity and quality, selenium management and aquatic resources, including fish and fish habitat and fish 23 24 species at risk) 25 Mr. Secord Cross-examines Benga Mining Limited 26 0 MR. SECORD: Ms. Grainger, I'd like to just

circle back on some of our discussion yesterday. 1 And 2 just to refresh your memory, I had drawn your attention 3 to the "Model Assumptions", Bullet Point 5, which says -- and -- and I don't think we need to turn this 4 5 up, but it says: (as read) 6 Apart from preferential flow parallel to 7 fault strike, there is no major fault acting as a significant conduit and no major 8 regional deep-flow influence. 9 10 I then referred you to Bullet Point 2 on PDF page 209, 11 the CR Number 3 in CIAR 42, which states in part: 12 (as read) 13 The north-south thrust fault systems are 14 modelled to impede flows in the east-west direction. 15 16 I then asked you yesterday: Do you agree that this configuration will have a profound effect on how much 17 drawdown will propagate outward to the west and east of 18 19 the mine pit? We have your answer on the record from 20 yesterday. 21 I then asked you, Please explain why the model has 22 been configured this way when we know there is evidence of active west-east faults based on the trellis-style 23 24 drainage pattern. And we have your answer on the 25 record from yesterday. 26 And then I asked you, Do you agree that the

1		trellis-style drainage pattern is a fault drainage
2		system and that this is typical in the mountains? And
3		we have your answer from yesterday.
4		MR. SECORD: So I would now like to have
5		the Zoom host turn up CR Number 3 in CIAR 42 at
6		PDF page 193.
7		And, again, this is in the if you could scroll
8		down to the bottom of the of the Section $2.2.2.4$,
9		"Fernie Group".
10	Q	MR. SECORD: And this is dealing with the
11		SRK model. It states there: (as read)
12		No testing data were obtained for the sales
13		of the Fernie group, which underlie the
14		Kootenay group rocks.
15		I take it that statement is correct, Ms. Grainger?
16	A	MS. GRAINGER: Yes, that's correct.
17	Q	And under Section 2.2.2.5, under "Thrust Faults", it
18		says: (as read)
19		While no testing data exists for the thrust
20		faults in the area of the project, it is
21		likely that these faults which strike
22		parallel to the Hog's Back Ridge likely
23		present a flow a hydraulic barrier to flow
24		perpendicular to them given the cataclastic
25		nature of these faults and the tendency to
26		form low permeability fault gouge.
1		

Г

1		Now, I would like to have the Zoom host pull up Aid to
2		Cross AQ Number 5, "Coalition", and it's described as
3		"coulee veins AAPG". And this is a paper entitled,
4		"Stable-Isotope Geochemistry of Syntectonic Veins in
5		Paleozoic Carbonate Rocks in the Livingstone Range
6		Anticlinorium and Their Significance to the Thermal and
7		Fluid Evolution of the Southern Canadian Foreland
8		Thrust and Fold Belt", by Michael A. Cooley, Raymond A.
9		Price, T. Kurtis Kyser, and John M. Dixon, published in
10		AAPG Bulletin, Volume 95, Number 11, November 2011,
11		pages 1851 to 1882.
12		Do you agree, Ms. Grainger, that the Morin Creek
13		tear fault is shown on Figure 2 on PDF page 4?
14	А	Yes, I see that there.
15	Q	And do you see that it is also shown on Figure 3 on
16		PDF page 6?
17	А	Yes, I see that on page 6 as well.
18	Q	And do you agree that the Morin Creek tear fault is
19		immediately east of Gold Creek and has significant
20		displacement along it?
21	А	It's located on the range to the east of the project.
22		I didn't review the information regarding the
23		displacement, but that's not substantial, I don't
24		think.
25	Q	Do you agree if we turn to PDF page 1, do you agree
26		that in Figure 10 on PDF page 12 the Mike Cooley paper

1		shows many of these east-west transverse faults?
2	А	It appears to.
3	Q	Right. And we see, in fact, Caudron Creek, which
4		actually runs through Ms. Gilmar's property; correct?
5	А	I'll take your word for that.
6	Q	Okay. Have you been to the mine site, Ms. Grainger?
7	A	I personally have not, but my team has.
8	Q	Okay. Do you agree that these faults don't have a
9		large displacement along them, but they are fractures
10		which allow fluids to move along them?
11	A	I'm afraid, Mr. Secord, I've had limited time to review
12		the paper, so I'm not familiar with how much
13		displacement has occurred upon on these features.
14	Q	Do you agree that these features can be seen in all
15		outcrops of competent sandstone layers on Grassy
16		Mountain?
17	A	I would disagree with that. I think it might be
18		helpful if we can go to CIAR 42, Consultant Report
19		Number 3, page 85. So there's several cross-sections
20		that are shown here, and the East-West 3, in
21		particular, is quite helpful. It shows the purple
22		outline of the bottom of the pit, and you can see
23		Blairmore Creek and Gold Creek are illustrated there,
24		and the rocks that are described in this paper,
25		Mr. Secord, are shown in the brown and sort of hatched
26		pattern, so occur on the range to the east. So it's

1 clear from this cross-section that they are at 2 significant depth underneath the project site. 3 I asked you if you agree that these fractures Okay. 0 4 can be seen in all outcrops of competent sandstone 5 layers on Grassy Mountain. You said you disagree, but, 6 in fact, you have never been to Grassy Mountain and 7 have not looked at these outcrops; is that correct? I'm saying that there's no evidence for these east-west 8 Α 9 features on Grassy Mountain, and that's because the 10 geology is fundamentally different between Grassy 11 Mountain and the Livingstone Range to the east. 12 Okay. But my question was that: Do you agree that 0 13 these fractures can be seen in all outcrops of 14 competent sandstone layers on Grassy Mountain? That 15 was the question. And you say you disagree, but, in 16 fact, you have never been to Grassy Mountain and looked 17 at these outcrops. Do I have that correct? Mr. Chair, I -- what I heard MR. HOUSTON: 18 Α 19 Ms. Grainger say is that her team has been on Grassy Mountain and has done extensive work there. 20 What I've 21 heard her say is that -- and she pointed out in this 22 cross-section that the formations that Mr. Second is 23 talking about are well below the bottom of the mine. So that -- that's the evidence that I heard 24 25 Ms. Grainger provide. 26 0 Okav. If we could turn to PDF page 12 of CIAR

1		Number 5 So Ma Crainger de vou have
		Number 5. So, Ms. Grainger, do you have
2		MR. SECORD: Do we have that up, Zoom Host?
3	A	CIR it's not Registered Document 5. It's Aid to
4		Cross 5; right?
5	Q	MR. SECORD: AQ Number 5.
6	A	Yeah.
7	Q	And if we go to PDF page 11 and scroll down. So at the
8		bottom of the first column, it states: (as read)
9		Regularly spaced, approximately 150 metre,
10		approximately 492 feet, east-west striking
11		deeply dipping zones of intense fracturing
12		and minor faulting transect. The north-south
13		striking limbs and hinge stones of
14		chevron-style folds in the vicinity of
15		Green Creek, Warren Creek, and Caudron Creek,
16		Figure 10. The fracture zones which commonly
17		contain one or more discrete but
18		discontinuous fault services are commonly
19		marked by gullies that form conspicuous
20		erosion features in the steeper slopes and
21		cliffs, Figure 10A and B.
22		Ms. Grainger, do you agree that the trellis-style
23		drainage is a direct indicator of this type of fault
24		influence?
25	A	MS. GRAINGER: I do not.
26	Q	If the faults are in the deep formation, then why are

1		they visible at surface?
2	А	Well, as I understand it, Mr. Secord, they are visible
3		at surface on the Livingstone Range, but they don't
4		occur on the Grassy Mountain.
5	Q	So you're saying that they are not visible at the
6		surface on Grassy Mountain?
7	A	Yes. If we go to page 23 of the PDF, at the bottom of
8		that page, there's a note or a sentence there that
9		reads: (as read)
10		The Morin Creek tear fault, Figure 3; the
11		Daisy Creek tear fault, Figure 5; and the
12		smaller transverse faults in the limbs of the
13		anticlines, Figure 10A, all terminate upward
14		within the lower part of Mount Head
15		Formation, which indicates these fractures
16		were formed in the late Mississippian during
17		deposition of the Mount Head Formation.
18		And then speaks of reactivation of those faults, but
19		also in the same time frame, these rocks are
20		substantially older than the rocks on Grassy Mountain.
21	Q	So what you're saying so what I understand you to be
22		saying, Ms. Grainger, is that we have evidence of
23		east-west faults in the Daisy Creek area directly north
24		of the project, we have evidence of east-west faults
25		adjacent to the project essentially to the east of the
26		project area, but magically, the model has been

	constructed in such a way to eliminate the presence of
	any east-west faults in the project area?
A	MR. HOUSTON: Mr. Secord, I think what
Q	Mr. Houston, my question is for Ms. Grainger
А	Was
Q	and under the rules of practice, I am entitled to
	ask a particular witness a question. Rule 23 of the
	AER Rules of Practice. Now, if she is incapable of
	answering the question, then the Chair can have another
	of your witness panel answer it. But she's supposed to
	be a geologist; she should be the one answering these
	questions.
A	Well, Mr. Secord, I think
	MR. SECORD: I'd like a I'd like a
	ruling, Mr. Chair.
А	I Mr. Secord, I'd like to be able to
	MR. IGNASIAK: Mr. Chair
	MR. SECORD: I'd like a ruling.
	MR. IGNASIAK: Mr. Chair, I think the panel
	is allowed to determine how the question's answered.
	Certainly there's nothing inappropriate with
	Mr. Houston providing an overview, and to the extent
	Ms. Grainger needs to expand on it, she can.
	THE CHAIR: I would suggest that
	Mr. Secord is entitled to ask Ms. Grainger the
	question, and if she's unable to respond or Mr. Houston
	Q Q A

1 wants to supplement the response, I think that is fine. 2 Mr. Chair -- Mr. Chair, what I Α MR. HOUSTON: 3 was going to say and what I was going to object to is 4 the characterization of us magically creating a model that ignores information. I -- I didn't think that was 5 6 an appropriate comment, and -- and perhaps Mr. Secord 7 could rephrase his question, and then Ms. Grainger can 8 answer it. 9 THE CHAIR: Okav. Go ahead, Mr. Secord. 10 0 MR. SECORD: So, Ms. Grainger, if I 11 understand your evidence, there are -- there is 12 evidence of east-west faults in Daisy Creek immediately north of the project area; correct? 13 I hadn't reviewed 14 Α MS. GRAINGER: I am sorry. 15 where the Daisy Creek tear fault is located. Do you know where Daisy Creek is in the project area? 16 Ο 17 Α Yes, I certainly know where Daisy Creek is located. And you agree that there's east-west faults adjacent to 18 0 19 the project area in Caudron Creek, the Morin tear 20 fault? 21 There, clearly from this paper, are east-west tear Α 22 faults that are located on the Livingstone Range to the east of the project site. 23 24 Okay. And to be clear, the model has been constructed 0 25 in such a way that there are no east-west faults in the 26 actual project area. Do I have that correct?

1	A	Correct. The the model does not include east-west
2		faults because there's no evidence of them on Grassy
3		Mountain. The fact that they are, you know that
4		they do occur on the Livingstone Range to the east in
5		different rocks than occur on Grassy Mountain, that was
6		taken into account when we constructed the model. So
7		there's no evidence for these features also occurring
8		on Grassy Mountain.
9	Q	And if I look at your CV which I don't know if we
10		need to turn it up, but it's at CIAR page 571, PDF
11		page 205 am I correct that you have degrees in
12		earth in the University of Waterloo earth science
13		program?
14	A	Yes. I have a bachelor of science from the University
15		of Waterloo in earth sciences, which was a
16		specialization in hydrogeology.
17	Q	Right. And you are a registered as a professional
18		geologist?
19	A	That's correct.
20	Q	And if we then go back to if we could go back, then,
21		to some questions I asked yesterday where we had
22		didn't make much progress, and maybe I can just refresh
23		your memory on those. This is dealing with adding
24		basically the proposition is that SRK added too much
25		recharge to the model domain. So I referred you to
26		and, basically, how will this affect the extent of the

drawdown in those portions of the model domain. 1 2 And I referred you to -- I referred you to PDF 3 page 183 of CR Number 3. I don't think we need to 4 But I drew your attention to -- the MAP turn it up. for the entire Blairmore catchment is estimated at 5 6 719 millimetres and Gold Creek, 777 millimetres. 7 I then indicated that SRK used the average number of 28 percent for recharge in its model. You seemed to 8 9 have some difficulty with that even though it is 10 clearly stated in the application that 28 -- the 11 28 percent number was used for recharge. So, 12 basically, we -- I said, The model will -- the model, 13 then, is saying that 28 percent of the Gold Creek 14 MAPA -- MAP will end up as recharge, and then do you agree that in some areas of the model, the recharge is 15 as high as 50 percent? And then we have your answers. 16 17 And then I said, Do you agree that the model 18 underestimates how bad the recharge can get in some parts of the mine site? And that's where we kind of 19 20 left off yesterday. 21 So I assume you've had a chance to look at the 22 modelling that SRK did, and so I'd like to continue 23 with that line of questioning. Do you agree, 24 Ms. Grainger, that by adding more recharge to certain 25 parts of the model domain, it will effectively reduce

the spatial extent in magnitude of drawdown simulated

26

1

2

for those areas?

You're on mute.

3 Α Sorry.

4 I was going to ask your permission, Mr. Secord, to 5 provide you the information that you'd requested 6 yesterday.

7 Sure. 0

So I wanted to provide one clarification first. 8 Α On 9 CIAR 42, Consultant Report Number 3, PDF page 179, we 10 reference -- and we don't need to bring this up. I'11 11 just reference it. But we do reference that the mean 12 annual precipitation at the property was determined to 13 range from 611 to 992 millimetres. The model then 14 used -- actually tested a series of equations to relate precipitation relative to elevation because that 15 description also talks about how there is a positive 16 17 correlation between precipitation and elevation. So 18 the precipitation increases with elevation.

19 And the information you were requesting yesterday 20 is on PDF page 215 of that same document.

21 Let's pull that up, then. 0

22 Yes. So on the left-hand side, it shows --Α

Maybe just wait till it's up. 23 0

24 Sure. Α

25 So on the left-hand side, it shows some of the 26 areas which were increased. So, for example, there was

3460

a clearcut area -- we talked about that yesterday -where precipitation was increased by a factor of 2 to represent the lower evapotranspiration.

1

2

3

4 On the right-hand side are two maps that show the 5 distribution of recharge that was applied to the model. 6 And as I said, there was a series of -- of 7 relationships that were tested between recharge and elevation, two that were selected as best producing or 8 9 matching the base flows that are observed at the site, 10 and these are the linear and the exponential functions. 11 So the map on the top shows the distribution of linear 12 recharge or the -- the distribution of recharge from 13 the linear equation that was applied to the model, and 14 then on the bottom is the exponential equation, the recharge distribution that was applied as a result of 15 that so that it's -- as I was trying to explain 16 17 yesterday, it's not a simplistic 28 percent. The 18 28 percent represent, essentially, the average across the site of the recharge -- excuse me -- that was 19 20 applied, but you can see that it's lower in some areas 21 and higher in some areas.

22 Q Right. Okay. So I think we will come back to that 23 figure in a moment or two.

24 Do you agree, Ms. Grainger, that these high 25 recharge values will certainly work to reduce the 26 magnitude of base-flow reductions reported in Gold Creek?

1

I think it's important to understand that the model 2 Α 3 actually is calibrated to the base flow. So the 4 observed base flow that was inputted into the model -the recharge was actually calibrated or modified in 5 6 order to reproduce the base flow that was observed, and 7 those were some of the -- we looked at the groundwater 8 plots yesterday that show the measured and model 9 output, but that's how those are generated.

10 So the intent is: There's a series of assumptions 11 that are built into the model as we best can represent 12 the physical characteristics of the site, and then 13 through a process of calibration, we modify those 14 assumptions in order to match the observations at the 15 So that would be specifically with respect to site. the base flow and then the hydraulic head that is 16 17 observed at multiple locations throughout the site. So I would like to get your answer, though, under oath 18 0 19 to this question: Do you agree that these high 20 recharge values will certainly work to reduce the 21 magnitude of base-flow reductions reported in Gold 22 Creek as a result of this mining project being 23 approved? So, in other words --24 Α I quess --

25 Q -- if it -- if it goes ahead based on this model and 26 these results, do you agree that these high recharge

_		
1		values will work to reduce the magnitude of base-flow
2		reductions reported in Gold Creek?
3	A	I do not agree, and the reason is because the recharge
4		that was utilized matches, within a statistical
5		accepted range, the observed base flow on the site.
б		And so I don't believe that the recharge that was used
7		is over is too high.
8	Q	Okay. Let's turn up PDF page 228 of CR Number 3 in
9		CIAR 42, Figure 5-14, "Monthly Base-Flow Variability".
10		And you'll see in the legend on the left-hand side of
11		Figure 314 the blue line is the observed Blairmore
12		Creek base flow, and the dotted line is the calculated
13		Blairmore Creek base flow, and then we have a
14		similar legend for Gold Creek.
15		How do you explain, Ms. Grainger, the considerable
16		difference between the models calculated versus
17		observed base-flow variability?
18	A	Well, there are differences. I think the intent is
19		that, on the whole, we've got a reasonable match. I
20		agree that some don't show as good a match, and we have
21		discussed in the model report that there are specific
22		areas where the model doesn't fit as well, but on the
23		whole, we believe it is representative.
24	Q	Do you agree that the model appears to consistently
25		overpredict monthly base flow in Blairmore Creek? So
26		if we look at, for instance, BC sorry, BLO3, BC07,

		5101
1		BL02, BC03, BL01, in every instance, we have the
2		calculated model calculated Blairmore Creek base
3		flow above the observed Blairmore Creek flow for most
4		of the period 2013 to 2016; correct?
5	A	I think what's observed here on these plots is that,
6		likely on a mean annual basis, the base flow is
7		similar. What we're not seeing is the model
8		representing the the peaks of recharge of
9		base-flow recharge.
10	Q	In fact, would you agree that the scale of the graph at
11		GC13 hides the base-flow variability so you can't even
12		see what it is?
13	A	I think the intent was to include a consistent scale on
14		all of the figures, not hide the information,
15		Mr. Secord.
16		MR. SECORD: Please turn up CIAR 42,
17		Section E, PDF page 103, Figure 5.1-1, "Overview of the
18		Mine Plan, Selenium Management Plan, and Surface Water
19		Management Plan". And this should be Figure 103. Do
20		we have is this Section E?
21		MS. ARRUDA: Mr. Secord, do you have a page
22		number?
23		MR. SECORD: Yeah. I had this as
24		Figure 5.1.1 [sic] in Section E. Let me just take a
25		look here.
26		Sorry. I must have typed in it was actually

1		CR Number 3. My apologies.
2		Thank you very much.
3	Q	MR. SECORD: So, Ms. Grainger, in this
4		legend, it shows the basically the end-pit lake; the
5		northeast sediment pond, or NESP; the east sediment
6		pond, ESP; and the southeast surge pond, the SESP; as
7		well as the saturated fill zones. In the legend,
8		they're shown as shown in blue; correct?
9	A	MS. GRAINGER: Yes, that's correct.
10	Q	Okay. And I was just curious, Mr. Houston. Yesterday,
11		I believe you when you were answering Mr. Yewchuk's
12		questions, you indicated to him that the entire mine
13		site was going to end up as a selenium SBZ landfill.
14		Do you recall saying that?
15	A	MR. HOUSTON: Yes, I do.
16	Q	And so do I understand, then, that that is
17		this is this actually changed, then? These areas
18		that are shaded blue, the saturated fill zones, are
19		they have they been superseded?
20	A	No, Mr. Secord. Essentially the the the SBZ
21		zones that you see there are the main volumes where
22		where water would accumulate, but the water physically
23		decants from the two zones in the north through
24		through the rock fill to the the zone in the south.
25	Q	But should the entire area shaded or covered by the
26		black project area line should that really should

3465

1		the entire area be shaded in blue, then, to be to
2		be to depict this saturated fill zone?
3	А	Yeah. No. I I understand your question. The
4		but in order to calculate the volumes and the and
5		the residence time in in the SBZ, we've we've
6		focused on those three areas. But the water does
7		physically flow through the rock from the two larger
8		pools in the north to the one in the south.
9	Q	I noticed yesterday you were mentioning Mr. Houston,
10		you were talking about Gold Creek and how some areas of
11		it have dried up in the past. You recall that
12		discussion?
13	A	It's not in the past, Mr. Secord. That's that's
14		happening in the current time.
15	Q	Sure. But I take it you you pulled up a photograph
16		of an area of Gold Creek that had dried out. You
17		recall?
18	А	Yes, a couple of them, actually.
19	Q	At what time of year were those photographs taken?
20	А	I believe one was taken in August, and the other may
21		have been taken earlier in the year.
22	Q	Okay. So August of do you recall what year?
23	А	2019, I believe.
24	Q	Okay.
25	A	Just a minute, Mr. Secord. We just want to
26	Q	No.

1 Oh, sorry? Α 2 No. That's fine. 0 3 Okay. Α I -- if you miss -- if you think it's important and you 4 0 want to change your answers, I'm not sure that it's 5 6 critical, but -- but come back to me if you -- if 7 you've got different information. T --Okay. Just -- just -- just I've got somebody waving at 8 Α 9 me, so I might have misspoke. I just want to confirm 10 what that was. 11 So, Mr. Secord, the photos were taken in September 12 of 2016. I was mistaken. 13 Yeah. Not a problem. 0 14 So you mentioned that -- that Benga is going to be 15 in a position where it can remedy these low flows that occurred in, for instance, these low-flow months of, 16 17 like, August and September. So looking at -- looking at the project map here that we have in front of us, 18 19 how is -- where is the water going to come from that 20 you're going to put into Gold Creek to augment the flow 21 so that we no longer see those dry areas that you pointed out? 22 So that's a really good question, Mr. Secord. 23 Α Yeah. 24 Thank you. And -- and I'm -- I'm happy to have the 25 opportunity to explain a bit more clearly. 26 What's happened at those sections of the creek is

that the creek has physically jumped out of its 1 2 historical channel, and that was probably caused during 3 the -- the flooding that occurred; I believe it's around 2013. And what happens in those areas is that 4 5 water actually spreads out and flows through the treed 6 area, but through many, many channels. So it's flowing 7 cross-country, if you will, not in a defined channel. 8 And because of that and because there is a gravel kind 9 of surface in those areas, the water actually is still 10 there, but it's below the surface in those areas. So 11 it's not a matter of creating more water; it's a matter 12 of diverting the water back to the main channel, having it concentrated in that channel, and -- and that will 13 ensure that there's water above the surface even during 14 15 the dry seasons.

So if I understand it correctly, then, Benga has 16 0 Okay. 17 no intention of augmenting the flow of Gold Creek by pumping water into the creek at some point, such as 18 19 GC10, for instance, or GC13? You're not going to run 20 a -- you're not going to run a hose from the end-pit lake and start pumping water into Gold Creek or taking 21 water from Blairmore Creek, for instance, and shifting 22 23 it over?

A No. We -- we did a -- we did an instream flow needs
assessment in -- in 2016, and that was fully reported
in -- I believe it's addendum -- it's -- it's Registry

1		Document 44, in any case. And we did an instream flow
2		needs assessment and determined that the amount of
3		water in Gold Creek is sufficient. What what's
4		going on at these sites is is not about the amount
5		of water; it's about the fact that the channel has been
6		damaged by by flooding and and the water is going
7		subsurface
8	Q	Okay.
9	A	in specific areas.
10	Q	So just to be clear, you're Benga's proposal, then,
11		to save the westslope cutthroat trout is has nothing
12		to do with augmenting the flow of water in Gold Creek
13		but to do some channelling work in some of those areas
14		where you took those photographs and try and improve
15		the channel? That's really what you're talking about?
16	A	That that is what is contained within our fisheries
17		offsetting plan, yes.
18	Q	Okay. If we could turn up CR Number 3, PDF page 242.
19		This figure is entitled "Figure 3-22, Predicted
20		Drawdown EOM", end of mine; correct?
21	A	MS. GRAINGER: Correct.
22	Q	And if we could just discuss the legend. If we could
23		just discuss the legend for a minute. You have
24		"drawdown in metre iso lines" and then "drawdown in
25		metres fringes". What does that depict, Ms. Grainger?
26	A	Well, the colouring just indicates the range of

1		drawdowns shown within that area. So the very light
2		blue shows the area where drawdown is predicted to be
3		between 5 and 30 metres, as an example.
4	Q	So what what are what are the iso lines?
5	A	I think it just refer well, the iso line, I'm
6		assuming that refers to the outermost line which is
7		where drawdown is predicted to be 5 metres.
8	Q	And the fringes?
9	A	Well, I think the fringes is the coloured portion which
10		just indicates that in that coloured area, it varies,
11		but it's obviously going from the 5-metre iso line on
12		the light-blue pattern towards the 30-metre drawdown
13		outline.
14	Q	So this Figure 3-22 shows the mine area as a sink;
15		correct?
16	A	Correct. It's representing the drawdown that's
17		occurring as a result of the mining.
18	Q	And the drawdown is, what, 300 to 300 to 430 metres?
19	A	Yes. The maximum drawdown is 430 metres at the very
20		deepest part of the pit.
21	Q	And then you recall we looked at that previous figure,
22		and I note that we have these areas that are
23		basically step out towards the bottom. You'll notice
24		how in the area of the northeast or the northeast
25		sedimentation pond, or the NESP, it looks like there is
26		a drawdown area of 5 to 30 metres. Do I have that

3470

-		ו/דע
1		right?
2	A	Sorry. I'm just quickly comparing the two maps. I
3		mean, I I think that's correct, but I'd have to
4		it doesn't because the two maps don't overlay the
5		features, it's
6	Q	Is there
7	~ A	harder to compare the areas.
8	Q	Is there any doubt in your mind that the area where we
9	~	see this 5- to 30-metre drawdown is in the area of the
10		northeast sedimentation pond, Ms. Grainger? Do you
11		want to go back to the previous document and take a
12		look at it?
13	A	MR. HOUSTON: Mr. Chair, we'll just take
14	A	MS. GRAINGER: No.
15	A	MR. HOUSTON: Sorry. We'll just take a
16		minute to to consult here, if you don't mind.
17		MR. SECORD: Maybe, Zoom Host, we can
18		just put back for flip back for a moment to the
19		Figure 5.1.1.
20	A	MS. GRAINGER: Mr. Secord, yes, I've
21		confirmed that that area in the northeast does coincide
22		with the northeast sediment pond location. Apologies
23		for my delay.
24	Q	MR. SECORD: Right. And then I'm assuming
25		you can confirm that the ESP let's go back to
26		Figure 3.1.1 sorry, 3-22 on PDF 242. Yeah.
1		

1 I take it you can confirm, Ms. Grainger, that --2 Yes, that --Α 3 -- that that -- that that second area where it steps Ο out in Section 30 is the east sedimentation pond? 4 5 That's correct. Α 6 All right. And that's the -- that's the area that is 0 7 directly in the -- in the northwest quarter of 30, which is directly to the north of Fran Gilmar's 8 9 property in the southwest of 30? You're familiar with where my client Ms. Gilmar lives? 10 11 I'm afraid I'm not, so I will take your word for that. Α 12 MR. HOUSTON: I -- I can confirm that for Α 13 you, Mr. Secord. I agree with that. 14 All right. And then I'm less certain about this, 0 15 Mr. Houston, but the area of the southeast surge pond, is that -- would that be in the area sort of towards 16 17 the south -- I quess this would be south and west -- or 18 I quess the north is going -- yeah. So it would be 19 essentially --20 South. Α 21 -- south of --0 22 Α Southeast. 23 South --0 Yeah. 24 Southeast surge pond, yeah. Α 25 0 Yeah. Yeah. Is that sort of in the vicinity of that 26 other drawdown area that we see on the --

1	A	Yeah.
2	Q	bottom left-hand side?
3	A	Yeah. Mr. Secord, this this model is obviously
4		assuming that those ponds are all empty, and so that
5		would be roughly the depth of pond that we're looking
6		at on this model.
7	Q	Okay. Can you tell me: What is the model actually
8		showing in the near the northeast sedimentation pond
9		and the east sedimentation pond?
10	A	As I just mentioned, Mr. Secord, the model's showing
11		yeah. So you want Nancy to Ms. Grainger to answer
12		this question?
13	Q	Well, maybe you maybe you have some expertise in
14		modelling. Are these edge effects?
15	A	These these are ponds that are empty, and and in
16		the immediate vicinity of the pond, it's going to
17		create a drawdown on the groundwater table.
18	Q	Okay. And, Ms. Grainger, do you know what "edge
19		effects" are in modelling?
20	A	MS. GRAINGER: Sorry. I was on mute.
21		Sorry. That is not a term I'm familiar with, with
22		respect to modelling.
23	Q	Mr. Jensen, are you familiar with the term "edge
24		effects" in modelling in SRK's modelling?
25	A	MR. JENSEN: I did not I'm not a
26		hydrogeologist, and I did not model this sort of thing,

		דודנ
1		so in the context of hydrogeological models, no, I am
2		not.
3	Q	So, Ms. Grainger, do you know if SRK have numerical
4		instability in their model which may be producing these
5		edge effects on
6	A	MS. GRAINGER: No.
7	Q	on in Figure 3-22?
8	А	My understanding, Mr. Secord, is that these are not
9		edge effects; they are a result of the inputs that were
10		entered into the the model with regards to the mine
11		activities.
12	Q	Okay. So do I understand, then, that as a result of
13		this SRK figure, 3-22, there is going to be drawdown of
14		up to 5 to 30 metres, very close to the Gold Creek, and
15		that it is going to pull water from Gold Creek?
16	А	This is identifying that there's drawdown in those
17		areas. It doesn't necessarily and, in fact, I can
18		find the references, but there was an exchange of IR
19		responses that looked specifically I know there's no
20		drawback from the creeks towards the mine.
21	Q	You know that Gold Creek flows essentially through
22		Fran Gilmar's property and then through the northeast
23		quarter of 30 and is essentially almost adjacent to the
24		east sedimentation pond? I take it you're familiar
25		with how the creek flows through the
26	А	I

1	Q	through Section 30?
2	A	Well, I can see it on the map, and I'm I've now been
3		made aware that that's where Fran Gilmar's property is.
4	Q	Right. And the creek itself would be would be less
5		than 100 metres from would be approximately, what,
6		100 metres from the east sedimentation pond?
7	A	It is quite close.
8	Q	And the creek is also within 100 metres of the
9		southeast surge pond?
10	A	MR. HOUSTON: I I can confirm that,
11		Mr. Secord.
12	Q	And the creek would also be within a hundred metres or
13		so of the northeast surge pond? This is Gold Creek.
14	A	Yes. I can confirm that as well.
15	Q	Okay. Why are you getting drawdown under a pond which
16		will likely be recharging the groundwater?
17	A	Mr. Secord, am I allowed to answer this question?
18		Because my response would be: The pond is sometimes
19		empty.
20	Q	So what's happening, then, the empty pond is drawing
21		down
22	A	As
23	Q	groundwater?
24	A	As Ms. Grainger pointed out, we have input operating
25		parameters from the project into the groundwater model,
26		and and at times, those ponds will be empty, and so

1		that that would affect the the groundwater in the
2		immediate vicinity of the ponds.
3	Q	Yeah. Near the near Gold Creek?
4	A	We've we've established that those ponds are near
5		Gold Creek, yes.
6	Q	Right. Okay.
7		If we could turn up CR Number 3, PDF page 246, in
8		Exhibit 42. And this figure is entitled "Predicted
9		Drawdown LTC" or "long-term closure"; correct?
10	A	MS. GRAINGER: Sorry. I was on mute.
11		Correct.
12	Q	So what is the what is the time frame for
13		represented by Figure 3-22, "Predicted Drawdown End of
14		Mine"? What period is that covering?
15	A	Well, "end of mine" is a snapshot immediately at the
16		end of maximum mining. I can get you the exact year.
17	Q	Okay. And then Figure 3-25 that we have up now, this
18		would be what this is at the end of the
19	A	This
20	Q	Sorry. Go ahead.
21	A	Yes. This represents the essentially the new
22		equilibrium, so it's long-term closure; it was a
23		steady-state model run. So it it represents the new
24		equilibrium at the project site.
25	Q	So if we study Figure 3-22 and Figure 3-25, the model
26		projects that the drawdown will be limited to

400 metres out for the mine pit area in all directions; 1 2 correct? 3 Correct. Yes. I mean, this figure doesn't show the Α edge of the -- the mine, so -- but it's -- it's 4 5 quite -- it's close, certainly, to the pit. 6 So if you, one, limit the conductivity in an east-west 0 7 direction -- which, Ms. Grainger, you said you have done in the model -- and, two, if you put more recharge 8 9 into the 1,500-hectare mine area that is realistic, do 10 you agree that you will get less drawdown of base flow 11 in Blairmore Creek and Gold Creek? 12 I guess I -- sorry. I'll just restate. I quess if one Α 13 was to apply too much recharge and reduce the 14 conductivity, then obviously it would impact the distribution of the drawdown. 15 Do you agree that this scenario had something to do 16 0 17 with how hydraulic conductivity values were selected 18 for the SRK model layers; i.e., the lower k-value in 19 the west-east direction as opposed to the north-south, 20 leading to more drawdown in a north-south direction? 21 I disagree with that statement. The sensitivity Α 22 analysis specifically looked at that condition, so the 23 conductivities in the north-south direction were about 24 half an order of magnitude higher than in the east-west 25 direction. And that was tested in the sensitivity 26 analvsis. So I'll just see if I can find a page number

1		for you.
2	Q	We are going to
3	А	So
4	Q	We are going to look at some of those tables.
5	A	Right. So PDF page 256, if I can. So under the "'K'
6		Anisotropy", the last case, so anisotropic basically
7		removes that influence of the thrust faults which
8		reduce the 'K' in XY or in the east-west direction,
9		and you can see that that had no measurable effect
10		or
11	Q	Right.
12	A	on on the heads or on the base-flow predictions.
13	Q	So do you agree that it is better for the Benga project
14		to have drawdown in a north-south direction rather than
15		an east-west direction?
16	A	What I'm saying is that the way the model was
17		constructed with that assumption doesn't actually
18		significantly affect the outcome. Had we not included
19		a reduced conductivity in the east-west direction, we
20		would've had a similar outcome of the model.
21		MR. SECORD: If we could turn up CIAR 793,
22		PDF page 150, and this is Transcript Volume 8 at
23		page 1896.
24	Q	MR. SECORD: And just while we're waiting
25		for that, Ms. Grainger, in relation to your last
26		answer, I would put it to you that the reason for the

model not showing greater impacts by removing the 1 east-west direction or faults is because SRK has been 2 3 putting and is putting too much recharge into the 4 project area. Would you agree with that proposition? 5 MR. HOUSTON: I don't think we agree with Α 6 that proposition, Mr. Secord. 7 Yeah. But --0 And -- and we've -- we've been discussing this for 8 Α 9 quite some time, and we haven't created a model based on what we want to occur. We're -- we're creating a 10 11 model based on the physical conditions at site. We've 12 calibrated it to site. The -- you know, the mean annual precipitation and the care that we've taken in 13 14 distributing that across the -- the site -- this is not 15 a grand design to create an outcome, Mr. Chair. This -- this is a -- a scientific and objective 16 17 modelling exercise that has resulted in outputs that we've discussed here. 18 19 Okay. Well, Mr. Houston, we'll continue to explore how 0 20 this model was put together, but first of all, let's 21 look -- we now have this transcript page up. And at 22 the top of -- at the bottom of page -- PDF page 150. So it says here: 23 (as read) 24 A shift in the intensity, duration, and 25 frequency, or IDF, of precipitation 26 events is anticipated according to Kuo.

1		And then if we go over the page to PDF 151, it says:
2		(as read)
3		How [so this is line 5.] How has the
4		anticipated change in the shift how
5		has the anticipated change to the IDF
6		been considered regarding the impacts to
7		westslope cutthroat trout habitat once
8		the Blairmore and Gold Creek watersheds
9		are significantly altered permanently by
10		mining operation?
11		[And then]
12		A Exactly as I've just mentioned,
13		Mr. Chairman, as once the mine is in
14		place, if there is an extremely dry
15		period and, again, thinking about the
16		westslope cutthroat trout, a drought in
17		Gold Creek under current conditions
18		would result in a number of places in
19		Gold Creek where the creek literally
20		dries up it doesn't dry up, but it
21		goes it recedes into the surficial
22		layer and becomes impassable for fish.
23		So, Mr. Houston, do you recall giving that evidence on
24		November the 5th to my questions on that day?
25	A	Yes, I do.
26	Q	And so if Gold Creek could literally dry up, as you
	~	

Г

1 said on November 5th, and run below the surface, what 2 if the SRK model is wrong and your mining operations 3 are capturing more than 20 percent of the base flow of 4 Gold Creek? Do you agree that fish, such as the 5 westslope cutthroat trout, are then going to be even 6 more threatened than they are now?

7 So, Mr. Chair, I -- I -- I think what's important here Α is to understand the difference between base flow and 8 9 total flow in the creek. When we capture water in the 10 mine, in -- in fact, it's a big sump, and we're pumping 11 water out of the mine, that does draw down the 12 groundwater table in the vicinity of the mine, and 13 Ms. Grainger and Mr. Secord have been discussing what those drawdowns look like. 14

15 But what we need to keep in mind is that when we pump the water out of the mine, it's got to go 16 17 somewhere. It doesn't disappear. Where does it go? It goes into the sedimentation ponds, it gets cleaned 18 up, and then it's put back into the creek. So although 19 20 the base flow, which is the flow in the creek that 21 comes from the groundwater, will reduce, that water is 22 still put into the creek. So it just goes through a different pathway through -- through the pumps and 23 24 the -- the pipes and the sedimentation ponds to come 25 back into Gold Creek.

26 Q So, Mr. Houston, if your mining operations are

capturing more than 20 percent of the base flow of 1 2 Gold Creek, will that result in more areas of the creek 3 drying up when they would normally be flowing? So as I've just explained, Mr. Secord, the water will 4 Α continue to go into Gold Creek, albeit through a 5 6 different pathway. I've also explained that the creek 7 is not actually drying up; it is going subsurface. So the water is still in the creek. The problem is the --8 9 the channel has been destroyed in certain areas, and 10 the water's being allowed to go subsurface. And of 11 course, the fish can't swim underneath the surface of They -- they have difficulty there. 12 the ground.

13 So we're going to do two things. First of all, 14 we're going to fix the -- the flow regime in the 15 channel by reconstructing the channel and putting the 16 water back where it has been historically. That's 17 going to give a contiguous path for the fish to follow.

And secondly, as we pump down the -- the groundwater table, as we pump out of the mine pit, we're going to be returning that water that we're pumping through the sedimentation ponds, and that will end up back in Gold Creek as well.

23 So there is no decrease in water. The water 24 doesn't disappear, is what I'm saying, as a result of 25 the mine.

26 Q Do you agree, Mr. Houston, that base flow is really

1		important for the fish and that if the model is wrong,
2		it could be catastrophic for the fish in Gold in
3		west in Gold Creek?
4	A	Well, base flow has is is important for two
5		reasons: Number 1, the the quantity of water that's
6		in the creek. And and I've just explained how the
7		quantity doesn't except for a a minor shift of
8		water from Gold Creek to Blairmore Creek, which we've
9		talked about extensively. But the water doesn't
10		disappear. So it it still arrives back in the
11		creek.
12		But the other the other important aspect to
13		base flow is in keeping some of the overwintering pools
14		open and and so that that is another factor.
15		We're well aware of that, and and and that's why
16		we're addressing overwintering pools, and that's why
17		we're monitoring groundwater around Gold Creek as part
18		of this project.
19	Q	Mr. Houston, I thought you said earlier that no water
20		was going to go to Gold Creek from the mine site?
21	A	No contact water, Mr. Secord. So "contact water" is
22		water that contains an elevated level of selenium.
23		That that occurs primarily in the ex-pit dumps where
24		we have the leaching of selenium, and that water would
25		be directed through the SBZ, which which will
26		eventually end up in in Blairmore Creek after the

water's been treated and tested.

1

2	Q	So do I understand it, then, that that that water
3		from the northeast sedimentation pond, water from the
4		east sedimentation pond, and water from the southeast
5		surge pond will be going to Gold Creek? Is that what
6		you're saying?

7 Two -- two out of three, Mr. Secord. Α Two out of three. So the -- the -- the ones that are labelled as 8 9 "sedimentation ponds" are ponds that are treating water 10 that does not contain elevated levels of selenium. Ιt 11 may contain sediment, which we would settle out in 12 those ponds. The one that you call the "surge pond" --13 the "southeast surge pond", that water is directed 14 towards the saturated backfill zone and is treated for 15 removal of selenium and eventually ends up in Blairmore Creek. 16

17 Q Okay. So how does the water from -- how long does it 18 take the water from the northeast sedimentation pond to 19 get into Gold Creek?

A After it's been tested for sediment and -- and cleared
for return to the environment, hours, days. It's a
short time period.

Q So how does it get there? Is it pumped into the creek?
A It'll likely fault -- flow through a -- a -- a channel
that we'll -- we'll create down to the creek.

26 Q 'Cause when I looked at your mine plan, it looked to me

1		like the northeast sedimentation pond and the east
2		sedimentation pond both were dam they had dam
3		structures around them; correct?
4	A	Yes. Absolutely. They're they're containment
5		structures. They're made to hold water, but there will
6		be a a a mechanism, probably, pumping into a a
7		channel to discharge that water to Gold Creek.
8	Q	So you've got a spillway?
9	A	Something like that, yes.
10	Q	And so how much and and will this then this
11		will then flow through overland, will it?
12	A	Yes, likely.
13	Q	Okay. And so when will it does seem very different
14		to the answer you gave me earlier about no water being
15		pumped into Gold Creek. Now you're telling me that you
16		will be pumping water from the northeast sedimentation
17		pond and the east sedimentation pond into Gold Creek at
18		some point?
19	A	So I I apologize if my previous answers weren't
20		clear. So let me be perfectly clear. Any water that
21		contains elevated levels of selenium will eventually
22		end up in the saturated backfill zone, and that water
23		will be treated, and when it is tested and determined
24		to be suitable for return to the environment, that
25		water will go into Blairmore Creek.
26		Water that is is not containing elevated

1		selenium or other metals which only has, potentially, a
2		sediment problem will go to the sedimentation ponds.
3		That sediment will settle out in the ponds, and then
4		that water, which doesn't have selenium or or other
5		elevated metals, will return to Gold Creek.
6	Q	And if it does if it does have selenium or elevated
7		levels of metals or other contaminants, then I take it
8		that that water would remain in the pond until it is
9		either treated or put into the saturated backfill zone?
10	А	That's right. We would divert that water to the to
11		the saturated backfill zone.
12	Q	All right. So if we could turn up Bullet Point
13		Number 7, PDF page 207 of CR Number 3. Bullet Point
14		Number 7 says: (as read)
15		Water-level data and creek-flow data
16		collected between late 2013 and early 2016
17		are representative of the pre-mining
18		steady-state conditions and long-term trends.
19		And this is again, this is the "Model Assumptions",
20		Bullet Point 7.
21		So if we could turn up PDF page 66 in CR 4 of
22		CIAR 42, Figure 28. And you will note, if we look at
23		the figure in the top left corner, it shows "Monthly
24		Time Series at Gold Creek Near Frank" running from
25		September 1975 to January 2012. And then underneath
26		that, we have "Annual Time Series at Gold Creek Near
1		

1		Frank", again, running from 1975 to 2011. Those are
2		the numbers depicted there.
3		So I don't know, Mr. Jensen, whether this is a
4		question for you, the hydrologist, but you will note
5		that in the top left-hand corner, the flow over many of
6		those years is less than 1 metre 1 cubic metre per
7		second per month; correct?
8	A	MR. JENSEN: That's correct.
9	Q	And if we look at the bottom of the bottom bottom
10		graph, we have flow of less than 0.4 cubic metres per
11		second per year in many of the in many of those time
12		periods or in several of those time periods; correct?
13	A	Yes, that's correct.
14	Q	So can you tell me: How is this 2013-to-2016 flow data
15		representative when we have data from the Gold Creek
16		Near Frank Water Survey of Canada Gauging Station that
17		provides historical information on a flow variability
18		from 1975 to 2012?
19	А	I I apologize, Mr. Secord. Would you mind repeating
20		the question?
21	Q	So I drew your attention to "Model Assumptions", Bullet
22		Point 7
23	A	M-hm.
24	Q	(as read)
25		Water-level data and creek-flow data
26		collected between late 2013 and early 2016

2 steady-state conditions and long-term trends. 3 So my question to you is: How is this 2013-2016 flow data used by SRK in its model representative when we 4 have data from the Gold Creek Near Frank Water Survey 5 6 of Canada Gauging Station that provides historical 7 information on flow variability from 1975 to 2012? So in -- in conducting the hydrological analysis for 8 Α 9 this project, we looked at not just the Gold Creek 10 station near Frank but all the regional stations to, 11 you know, do our best to characterize the hydrological 12 regime in the -- in the entire study area. And what -what's quite apparent from the flows in -- measured at 13 14 Gold Creek is that they systemically -- flows measured 15 at that station are systemically lower in general than 16 at -- even at stations upstream on Gold Creek, which 17 means that there's evidence that whatever's measured at 18 that station isn't representative exactly of the flows in Gold Creek. 19

20 So, in fact, we were -- we were asked in -- in a 21 number of -- of rounds of information requests -- or it 22 was requested of us to rely more heavily on that 23 information, and time -- you know, through a number of 24 rounds of information requests, we had to push back 25 and -- and decline to do that 'cause we -- we 26 understand -- and we can -- we can demonstrate

are representative of the pre-mining

1

1		positively that the flow rates measured at that Gold
2		Creek station, that they're not there's something
3		else going on that that there's some
4		measurements a portion of the flow that's not
5		accurately measured at that station.
6		So so that that's what I I don't know
7		if I'm answering the question
8	Q	No
9	A	correctly here.
10	Q	So I think you are. I think what you're saying is:
11		Despite the fact that there are many years between 1975
12		and 2011 where the flow is less than 1 cubic metres per
13		second per month, you're saying that this multiyear
14		these this multiyear low-flow condition has not been
15		accommodated in SRK's model in SRK's model base-flow
16		calculations? Is that fair?
17	A	MR. HOUSTON: Could we could we just have
18		a minute, Mr. Chair, to discuss this? One minute.
19	A	MR. JENSEN: Mr. Secord, thank you for your
20		patience.
21		I it appears that I may have been referring to
22		a different it it appears that I may have
23		misunderstood your question. I'm being corrected by my
24		colleagues here. So I'll defer, if I may, to my
25		colleague Dr. Dan Bewley. Yeah. So he'll take
26		he'll take it from here.
1		

1	A	DR. BEWLEY: Hello, Mr. Secord. This is
2		Dan Bewley. Can you hear me?
3	Q	Loud and clear. Where are you located?
4	A	Hi. I'm in Calgary as well right now.
5	Q	Okay. Okay.
6	A	So yeah.
7	Q	I like your accent.
8	A	I I don't, but I appreciate the compliment.
9		So just to add some context. I was working with
10		Mr. Bettles here in formulating the instream flow
11		assessment. And as I'm sure you're aware, the instream
12		flow assessment uses streamflow data as one of its key
13		inputs. Okay?
14		So in the instream flow assessment, we go into
15		depth around how stream flows specifically in the
16		channel because that's what we care about in terms of
17		modelling fish habitat in the channel itself. How
18		we characterize how conditions have changed spatially
19		along each creek and temporally over the record period.
20		So to answer your question directly, if we could
21		turn to CIAR 44, please, Addendum 1, CR 6, Appendix A3,
22		and then if we can go to PDF page 37. Okay. So what
23		we're looking at here is essentially the same plot.
24		It's from Gold Creek since records began in 1975, and
25		I've highlighted two areas here.
26		One is in yellow, and one is in blue. The area in

yellow is essentially when our hydrometric monitoring 1 2 in the area began. It was at the very end of 2013 into 3 2014. It's a higher flow year. In the blue area, which is essentially when a lot 4 5 of our instream flow work was conducted, you can see 6 it's obviously a dry year. So between those two 7 periods, we have quite a high year and quite a low year captured in the data. And that kind of puts it into 8 9 context over the longer term since those records began 10 in the mid-1970s. 11 Does that answer your question, or would you like 12 me to expand? 13 That's -- thank you. 0 No. 14 Now, I don't know whether this is for you, 15 Mr. Bewley [sic], or for Mr. Jensen. Do you agree that the importance of springs to the flow in Blairmore and 16 17 Gold Creeks has not been addressed very well in Benga's application? 18 Mr. Secord, it's Nancy 19 MS. GRAINGER: Α 20 Grainger. We did review springs in the hydrogeology 21 report, so we completed a field investigation and sampling program. All of the springs that were 22 23 identified on the project site were related to 24 historical mining activities. And we reviewed as well 25 any published data regarding springs in the area. So 26 that's the information that was available regarding

springs on the project site, if that's helpful. 1 2 Do you agree that numerous small springs are known to 0 3 exist in the area, and the discharge of groundwater at 4 surface forms wet area habitat as well as flow down the 5 flanks of Grassy Mountain down to the valley bottoms? 6 Α I don't know if it's helpful. We can pull up a map 7 that shows the wetlands that are mapped within the There are a very limited number of 8 project area. 9 wetlands that mapped, but we can look at that if that's 10 helpful, Mr. Secord. 11 Not -- not really. The guestion was: Do you agree 0 12 that numerous small springs are known to exist in the 13 area, and the discharge of groundwater at surface forms 14 wet area habitat as well as flow down the flanks of the 15 Grassy Mountain down to the valley bottoms? Mr. Secord, is there -- are 16 MR. HOUSTON: Α 17 you reading from a specific passage in our application 18 or --19 No, I'm not, Mr. Houston. I'm asking a question. Tf T 0 20 was asking -- if I was referring to your application, I'd have it up in front of you. 21 Trust me. 22 Okay. Α I'm not -- this isn't -- this isn't a test on your --23 0 24 what is it, 20,000 documents is it, or pages? I don't think we're doing that. So it's just a very simple 25 26 question. I would've thought Ms. Grainger could've

1		asked answered that.
2	A	Let let us just have a little discussion here, and
3		then we'll give you an answer.
4	Q	Maybe maybe maybe this question too: Every
5		headwater tributary starts at a spring; is that
6		correct?
7		THE CHAIR: Apologies. We appeared to
8		have lost the Zoom connection for a moment or two. I'm
9		not sure if everybody's able to rejoin now or not.
10		MR. SECORD: Mr. Chair, should we take our
11		mid-morning break
12		THE CHAIR: Yes. I think that's a
13		MR. SECORD: while we're
14		THE CHAIR: I think that's a good idea.
15		So let's take 15 minutes. It's 10:28. We'll resume at
16		10:45.
17		MR. SECORD: Thank you, sir.
18		(ADJOURNMENT)
19		THE CHAIR: So, Mr. Secord, before we
20		start, there was some kind of a disturbance in the
21		force just before that break. I lost my Zoom
22		connection, as did Mr. O'Gorman and a couple of AER
23		staff. It wasn't for very long. And the last thing we
24		recall before we lost our connection was you asking a
25		question, and the question was along the lines of: Do
26		you agree that do you agree that numerous small

1 springs are known to exist in the area and the 2 discharge and groundwater surface forms wet area 3 habitat? And then that was kind of the end of what we 4 heard. 5 So if we could maybe just back up, and if there 6 was a response provided to that question, if it could 7 be repeated. I think where we were 8 MR. SECORD: Yeah. 9 was they wanted to break and discuss it. 10 THE CHAIR: Okay. 11 MR. SECORD: So it looks like you didn't 12 miss anything at all. THE CHAIR: 13 Thank you. Okay. 14 Α MR. HOUSTON: So -- so, Mr. Chair, we'll --15 we'll provide an answer to that question now, just to make sure everybody's on the same page. 16 17 But before we do that, Mr. Secord, you and I had a discussion about whether the sedimentation ponds were 18 within 100 metres, and we've -- we've confirmed over 19 20 the break that they're more than 100 metres but close 21 to 100 metres away from Gold Creek. Just -- just to be 22 clear, they're not closer than 100 metres; they're --23 they're approximately 100 metres away. 24 MR. SECORD: So, Ms. Grainger. 0 Okay. 25 Α MS. GRAINGER: Thank you. 26 We don't need to turn to it, but in CIRA --

CIAR 42, Consultant Report Number 3, PDF page 34, there 1 2 is a discussion and a review of natural springs within 3 the project area as part of the hydrogeology assessment 4 So that reviews known information about report. 5 springs in the area. In short, there are only a small 6 number of springs that were identified within the 7 project area itself, and they are all related to historic mining activities. 8

9 So within the upper portion -- not talking about 10 the creeks themselves or along those -- the creek 11 valleys, but within the upper portion of the project, 12 there's a very limited number of springs that have been 13 identified in the project area.

14And I'd like to ask my colleague Mr. Bettles to15add to this response.

16 A MR. BETTLES: Hi, Mr. Secord. Apologies. I
17 was on mute for a second there.

To follow up to Ms. Grainger's response, we've -through our field surveys along Gold Creek, we have noted base flow that daylights and enters into Gold Creek itself, but we have not documented any habitat that you could construe as being off channel or what have you that would provide that extra habitat for westslope cutthroat trout.

Q Okay. I think probably for Ms. Grainger. Do you agreethat the flow from these features adds directly to the

creeks via tributary drainage and provides base-flow 1 2 contributions to the streams? Mr. Secord, I can -- I'll try to answer your question 3 Α 4 The -- the tributaries along the west side of for you. 5 Gold Creek are, for the most part, ephemeral, so at 6 times, they may offer some -- some contribution, but it 7 would be very little that they are contributing. Ι will point out that the Caudron Creek from the east is 8 a major contributor to Gold Creek. 9 10 Q Do you agree that very few springs -- only six were 11 assessed during the preparation of Benga's application? 12 MR. HOUSTON: So, Mr. Chair, if I could sum Α 13 up a little bit what we've heard here, that -- that 14 there are -- there are very few springs high up in the project, but if you look right along the banks of Gold 15 Creek, there are a number of places where -- we 16 classify it as "base flow" is visible coming from the 17 side of the creek, and -- and I understand that those 18 are the features that Mr. Secord is describing here, 19 20 and -- and so we -- we would've evaluated those as part of the base-flow contribution to Gold Creek. 21 So, Mr. Jensen, given their importance, why were so few 22 0 springs assessed, and how does this speak to the 23 24 accuracy of the SRK groundwater modelling? 25 Α MR. JENSEN: Mr. Secord, I'm afraid I have 26 to defer that question to my colleagues. Again, I did

		5777
1		not do the groundwater model
2	Q	But
3	A	assessment.
4	Q	Okay. Well, is it would springs be part of
5		hydrology or hydrogeology?
6	A	MS. GRAINGER: Mr. Secord, I can answer.
7		So the springs were reviewed and examined both
8		from published information and part of field surveys
9		as part of the hydrogeology portion of the baseline and
10		the assessment. And that's in the section that I
11		referred to just earlier. We reviewed all the springs
12		that were on record and that we could identify within
13		the project area on the project site, so those are
14		described. And there's a very limited number of
15		springs that were identified in the project site.
16	Q	So how does this speak to the accuracy of the
17		groundwater modelling?
18	A	I I don't think it has any impact on the groundwater
19		modelling. The the model does talk about the
20		springs that were monitored, as they're considered in
21		the model itself, but it means that all information
22		that we understand and know about the site was
23		considered in the development of the groundwater
24		numerical model.
25	Q	Okay. Just
26	A	MR. HOUSTON: If if I could just add to
1		

1		that.
2	Q	Just before that, Mr. Houston.
3		Do you agree, Ms. Grainger, that there have to be
4		more than just six springs, because all headwaters
5		streams originated at a spring area; correct?
6	A	So, Mr. Secord, that's precisely the point I was going
7		to just clarify, if I could. We have we have
8		included base flow in Gold Creek in in our
9		modelling, and we have and and I think a lot of
10		the features that you're referring to as "springs" may,
11		in fact, be a base flow that happens to be coming out
12		from from the bank or a little bit you know, at
13		the adjacent to to the creek. So we we've
14		included those in our modelling as as base flow.
15		I I'm just not sure if that was clear.
16	Q	Okay.
17	А	Base flow doesn't all come up from the bottom of the
18		creek. It it sometimes comes in from the side.
19	Q	Okay. So, Mr. Bewley, could you pull up that figure
20		again that you had us look at for instream flow needs?
21	A	DR. BEWLEY: Certainly. So can we go back
22		to CIAR 44, Addendum 1, CR 6. There we go. Thank you.
23	Q	Okay. So just to refresh your memory, are you familiar
24		with the SRK model?
25	A	At a basic level, yes.
26	Q	Okay. So we've already had this up on the screen we

1		don't need to pull it up Bullet Point 7 from PDF
2		page 207 of CR Number 3, which says, as part of the
3		model setup: (as read)
4		Water-level data and creek-flow data
5		collected between 2013 and early 2016 are
6		representative of the pre-mining steady-state
7		conditions and long-term trends.
8		So that's what SRK wrote in their model design.
9		I then had Mr. Jensen look at Figure 28. I think
10		that's right. Yes, Figure 28 we don't need to pull
11		that up from, basically, the flow records for Gold
12		Creek at Frank Regional Station and the low flows that
13		were shown there.
14		And then, Mr. Bewley, you came you came into
15		the picture, and you pulled up Figure 3.5 from
16		Section E this is from Section E of Exhibit 42;
17		correct? This is from the EIA?
18	А	MR. HOUSTON: That that's correct, Mr
19	Q	Okay. So
20	A	Secord.
21	Q	So as I understand it, you the modellers used 2013
22		and 2016 to capture some variability. So in that
23		period of time, you had those extremely high flows,
24		which are marked with the yellow line, and you had some
25		extremely low flows marked by the turquoise line;
26		correct? That's what you said, Mr I'm talking to
1		

1 Mr. Bewley now. 2 I -- I -- I understand that, Mr. Secord, but Α Yeah. 3 I -- I think what you're asking is a question that integrates across a number of fields. So it might be 4 5 more helpful if I provide a -- an integrated answer 6 here. 7 I don't think so, but I think you're going to do it 0 anyway, Mr. Houston. 8 9 Α You -- you understand me very well, Mr. Secord. 10 So what we have on this graph is -- the black line is the -- is the hydrometric station near Frank, and, 11 12 of course, the data goes back from 1975 up to 2017. 13 Since 2013, '14, we've had other hydrometric 14 information from Gold Creek based on other measuring 15 stations, monitoring stations, and that helps us to understand where the water's coming in in a more 16 17 detailed way. And -- and so what this graph shows guite nicely 18 is that -- that detailed information that we've used 19 20 for the -- the modelling of the subsurface flows is based on the detailed information from 2013 to 2017. 21 22 And what this shows is that that detailed information is truly representative of the range of flows that we 23 24 could see in Gold Creek. And that -- that's shown 25 because in 2014, we had a -- a high-flow year, and in 26 2016, we had a low-flow year. So by -- by capturing

1		the detailed information over that time range, we have,
2		in fact, captured the range of variability on on
3		that stream.
4	Q	Okay. So so, Mr I don't know. Mr. Bewley or
5		Ms. Grainger, do you agree that you have used two
6		and I think you misspoke, Mr. Houston, already, because
7		the modellers didn't use 2017. So
8	А	Yeah. You're right. Two thousand 2016.
9	Q	And so whatever.
10		Ms. Grainger, do you believe do you do you
11		agree that you have that basically SRK have used
12		2013 to 2016 to capture some variability in flow
13		conditions, but have failed to capture the multiple
14		years of low flow in the 1975-to-2012 record, and that
15		if base flow is reduced by drawdown and low flow occurs
16		over multiple years, what happens to the fish?
17	А	DR. BEWLEY: Can I Mr. Secord, this is
18		Mr. Bewley again. Can I add some context to the series
19		of low flows that you see on the graph in front of us?
20		Primarily, you know, the 1980s.
21		So let's let's add some context when we discuss
22		variability at a certain location. It's important that
23		we discuss the period in question, so here from 1970.
24		We've shown in other documents and maps and I can
25		guide you to one if you'd like Gold Creek has been
26		subject to a lot of anthropogenic disturbance, and by

1		that we mean forestry and agricultural activity as
2		well. And this was, we think, going on during this
3		kind of, you know, first half of the period in which we
4		see here.
5		So what that means is Gold Creek was more heavily
6		forested in this early section. As those disturbances
7		have escalated over time, then that would essentially
8		explain why we're trending slightly upwards over the
9		long-term period at Gold Creek.
10		If you do you want to see a map of disturbance?
11		I can direct you there if you'd like.
12	Q	What is the long-term MAD?
13	A	It's around .66
14	Q	And what does MA
15	A	depending on sorry.
16	Q	What does it stand for? What does "MAD" stand for?
17	A	"Mean annual discharge."
18		So .66 means 660 litres per second coming, on
19		average, through the year.
20	Q	Okay. All right. I think I think that's enough.
21		Given the list of length of questions I have,
22		Mr. Bewley, I'm I think I better press on if I'm
23		going to ask them all.
24		So I think, Mr. Houston, this is you'll be
25		happy to know this question's probably for you. The
26		saturated backfill zones, SBZs or SBZs; rock dumps and

water management ponds; sedimentation and surge ponds; 1 2 and the end-pit lake, or EPL, they will all be 3 established on top of bedrock; is that correct? 4 MR. HOUSTON: So all of the features are Α obviously on the site. We haven't done exhaustive 5 6 geotechnical investigation at all of the sites. So 7 some of the features we're going to want to go in before we do our detailed engineering and gather more 8 information about the -- the subsurface conditions. 9 10 Ο Sure. And in relation to -- I'm thinking in relation 11 to the northeast sedimentation pond, the south --12 sorry, the east sedimentation pond near some of my 13 clients' properties, they would be established on 14 residual soils basically covering the areas outside of 15 the mine pit? So I -- those are areas where we -- we need to 16 Yeah. Α 17 do a -- a little bit more geotechnical investigation to determine just how -- how deep that goes. 18 Those features will be something like 10 metres deep at their 19 20 deepest point, and so we're -- we're going to have to 21 do additional drilling to understand, you know, where 22 is the bedrock in these areas. And do you agree there is a lack of information 23 Ο 24 regarding the physical and chemical nature of the 25 bedrock below the mine footprint? 26 Α I'm -- I'm not -- for what purpose, I -- I quess is the

question I --

1

		-
2	Q	Well, let's just take it one at a time. Let's say the
3		east settling pond. Do you agree that there is a lack
4		of information regarding the physical and chemical
5		nature of the bedrock below the east settling the
6		east sedimentation pond near Fran Gilmar's property?
7	A	So it it depends on what you need the information
8		for, Mr. Secord. If if it's for designing the pond
9		and the dam, absolutely we need to gather more
10		information to ensure that we build a safe structure,
11		and that would be part of the dam design.
12		Is that the direction of your question?
13	Q	I'm correct? There is a lack of information regarding
14		the physical and chemical nature of these water
15		management ponds that you're going to establish on the
16		east side of the project area?
17	A	Less chemical, more physical, but, yeah, we we would
18		need more information to do a detailed design.
19	Q	And and why why haven't you got that information?
20	A	Well, many reasons. One, it's a disturbance on the
21		landscape. Secondly, it's not required at this point
22		in time. We're confident that understanding the
23		general nature of the the terrain and the the
24		geological setting, that a design can be achieved. But
25		absolutely once once we get the go-ahead to go ahead
26		with the project, we'll have to gather more information

1		to do the detailed design for those for those dams.
2	Q	Do you agree that there is potential for trace elements
3		to be mobilized from the underlying soil and bedrock
4		for instance, the Fernie Group materials once the
5		water management ponds are in place near Fran Gilmar's
6		property and north of her property, the northeast
7		sedimentation pond?
8	A	By by virtue of having dug the ponds?
9	Q	So do you
10	A	Is that what you're
11	Q	Exactly. Do you
12	A	No.
13	Q	agree that there is a potential for trace elements
14		to be mobilized from the underlying soil and bedrock
15		materials once these water management ponds are in
16		place?
17	А	No. No, I wouldn't think so, Mr. Secord.
18	Q	Yeah. But you already said, We don't know anything
19		about the underlying soil and bedrock. So how can you
20		say that?
21	A	Well, because the interface between the the the
22		base of the pond and and the water is a a finite
23		area. It's it's not like the the the rock
24		spoil pile, for example, where you've got millions of
25		tonnes or thousands of tonnes of fractured rock.
26		What we're talking about is a a discrete pond,

_		
1		and and if if we were to determine that there was
2		a potential, we could always go to something like a
3		pond liner or a clay base to the pond to to minimize
4		any effects. Those those things are all things that
5		we will analyze when we do the additional geotechnical
6		work, and and they'll they'll inform the design
7		of the ponds.
8	Q	Yeah. So I think you were already asked whether there
9		were plans to prepare the grounds beneath these water
10		management ponds, and I think you said that you would
11		not be lining the structures. I think you
12	А	Again, that that's that's our that's our
13		preliminary assumptions based on what we understand
14		about the geology of the area. We we believe these
15		ponds are going to be sitting on bedrock, that it won't
16		be highly fractured or or, you know, it's not going
17		to be a really permeable base, and and so for the
18		purpose of a sedimentation pond, that that doesn't
19		seem to require a liner.
20	Q	But at this point, you don't know whether the bedrock
21		contains fractured shale or sandstone in the areas of
22		the ESP or NESP or SESP?
23	A	Yeah. So to be clear, the sedimentation ponds,
24		Mr. Secord, are are going to contain water that
25		is is not contaminated with any metals. It will
26		be have a high sediment load. If some of that water

seeps into the groundwater, it's -- it's not 1 2 something that would have an impact. 3 So yesterday you indicated that you would install 0 4 liner -- liners for the gravel bed reactors; correct? 5 Again, that's part of a gravel bed reactor design. Α 6 That's -- that's a typical design for a gravel bed 7 reactor, to have liners above and below the -- the -the part that's filled with gravel. So that's a 8 9 specific structure that would be designed to treat 10 water. 11 So if you can do that for the gravel bed reactors, why 0 12 can't you do it for the NESP, the ESP, and the SESP? 13 We can do a lot of things, Mr. Secord. Α The question is 14 whether it's required or not, needed to be protective of the environment, and -- and that's an assessment 15 that -- our preliminary assessment is it's not 16 17 required. But that will be reviewed when we get more 18 geotechnical information in those areas. So once the -- once the NESP, ESP, and SESP are in 19 0 20 place, will water leach out picking up metals and 21 taking them off to Gold Creek? 22 Mr. Secord --Α Maybe just do maybe one at a time. 23 Ο 24 Okay. Α 25 Yeah. 0 26 Α So the sedimentation ponds have clean water. It's --

1		it's no different than water falling on the ground
2		today. It it's going to go move through the
3		groundwater system, and and as you can plainly see,
4		there's there's no leaching effect that happens
5		naturally today. The
6	Q	Sorry. I don't understand that. I'm sorry.
7	А	Okay. If a if a raindrop falls on the ground
8		today
9	Q	Right.
10	А	some of the the water goes into the groundwater.
11		We agree on that
12	Q	Right.
13	А	right?
14	Q	Right. Right.
15	А	Okay.
16	Q	But so now you're now you're create now you're
17		creating a structure on top of
18	А	Yeah.
19	Q	on top of the ground at the NESP and ESP, for
20		example? You're going
21	А	Yes.
22	Q	to, then, impound water into that
23	А	Yes.
24	Q	structure?
25	А	Yes.
26	Q	You're not going to line these structures. The

1		question, then, is: Is there potential for trace
2		elements to be mobilized from the underlying soil and
3		bedrock and to actually then pick you know, for this
4		water to pick up metals and take them off to Gold Creek
5		as it infiltrates through these unlined ponds? That's
6		the question. I don't know whether it
7	A	Okay.
8	Q	may be maybe a geochemist we might want to answer
9		that for you. I don't know. Or maybe that's your
10		expertise as well. I don't know.
11	А	I'm I'm by no means an expert, but there is
12		groundwater there. We've been talking about drawdown
13		of the groundwater this morning. So today there is
14		groundwater. That means there's water in contact with
15		the rock beneath the areas where we'll put these ponds
16		today, and Mother Nature doesn't seem to have a problem
17		with that, so we're not doing we're not creating a
18		new circumstance. There will be there is water
19		there today; there will be water there when these
20		structures are built.
21	Q	But there's nothing like the amount of water that
22		you're going to put in place. Now you're creating
23		these artificial ponds at the NESP and ESP, and
24		presumably this water is going to then slowly what
25		is slowly basically is slowly going to leach out of
26		these ponds into the underlying hydrological regime.

1		Is that what you're saying?
2	A	It so the base of the pond the base of the ponds
3		is within the groundwater zone, Mr Mr. Secord. So
4		the water's already there. Today the water is there.
5	Q	Right?
6	A	And and there's no leaching happening, at least none
7		that Mother Nature can't manage.
8	Q	You're going to be putting, though, a lot more water in
9		place in those ponds, correct
10	A	It's not
11	Q	(INDISCERNIBLE - OVERLAPPING SPEAKERS) is there?
12	A	It's not about the quantity. It's the fact that the
13		rock is wet today, and so leaching is happening today,
14		and and the rock will be wet tomorrow. So it
15		it I don't know how else to explain it, Mr. Secord.
16	Q	Am I not correct that the GoldSim model says the water
17		in the ponds will be impacted by trace elements?
18	A	Again, the the the sedimentation ponds no,
19		you're not correct. That water is water that is not
20		contact water. It doesn't have trace elements.
21		If you're talking about the surge pond, the
22		specific function of the surge pond is a collection
23		point for water that has been in contact with the waste
24		rock dump and will have picked up trace elements like
25		selenium in the waste rock dump.
26	Q	And you would agree that Mother Nature is already

1 showing some trace elements in the groundwater based on 2 Benga's baseline monitoring? 3 Mr. Chair, in our baseline monitoring, we have detected Α 4 some trace elements. That's not unusual in -- in 5 topography like this. 6 How does the deficiency of information regarding the 0 7 soil and bedrock beneath the mine pit, rock dumps, water management ponds, the NESP, ESP, and SESP, and 8 9 the EPL provide the Joint Review Panel with any 10 confidence that we actually know what will happen once 11 everything is in place? 12 Mr. Chair, I -- I think it's important to understand Α 13 the difference between the decision in front of the 14 Joint Review Panel today and the ongoing regulatory 15 process that governs the -- the design and construction in particular of -- of ponds and -- and dams and other 16 structures on -- on this mine. 17 Regulation doesn't end with the JRP decision. 18 Regulation continues, and we will expect ongoing 19 20 monitoring. We're going to expect to submit detailed 21 design drawings to -- to the regulators for review and 22 approval prior to construction. So the -- the 23 regulation doesn't end with this decision, and we're 24 not expecting this JRP to evaluate the design of a --25 of our -- our water management structures. 26 MR. SECORD: Zoom Host, if you could please

1		turn up "Model Properties", Bullet Point 3, PDF 209 of
2		CR 3 in CA CIAR Number 42.
3	А	I missed the PDF page, Mr. Secord.
4	Q	MR. SECORD: 22 209. And it reads in
5		part: (as read)
6		'K' decreases with depth due to increases in
7		the lithostatic stress.
8		And am I correct, Ms. Grainger, that, put another way,
9		the model assumes that 'K' decreases with depth as a
10		result of the increase in lithostatic stress or
11		pressure from the weight of the overlying rock?
12	A	MS. GRAINGER: Yes, that's correct.
13	Q	So you and I can agree that up to 430 metres of Grassy
14		Mountain will be removed to gain access to the coal
15		with waste rock being redistributed in dedicated dump
16		areas?
17	А	That's correct.
18	Q	And you will agree that the removal of this overlying
19		weight of material will cause k-values in underlying
20		and adjacent formations to increase and, in some
21		cases to increase in some cases and decrease in
22		others; correct?
23	A	I think it's it's probably debatable. This is
24		relationship is not just based on the weight of the
25		rock, but also the fact that shallower rocks are
26		subjected to freeze-thaw cycles and develop joints

1 which increases the conductivity; right? 2 So just because we unload the rock and expose it 3 and it's now at a shallowing depth doesn't necessarily mean that the 'K' would immediately increase according 4 5 to its -- its new depth. 6 But it certainly could happen? 0 7 I think, you know, in terms of the numerical Α It could. model, had we altered the conductivity, it would've 8 9 affected a very small number of cells essentially in 10 the shell of the mine, so -- because once you get far 11 enough from the pit, they're still at -- at depth; 12 right? So it would really only affect cells 13 immediately adjacent to the mine pit. 14 And the net effect of that would be, I think, insignificant on the model results because it --15 those -- that small rim, if you will, of higher 16 17 conductivity values, if that occurred, would still be surrounded by a host rock of a lower conductivity 18 that's ultimately going to determine groundwater flow 19 conditions within the mine site. 20 21 So I think you answered my next question. 0 This 22 transient change in k-values -- this transient change in k-values has not been accommodated in the SRK model 23 simulation? 24 25 Α That's correct. It was not included in the model. 26 And then my understanding is that you've also answered 0

my next question based on your position as answering 1 2 the questions on the model for SRK. Given that it has 3 not been accommodated in the model simulation, your view is that this will not affect the model results 4 5 regarding groundwater drawdown extent? That's your 6 evidence? 7 Mr. Secord, I think I heard MR. HOUSTON: Α 8 the opposite, that it wasn't included because it wasn't 9 considered to be a significant factor, not -- not that 10 it wasn't included --11 Okay. I think, Mr. Houston --0 12 So -- so --Α Mr. Houston --13 0 14 Α Yeah. 15 -- you know, unfortunately, your interjections are Ο 16 delaying my cross-examination and taking up time that 17 probably doesn't need to be taken up. So I think it's pretty clear what Ms. Grainger's 18 The transient change in k-values has not 19 evidence is: been accommodated in the SRK model simulation. 20 My 21 question to her was very specific, really didn't need your interjection, and so I just want to get 22 Ms. Grainger's answers. 23 Ms. Grainger, given that it has not been 24 25 accommodated in the model simulation, I take it it's 26 your evidence that it will not have any effect on the

1		SRK model results regarding groundwater drawdown
2		extent?
3	А	MS. GRAINGER: My evidence was that it would
4		not have a significant influence on the predictions of
5		the model.
6	Q	Okay. So so it's not so thank you, Mr. Houston.
7		You were right.
8		So it's the case of not so you're not saying it
9		won't have any effect, but it the effect will not be
10		significant. Do I have that right?
11	A	That's correct. As I described, it would affect a a
12		small rim you know, a narrow margin of rocks in the
13		vicinity of the mine pit shell. The rock beyond would
14		remain at the original conductivity values, and so,
15		therefore, those lower conductivity host rocks, if you
16		will, would ultimately determine the behaviour of
17		groundwater and the drawdown predictions.
18	Q	Okay. Thank you for that.
19		And my apologies, Mr. Houston, but that's not an
20		invitation to jump in. Okay?
21		If we can turn into turn up Figure 3-4 on
22		PDF page 214 of CR Number 3.
23		So here we have the SRK Figure 3-4, "Boundary
24		Conditions"; correct, Ms. Grainger?
25	A	Correct. I don't know if you want to bring up CIAR 70,
26		PDF page 110. There was a revised version of this

1 figure provided. 2 I don't think we need to because I know that obviously Ο 3 the definition of -- and I'm familiar that they did 4 change it 'cause you -- it's hard to read these constant headnotes and --5 6 Α Correct. 7 -- seepage notes. 0 But I'm more interested in the -- I -- the figure 8 9 that really didn't change, which is in the bottom That's what I'm really wanting you 10 left-hand corner. 11 to focus on. 12 Sure. Α So in the lower left corner of Figure 3-4, the model 13 0 14 configuration shows that the area of the mine pit is dealt with using inactive cells and does not show the 15 16 presence of an excavation? 17 That's correct. Α And this is the SRK model's boundary conditions. 18 0 Red 19 cells are inactive from a flow perspective, but you 20 still see "Topography" there; correct? But it -- it removes them from the influence 21 Α Correct. 22 of the model. How does this model configuration impact the drawdown 23 Ο 24 simulation results given that it is not reflecting the 25 anticipated increase to local k-values beneath and 26 adjacent to the mine pit once the weight of Grassy

1		Mountain has been removed?
2	A	I believe we've discussed that already, Mr. Secord,
3		that were we to accommodate a a change in
4		conductivity in the model, it would affect, really,
5		just the cells, as you can see, adjacent to the
6		inactive ones, so a very small number of cells with
7		respect to the entire model.
8	Q	Okay.
9	A	Did that answer your question?
10	Q	I take it that's your view, and we've and we've
11		discussed that earlier; correct?
12	A	Correct. We've discussed that earlier.
13	Q	If we could turn up PDF page 210, Figure 3-2 of
14		CR Number 3. And this is the "Model Mesh"?
15	A	Correct.
16	Q	And if we look at the figure on the right-hand side,
17		we it shows the 40-metre vertical meshing; correct?
18	A	Yes, that's what's labelled there.
19	Q	And the ground the SRK groundwater numerical model
20		comprises nine layers that appear to be oriented in a
21		horizontal manner, yet the formation in the area is
22		tilted heavily toward the southwest; correct?
23	A	Correct. So the layers are orientated in a relatively
24		horizontal manner, but that was addressed through
25		essentially applying and there's a figure if I
26		can just find it. But applying the conductivities at

Dicta Court Reporting Inc. 403-531-0590

1 angles relative -- so on PDF page 212, and there are 2 several diagrams that show -- sorry. I'll wait till it 3 pulls up. 4 So you can see there the orientations of Yeah. 5 the conductivity tensors that are shown. So although 6 the units are -- appear to be flat-lying, the 7 conductivity is orientated in such a way as to be representative of the structure of the -- the 8 9 qeological units. How does the horizontal orientation of the SRK model 10 0 11 layers affect the model outcomes? 12 I think what's important is that the conductivities are Α 13 orientated in such a way that -- that that's what's 14 driving the flow in the model. 15 How does the draping of the model layers affect the 0 model outcomes? 16 17 Α Well, there was a structure superimposed. We can also 18 look to a description of the geological model that was utilized and input into this and then, in fact, 19 informed the orientation of these conductivity tensors 20 21 throughout the model. So the geological model was used 22 to represent Coal Seam 1 that was then applied 23 throughout the model, and that orientation of Coal 24 Seam 1 was, in fact, used to determine the orientation 25 of the conductivity tensors. So although the model 26 might appear simplistic with just horizontal layers, in

1		fact, the structure is is is reproduced within
2		this model in that method.
3	Q	If we could turn up the first full paragraph, PDF
4		page 74 of CIAR 533 from Dr. Fennell's report.
5		And while we're while we're looking for that
6	A	MR. HOUSTON: Should that be 553,
7		Mr. Secord?
8	Q	It probably should. Yes. Thank you.
9		So, Ms. Grainger, in relation to your last answer,
10		what about faults? I thought this was a fault-dominated
11		model.
12	A	MS. GRAINGER: Sorry. Mr. Secord, what would
13		you with respect to faults, what would you like
14		to me to explain?
15	Q	I thought the area was fault-dominated.
16	A	So there are sorry. I'm just going to find a
17		figure. In CIAR 42, Consultant Report 3, PDF 257,
18		there's a map that shows the distribution of the thrust
19		faults that was that were mapped within the project
20		site. These were considered in a separate sensitivity
21		analysis of the model, so they were assessed by both
22		increasing and decreasing the conductivity along these
23		zones by two-and-a-half orders of magnitude. So this
24		was a separate analysis to look at the impact of these
25		significant or, you know, these known features and
26		whether they have an effect on the model predictions.
1		

1 So those are just the page up on 256, I believe. 2 Geological structure at the bottom of the sensitivity 3 table describes the results of both increasing and 4 decreasing the conductivity along those structures and 5 the effect that that had on the hydraulic head and the 6 base flow. So it had a low effect by increasing the 7 conductivity and -- on hydraulic head, but in all other cases, it was seen to be less than 5 percent difference 8 9 to the model predictions. 10 Does that answer your question, Mr. Secord? 11 Yes. Thanks. 0 12 MR. SECORD: If we could turn up, 13 Zoom Host, CIAR 553, PDF page 74. This is the 14 Coalition submissions. 15 MR. SECORD: And just while we're waiting Ο for that, Ms. Grainger, you would agree with me that 16 17 the north-south faults were mapped to basically impede flow in an east-west direction? In the SRK model. 18 19 MS. GRAINGER: They were considered in two Α 20 different ways, as we've discussed. So the one way 21 we've just reviewed, which was they were specifically 22 evaluated as both a barrier and a conduit. So the 23 effect of that was reviewed through the sensitivity 24 analysis. 25 Okay. 0 26 MR. SECORD: Now, Zoom Host, are you able

-		5521
1		to pull up 553, CIAR 553?
2		THE CHAIR: This appears to be 553. Is it
3		not?
4		MR. SECORD: Oh, it is. I'm sorry. Thank
5		you.
6	Q	MR. SECORD: So in the first full
7		paragraph, Dr. Fennell writes: (as read)
8		Similarly, the assumption of an average
9		twenty of a 28 percent of mean annual
10		precipitation map as a as the recharge
11		input to the model is high given documented
12		mountain front-block recharge estimates,
13		i.e., a range of less than 1 percent to
14		38 percent with an average of around
15		11 percent and a geometric mean of around
16		6 percent.
17		And then he footnotes to a paper by Wilson and Guan.
18		And if we could pull up Aid to Cross AQ Number 3. This
19		is a paper by Wilson J. and Alan [sic] Guan, "Age 2004
20		Mountain-Block Hydrology and Mountain-Front Recharge".
21		And, Ms. Grainger, have you reviewed this paper?
22	A	MS. GRAINGER: I have reviewed this paper.
23	Q	And do you take do you have any issue with
24		Dr. Fennell's statement: (as read)
25		Similarly, the assumption of an average of
26		28 percent of mean annual precipitation MAP

Dicta Court Reporting Inc. 403-531-0590

1		as the recharge input to the model is high
2		given documented mountain front block
3		recharge estimates, i.e., range of less than
4		1 percent to 38 percent with an average of
5		around 11 percent and a geometric mean of
6		around 6 percent.
7	A	I have concerns with the applicability of this paper to
8		the project site. I note that the precipitation that's
9		identified for the sites that are reviewed in this
10		paper are generally considerably lower than we see at
11		Grassy. I also note the geology is substantially
12		different. These are typically volcanic and igneous
13		rocks as opposed to sedimentary. So I have concerns
14		about the applicability of this paper. And the the
15		statistics that you quote, I haven't recalculated
16		those.
17	Q	So do you disagree that the values reported in the
18		literature for mountain-front recharge are generally
19		less than 28 percent, with an average of 11 percent and
20		a geometric mean of 6 percent?
21	A	I think what's relevant is: Despite my concerns,
22		the the this paper identifies a range of percent
23		recharge, which is in within the range that we have
24		used in the numerical model.
25		Furthermore, I think what's important is that
26		recharge was part of the calibration process in order

1			
	1		to reproduce, within a statistical range, the base
	2		flows that are observed at Grassy Mountain. Recharge
	3		was modified, and so the model is internally consistent
	4		in terms of predicting base flow with the recharge that
	5		was applied.
	6	Q	Well, in fact, SRK have used recharge of in excess of
	7		55 percent of the MAP in certain areas of the mine
	8		site; correct?
	9	A	Well, as we've reviewed this morning, it it varies
	10		considerably across the model area.
	11	Q	Okay. All right. Well, let's turn up PDF 21
	12		page 213 of CR Number 3 and CIAR 42.
	13		So under the heading "Recharge", it states:
	14		(as read)
	15		Recharge for precipitation and snow melt is
	16		applied on the top slice and is assumed to
	17		follow a similar relationship to that
	18		observed between MAP and elevation. Recharge
	19		rates were calibrated to the base and
	20		alternative calibration models that matched
	21		the base-flow estimates for Gold Creek,
	22		Blairmore Creek, and Daisy Creek for both
	23		steady-state and transient conditions. The
	24		two recharge distributions, linear and
	25		exponential, corresponding to the base and
	26		alternative calibration models are shown in

1 Figure 3-5. The base-case calibrated average 2 recharge over the model domain is equivalent 3 to 28 percent of MAP in both scenarios and is generally consistent with observed base flow 4 in Blairmore and Gold Creeks. 5 6 What are "steady-state conditions", Ms. Grainger? 7 "Steady-state conditions" are basically one set of Α conditions and then allowing the model to run to steady 8 9 state, if that -- hopefully that answers your question. And what are "transient conditions"? 10 Ο Well, the "transient conditions" are inputting changes 11 Α 12 during the model run. So those would be, for example, 13 the variation in base flow that's seen seasonally. 14 Well, let's look again to the figure that you drew my 0 attention to earlier, Figure 5 -- 3-5 at PDF page 215 15 of CR Number 3. This is the "Groundwater Recharge 16 17 Distributions", Figure 3-5. Now, which is the base-case calibration model and 18 which is the alternate calibration model? 19 20 I believe the base case is the linear model -- or Α linear recharge distribution, and then the alternative 21 22 is the exponential. And both the base-case calibration model and the 23 Ο alternative -- alternate calibration model used an 24 25 average recharge of 28 percent of MAP; correct? 26 Α Yes. That's what's stated in the report.

1	Q	So let's just look at the recharge applied in the
2		middle reaches of Gold Creek.
3		MR. SECORD: And is it possible,
4		Zoom Master, to rotate the Figure 3-5 to the left?
5		And can we expand it a little bit? Beautiful.
6	Q	MR. SECORD: So if we look at the figure
7		on the left, is that the base-case calibration,
8		Ms. Grainger.
9	A	MS. GRAINGER: I believe so, yes. That's
10		linear distribution.
11	Q	Right. And if we look at the area which comprises
12		Gold Creek, do you agree that the recharge that the
13		model is applying to that area is 450 to 550 millimetres
14		of recharge or, put another way, greater than
15		55 percent of the mean annual precipitation for that
16		catchment?
17	A	Sorry. Can you remind me of the range that you were
18		specifying?
19	Q	The yellow.
20	A	Well, that's a portion of the area, but not the entire
21		catchment.
22	Q	I'm just looking where Gold Creek where Gold Creek
23		runs through the base-case calibration model area. I
24		see that that area is covered, for the most part, with
25		yellow.
26		So do you agree that in certainly in the middle

1		reaches of Gold Creek, the recharge applied is between
2		450 and 500 millimetres or greater than 55 percent of
3		the mean annual precipitation?
4	A	MR. HOUSTON: Can we just take a minute to
5		consult, Mr. Chair?
6	A	MS. GRAINGER: Mr. Secord, I think we spoke
7		yesterday, but there's an area and I think that's
8		the the area that is particularly high that was a
9		clear-cut area. So recharge was increased by a factor
10		of 2 within that area because of the lower
11		evapotranspiration.
12	Q	So the answer, then, Ms. Grainger, to my question is
13		that in the base-case calibration model, the recharge
14		applied to the middle reaches of Gold Creek is much
15		higher than 28 percent; it is in the range of 450 to
16		550 millilitres [sic] or greater than 55 percent of the
17		mean annual precipitation; is that correct?
18	A	It is certainly higher in that area where it was deemed
19		appropriate to increase the recharge because of the
20		physical features, yes.
21	Q	And certainly much higher than the numbers that are
22		listed in the Guan article that we looked at a moment
23		ago?
24	A	Well, as I
25	Q	Well above the 38 percent number that was in the Guan
26		article; is that fair?

1			
	1	A	Sorry. Which number in the Guan article?
	2	Q	Well, you said you said a moment ago, Well, we're
	3		not doing too bad here, Benga; we we're within the
	4		range. I mean, we're 28 percent. The range is less
	5		than 1 to 38 percent.
	6		So I'm just saying to you that in relation to the
	7		base-case model used by SRK, they are using a recharge
	8		of greater than 55 percent of the mean annual
	9		precipitation. That's even outside the range that you
	10		were noting earlier in my in response to that
	11		question about the Guan article; correct?
	12	A	So the 28 percent is on average across the site. That
	13		means there's areas that are lower and areas that are
	14		higher. I'm not familiar enough with the Wilson and
	15		Guan article to identify whether the ranges which are a
	16		maximum of 38 percent in that article, whether that's
	17		on the same basis of mean across an area or whether
	18		that was actually the maximum applied. But as I I
	19		noted previously, there are some concerns with the
	20		applicability of that paper to the site.
	21	Q	Okay. Would you agree that SRK have applied SRK, in
	22		its base-case calibration model, have applied too much
	23		recharge that will lower the effects of on the
	24		creek, specifically Gold Creek?
	25	А	So there's actually a sensitivity analysis with respect
	26		to changes in recharge, and I think what's significant

1 about the sensitivity analysis is, yes, the model is 2 sensitive to recharge as a whole; however, the change 3 The effect of the project on recharge is is the same. consistent percentage-wise regardless of the amount 4 of -- of recharge. So if you increase recharge 5 6 overall, there's still the same percentage change 7 produced by the project, and I think that's 8 significant. 9 Ο Yeah. 10 MR. SECORD: Let's turn up that sensitivity 11 Table C-20 at PDF 295 of CR Number 3. And analysis. 12 it's at the bottom. And if you can maybe -- that's --Maybe just a little less. 13 that's great. There we go. 14 MR. SECORD: So this Table C-20 says, 0 15 "Relative Difference Percentage Long-Term Closure 16 Sensitivity Models to the Long-Term Closure Base-Case 17 Model"; correct? That's the title of the Table 2 dash --18 Yes, I think that's the title. 19 Yeah. Α 20 0 Yeah. And do you agree that recharge is driving everything in Table C-20? 21 22 Well, I don't think it drives everything. I think Α But we agree that recharge is -- is 23 that's inaccurate. 24 significant in terms of base-flow outputs. 25 Can you please explain what the KR -- K/R ratio is in 0 26 Table C-20 and what purpose it serves?

1	A	Sorry. Just a second. What K-and-R ratio is
2		increased. So that's both the conductivity and
3		recharge are changed proportionally.
4	Q	And what purpose does it serve?
5	A	Well, conductivity and recharge are related. It often
6		makes sense to test them in a related way because as
7		you increase recharge, in order to maintain flow or
8		heads within the groundwater table, usually you need to
9		modify conductivity as well.
10	Q	Do you agree that 'K' is not really that dominant in
11		Table C-20 and that recharge is really the driving
12		factor?
13	A	I've indicated that, yes, we're well aware that the
14		model sensitivity does identify that recharge is
15		significant in terms of the model outputs with respect
16		to base flow.
17	Q	Now, I'm sure you or Mr. Jensen is aware that the SRK
18		model is already predicting a 10 to 20 percent
19		reduction in the base-flow contributions in seven out
20		of ten reaches assessed for Blairmore Creek and Gold
21		Creek? So you're aware of that? I mean, we can turn
22		up Table 3-6, if you want, but you're aware of that?
23	A	Yes, I'm aware.
24	Q	Okay. So using this sensitivity analysis, using so
25		if we go to reduction reducing the the recharge
26		by 50 percent so this is the third-last line of

Dicta Court Reporting Inc. 403-531-0590

1		Table C-20, sensitivity 'R' reduced by 50 percent, it
2		takes using 50 percent less recharge takes that
3		10 to 20 percent reduction down another 33 percent,
4		correct, for the Gold Creek reaches?
5	А	No. That's that's incorrect. So this is a relative
б		percent difference that's identified in this table.
7	Q	So what does that do so, for instance, on GC13, it's
8		36 percent; GC09, 33 percent; GC04, 34 percent; what
9		does that mean in terms of what effect, then, does
10		it have on the base flow contributions in seven out of
11		the ten reaches assessed?
12	А	Well, as I said, I think what's significant about this
13		information is it shows a the similar effect if
14		recharge sorry. I'm not stating that very clearly,
15		but
16		The percent reduction base flow from pre-mining
17		levels doesn't change significantly in the sense that
18		we see the same change if recharge is increased
19		across the board and then we apply the the effect of
20		the project, we see a same change in base flow as we do
21		in in the base case or our our the
22		simulation that we've presented here.
23	Q	So we've looked at the MAP for the entire Blairmore
24		catchment is estimated at 179 millimetres, and Gold
25		Creek is estimated at 77 777 millimetres. And the
26		model, as we know, has used this average of 28 percent.

3530

1		We see we've looked at that Figure 3-5, which shows
2		that in some in the middle reaches of Gold Creek,
3		the the recharge is greater than 55 percent of the
4		MAP. Can you tell me: How will this excess recharge
5		along the Gold Creek Valley influence the drawdown
6		extent calculated for the mine development?
7	A	Sorry. I'm I'm unclear in your reference to "excess
8		recharge".
9	Q	Yeah. So how will this excess recharge along the Gold
10		Creek Valley so the model isn't using an average of
11		28 percent; it's it's actually showing something
12		like 50 55 percent of the MAP. How will this excess
13		recharge along the Gold Creek Valley influence the
14		drawdown extent calculated for the mine development?
15	А	Sorry. I'm not I'm still not understanding your
16		question. I mean, the the
17	Q	Maybe maybe
18	A	Are you saying
19	Q	Maybe this question will be easier for you. Do you
20		agree that this excess recharge along the Gold Creek
21		Valley will make the drawdown extent calculated for the
22		mine development smaller?
23	A	Yeah. I'm afraid I'm unclear about what you're
24		referring to with "excess recharge". So you're saying
25		that the the re you're implying the recharge used
26		in the model was too large? Is that

1	Q	Well, the SRK model, as I understand it, used an
2		average of 28 percent; correct?
3	A	Correct, across the entire model area.
4	Q	Right. So we know looking at the Figure 3-5 that, in
5	, I	fact, in the middle reaches of Gold Creek the model is,
6		in fact, using recharge of 55 percent of the MAP;
7	,	correct? Or didn't you understand that from
8	A	Well, we haven't calculated what the average percent
9	I	MAP is for just the Gold Creek catchment.
10	Q	Right.
11	A	I think that's what you're referring to; right? And
12	1	you're suggesting that it would appear that it's
13		probably larger than 28 percent.
14	Q	Well, we know it is, Ms. Grainger. There's no question
15		about that, is there?
16	A	Well, I without having done the calculations, I'm
17	,	I would reserve my opinion on that.
18	Q	Well, how how
19	A	As I said, there are other areas where it's it's
20)	lower, so if we look at the entire catchment
21	Q	But that's not my that's not my question,
22		Ms. Grainger. I'm talking about the Gold Creek Valley.
23		And I wouldn't think you'd have to do too much in the
24	:	way of calculation. You just have to look at the
25		shading and the colours, all of which are over
26		28 percent, all of which are over the average. So how
1		

1		would this excess recharge along the Gold Creek Valley
2		influence the drawdown extent calculated for the mine
3		development?
4	А	And I guess the issue I have is the reference to
5		"excess recharge". The reality is the the recharge
6		that was applied was used to calibrate the model or
7		the you know, the model was calibrated on recharge
8		to produce the base flow that it observed on Gold
9		Creek.
10	Q	Do you agree that the 55 percent recharge applied to
11		the of the MAP applied to the middle reaches of the
12		Gold Creek Valley will make the drawdown extent
13		calculated for the mine development smaller?
14	А	Well, the the recharge was increased in certain
15		areas in order that the model was able to reproduce
16		within an acceptable range the base flow that is
17		observed along Gold Creek.
18	Q	Okay. Let's turn up table just before we break for
19		lunch, let's turn up Table 3-6 at PDF page 250 of CR
20		Number 3.
21		So this is the this is the monthly base-flow
22		reduction baseline to LTC.
23		And, first of all, Ms. Grainger, perhaps you can
24		help me with this. What is the significance of the
25		shading on Table 3-6?
26	A	Sure. The shading was applied, in my understanding,
1		

1		just to highlight for each location the highest period
2		of change.
3	Q	So dark blue is the lowest change, and dark red is the
4		highest change?
5	A	Sorry. That that's correct.
6	Q	Okay. And so if we look, for instance, at
7		MR. SECORD: Maybe we can just pull up very
8		briefly, Zoom Master, PDF page 80 and hydrology CR 4,
9		Figure 42. That's yeah.
10	Q	MR. SECORD: So we'll just we're just
11		going to touch on this very briefly, but this is
12		Figure 42, the water quality prediction model, and this
13		shows stations GC13, GC10, GC4, and GC2 on Gold Creek;
14		correct?
15	A	Correct, I see those there.
16	Q	And do you know where GC09 is located?
17	A	MR. HOUSTON: Sorry?
18	Q	GC09.
19	A	MS. GRAINGER: Mr. Secord, I'm just trying to
20		find another figure that would show those locations for
21		you.
22	Q	Sure.
23	A	So on CIAR 42, Consultant Report Number 3, PDF 184,
24		there's a figure, and it shows the Gold Creek stations
25		there. So you were looking for, I believe, GC09?
26	Q	Yeah, GC09.

-		3333
1	A	Yeah. So it's at the top of the page there.
2	Q	Just below GC GC just below GC
3	~ A	13.
4	Q	13; right?
5	۰ A	Correct.
6	Q	So if we could go back, then, to PDF 250.
7	×	So in this table, we see, for instance, for
8		Gold for Gold Creek, GC02, we see a 20 percent
9		reduction in May, a 19.3 reduction in June, an
10		18.6 reduction in July, a 17.9 reduction in August, and
11		a 17.4 reduction in September for that reach; correct?
12	A	Yes, that's what's included in that table.
13	Q	And this is basic this is, again, what the model has
14		generated for essentially the reductions to the base
15		flow or Gold Creek as a result of the mining operation;
16		correct?
17	A	Correct, at the time of long-term closure, yes.
18	Q	Right. And we've already heard from Mr. Houston that
19		in the months of September and October some reaches of
20		Gold Creek have run dry on the surface. You heard him
21		say that earlier today and yesterday; correct?
22	A	Correct.
23	Q	And then so if we look at September, if we look at the
24		reaches, GC13, 9, 4, 2, and 1, we see reductions of
25		11 percent 11.1, 11.5, 8.6, 17.4, and 6 point
26		6.0 percent during those times of low flow; correct?
		- -

That's the base-flow reduction at that time; correct. 1 Α 2 So then looking at your Table D-20, if you 0 Right. 3 reduce recharge by 50 percent, do you agree that it 4 will take these monthly base-flow numbers -- it will reduce them down another 33 percent? 5 6 So maybe I can help you. Putting it another way, 7 SRK is already using 28 percent of the mean annual precipitation for annual recharge. 8 If you take the 9 28 percent down by 50 percent to a 14 percent annual 10 recharge, that then would result in a 36 percent to 11 33 percent reduction in the base flow in Gold Creek. 12 So, Mr. Secord, my understanding of the data is that if Α 13 recharge was reduced by 50 percent, that across the 14 board -- and I -- it results in a reduction of 15 30 percent to these numbers or 35 as stated in the table. 16 This is C-20 17 Okay. Well, let's go back to the table. 0 at PDF 295 at the bottom. And what are you referring 18 19 to? 20 You're on mute. You're on mute. 21 Sorry. If you change only recharge and reduce it by Α 22 50 percent, then you're applying those numbers, yes. What numbers? 23 0 The 30 -- the -- the numbers for GC13 of 36 percent, 33 24 Α 25 percent, and so on. 26 Okay. 0

1	MR. SECORD: Mr. Chair, this would be a
2	good time to break for our lunch if that's agreeable.
3	THE CHAIR: Yeah. That's fine. So it's a
4	little after 12. We'll resume at 1 PM.
5	MR. SECORD: Thank you.
6	THE CHAIR: Thank you.
7	
8	PROCEEDINGS ADJOURNED UNTIL 1:00 PM
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

		5556
1	Proceedings Taken via Re	emote Video
3 4	November 17, 2020	Afternoon Session
5	A. Bolton	The Chair
6	D. O'Gorman	Hearing Commissioner
7	H. Matthews	Hearing Commissioner
8		
9	M. LaCasse	AER Counsel
10	B. Kapel Holden	AER Counsel
11		
12	K. Lambrecht, QC	Joint Review Panel Secretariat
13		Counsel
14		
15	T. Utting	IAAC Staff
16	E. Arruda	AER Staff
17	D. Campbell	AER Staff
18	T. Turner	AER Staff
19	T. Wheaton	AER Staff
20	A. Shukalkina	AER Staff
21		
22	M. Ignasiak	For Benga Mining Limited
23	C. Brinker	
24		
25	R. Warden	For Ktunaxa Nation
26	T. Howard	
1		

		3539
1	K. Poitras	For Métis Nation of Alberta
2		Region 3
3		
4	Chief B. Cote	For Shuswap Indian Band
5		
б	B. Snow	For Stoney Nakoda Nations
7		
8	R. Drummond	For Government of Canada
9	S. McHugh	
10		
11	A. Gulamhusein	For Municipality of Crowsnest
12		Pass
13		
14	M. Niven, QC	For MD of Ranchland No. 66
15	R. Barata	
16	J. Nijjer (Student-at-La	w)
17		
18	B. McGillivray	For Town of Pincher Creek
19		
20	D. Yewchuk	For Canadian Parks and
21		Wilderness Society, Southern
22		Alberta Chapter
23		
24	R. Secord	For Coalition of Alberta
25	I. Okoye	Wilderness Association, Grassy
26		Mountain Group, Berdina Farms

Ltd., Donkersgoed Feeder 1 Limited, Sun Cured Alfalfa 2 3 Cubes Inc., and Vern Emard 4 R. Cooke For Crowsnest Conservation 5 6 Society 7 G. Fitch, QC For Livingstone Landowners 8 9 C. Agudelo Group 10 For Timberwolf Wilderness 11 M. Sawyer 12 Society and Mike Judd 13 14 (No Counsel) For Barbara Janusz 15 (No Counsel) For Jim Rennie 16 17 S. Elmeligi For Alberta Chapter of the 18 A. Morehouse Wildlife Society and the 19 Canadian Section of the 20 S. Milligan 21 Wilderness Society M. Boyce 22 J. Gourlay-Vallance For Eco-Elders for Climate 23 24 Action 25 For Trout Unlimited Canada 26 L. Peterson

For Coal Association of Canada 1 R. Campbell 2 (No Counsel) 3 For Alistair Des Moulins 4 (No Counsel) 5 For David McIntyre 6 7 (No Counsel) For Fred Bradley 8 For Gail Des Moulins 9 (No Counsel) 10 For Ken Allred 11 (No Counsel) 12 (Not Present) 13 For Monica Field 14 (No Counsel) 15 16 S. Frank For Oldman Watershed Council 17 A. Hurly 18 19 C. Longacre CSR(A) Official Court Reporter 20 21 (PROCEEDINGS COMMENCED AT 12:59 PM) 22 THE CHAIR: Okay. Welcome back, everyone. 23 Mr. Secord, whenever you're ready, you can resume. 24 He's just taking his dogs out, MR. IGNASIAK: 25 Mr. Chair. 26 I see that. THE CHAIR:

		56	
1		MR. SECORD:	I had to get rid of the dogs.
2		Sorry, sir.	
3		THE CHAIR:	No worries.
4		MR. SECORD:	I have to say it's one of the
5		beauties of doing a Zoom	hearing. You know, I I
б		have to say, I'm becomin	g a fan. I never thought I
7		would say that, but	
8		GARY HOUSTON, DANE MCCOY	, MIKE YOUL, MIKE BARTLETT,
9		CORY BETTLES, DAVID DEFO	REST, SOREN JENSEN,
10		MARTIN DAVIES, LEIF BURG	E, DAN BEWLEY, Previously
11		Affirmed	
12		STEPHEN DAY, NANCY GRAIN	GER, Previously Sworn
13		Mr. Secord Cross-examine	s Benga Mining Limited
14	Q	MR. SECORD: I	n any event, panel, if I
15		if we could go to Mr. Ho	ouston's evidence about I
16		guess maybe we could pul	l up Exhibit CR 3, PDF
17		page 250.	
18		MR. SECORD:	Zoom Host, are you with us?
19		Thank you so much.	
20	Q	MR. SECORD: S	o, Mr. Houston, you mentioned
21		earlier that one of the	reaches of Gold Creek had
22		essentially completely d	ried out in September of 2016.
23		And with reference to wh	at the model predicts to be the
24		monthly base-flow reduct	ion baseline to LTC, can you
25		tell me, in relation to	what of these river reaches or
26		stations, that dry stret	ch was located nearest to, if

1 you could?

2 A MR. BETTLES: Mr. Secord, it's Cory Bettles.
3 I'll respond to your -- your question.

The -- the -- the -- there's two locations near 4 the town of -- the old historic town of Lille. 5 The one 6 that's documented is kind of right in the vicinity of 7 the -- of the historic coal waste pile, kind of just upstream of Morin Creek tributary. And then there's a 8 9 second one that is about -- about a kilometre just 10 upstream of that as well that goes -- that -- that does 11 go subsurface as well. And then more recently, as of this -- the last -- I don't know -- several months, 12 13 we've actually documented a third location that does go 14 to ground and is fully disconnected up near the -- the Gold Creek tributary GCT10 and 11. 15

16 Q Okay. So would that be -- so would that be between GC9
17 and C10?

18 A Mr. Chair, are you -- sorry. Mr. Secord, are you
19 referring to near the town of Lille, the -- the first
20 two examples I -- I shared?

Q So basically, Mr. Bettles, what I wanted to know is these reaches that Mr. Houston had indicated that had already dried up, which would -- which would be the nearest GC stations that we see on Table 3-6? Okay. Let me just -- I'm trying to find a map to go with that that --

1 Yeah. We --0 2 -- can be pulled up at the same time. Α 3 Yeah. We had that map. 0 4 Α Can we -- can you -- can you share the map, and I can 5 tell you which ones? That would be better to show you 6 off -- I can point on the map exactly which -- that has 7 the -- I just don't have that up in here. Ms. Grainger, I think, had the page number. 8 0 9 Α MS. GRAINGER: Yes. It's PDF page 184. 10 Α MR. BETTLES: Yes, please. Can we go to 11 184, please? And can we scroll down a little bit, 12 please? Thank you. 13 So if you -- if you look at the map, if you see 14 there is a -- a "GC2". That would be Lille. 15 Yeah. 0 That is -- that is --16 Yeah. Α 17 That would be near Lille. Q 18 Yeah, exactly. Α So the -- the first example I provided you, that 19 20 is -- that is the documented location where we've 21 identified it going to ground. And is -- is -- is that the -- is that the one you just 22 0 found this year? 23 24 No, not -- that is not. This is the one we -- that Α 25 represents the photos from September of 2016. 26 0 Okay.

1	A	And then there is another location about a kilometre
2		upstream of GC02, so quite close in proximity, but just
3		upstream of GC02 in that in that in that area
4		that does go to ground as well.
5		And then the one from this year that we have
6		located is upstream above Caudron Creek near it's in
7		the vicinity of GC09, but it'll be a little bit further
8		upstream, I believe, of GC09.
9	Q	Okay. So back to back to Table 3-6. So if we look
10		at if we look at GC02, in September of in
11		September, the model the monthly base-flow reduction
12		baseline to long-term closure shows a 17.4 percent
13		reduction in the base flow at Gold Creek at that
14		station; correct, Ms. Grainger?
15	A	MS. GRAINGER: Yes, that's correct.
16	Q	And this, of course, as we know, is based on SRK using
17		an average of 28 percent of the MAP for recharge. And
18		so based on our discussion just before lunch, using the
19		sensitivity analysis, if you apply a 33 percent
20		decrease on top of that, then you would see a
21		basically a reduced flow of 24 percent at GC02 based on
22		the Table G C-20, "Sensitivity Analysis"; correct?
23	A	I think it is important to understand that the model is
24		developed and calibrated, and then the sensitivity
25		analysis is completed. And the sensitivity analysis is
26		completed by just changing one or two parameters as

1 have been described in the modelling report. So the 2 model is technically not calibrated at that point to 3 fully represent the system with that kind of recharge. 4 So it's a quide. It gives us -- the value of the sensitivity analysis is it helps us to understand which 5 6 parameters do have a significant influence on the model 7 So certainly recharge, we understand, output. definitely has an effect on the model predictions. 8

9 However, we can't strictly take those numbers and 10 then just apply them because to recalibrate the model 11 and have it represent the hydraulic heads and the 12 base-flow measurements that were observed within the 13 project area, we would have to change other parameters 14 as well in the model.

15 Q Well, I think you're -- I don't think you're right, 16 Ms. Grainger. If we could go back to Table C-20, 17 PDF page 295. And I think you've already given this 18 evidence. Let's just go to the bottom.

So we have there GC02, which -- where we know --19 20 where we already know that in 2016, that stretch of the 21 Gold Creek had run dry, as we've seen in the 22 photographs. So what this table shows that by -- by 23 changing the model, which SRK used a 28 percent average 24 annual recharge number, by reducing that to 14 percent, 25 which Dr. Fennell says may still be too high, we see that for GC02, there will be a 33 percent reduction in 26

1		the flow at GC02. That's what it's that's what it
2		states in the third line from the bottom in Table C-20;
3		correct?
4	A	MR. HOUSTON: Mr. Secord, Mr. Chair,
5		Ms. Grainger has been pretty clear here as the
6		expert
7	Q	I I
8	A	related to these tables.
9		MR. SECORD: You know, I think, Mr. Chair,
10		I'm going to ask for a ruling that Ms. Grainger answer
11		the answer the question.
12	A	MR. HOUSTON: And I'm just going to point
13		out she
14		MR. SECORD: I'm
15	A	MR. HOUSTON: already has, Mr
16		THE CHAIR: Mr. Houston.
17	A	MR. HOUSTON: Yes. Okay.
18		THE CHAIR: Let Ms. Grainger answer, and
19		if you want to supplement, you may.
20	A	MS. GRAINGER: I believe your question,
21		Mr. Secord, was that the the reduction of recharge
22		by 50 percent when we only change that value in the
23		model results in a 33 percent reduction of base flow at
24		GC02.
25	Q	MR. SECORD: So
26	A	My caution on applying that directly was that just

1		
1		to highlight that you are only changing one
2		characteristic of a calibrated model which then renders
3		the model no longer calibrated.
4	Q	Sure. And I guess we can talk about whether the model
5		was properly calibrated, and that's, you know,
6		something obviously that Dr. Fennell will speak to.
7		But in terms of the actual reduction when we
8		look turn to Table 3-6 for GC02, you would agree
9		with me that by reducing the annual recharge from
10		28 percent to 14 percent, that would result, then, in a
11		reduced flow at GC02, in September, of 24 percent;
12		correct?
13	A	That's that's not the intention of I think we're
14		extending this analysis beyond its its useful
15		purpose. So it highlights that certainly recharge is
16		a a significant parameter in the model and does
17		result in changes to base flow. I think to take this
18		number and apply it to that table is incorrect.
19	Q	That's what Table D-20 is doing, is it not? It's
20		applying the it's applying that sensitivity analysis
21		to all of the stations in the Gold Creek along
22		Gold Creek that are listed there, correct, such as
23		GC02?
24	A	It's comparing the model output at each of these
25		locations and calculating a relative percent difference
26		in order that we can understand what the effect is of

			5577
	1		changing these parameters by the amounts indicated.
	2		That is the intent of this table.
	3	Q	Right. All right.
	4		MR. SECORD: So if we could then turn up
	5		Dr. Fennell's errata sheet, CIAR Number 844. And if
	б		you could scroll down to Point Number 3.
	7	Q	MR. SECORD: So, Ms. Grainger, Dr. Fennell
	8		wrote in his report and I'm just going to read the
	9		first sentence so we don't have to jump back and forth,
	10		but this is at PDF page 78 of the Coalition evidence.
	11		And he writes: (as read)
	12		The SRK groundwater numerical model projects
	13		that drawdown effects will be limited to
	14		within 400 metres of the mine pit extent,
	15		Figure 3, left image.
	16		And then this is the errata. He goes on to say:
	17		(as read)
	18		This is a difficult conclusion to align with,
	19		considering the concerns related to the model
	20		configuration and results of empirical
	21		formula calculations indicating impact
	22		distances anywhere from about 860 metres up
	23		to 1,880 metres over a 50-year time span
	24		using a k-value consistent with the geometric
	25		mean readings reported for the Mist Mountain
	26		Formation; i.e., 1.1 times 10-7M/S.
Į			

1		So he then says: (as read)
2		To correct for the expected increase in
3		hydraulic conductivity following the removal
4		of 430 metres of overlying mountain, a value
5		of 3.1 times $10-7M/S$ was calculated using the
6		depth relationship employed by SRK at page
7		38, along with an effective porosity of 5
8		percent to emulate fracture porosity and
9		40 metres of sustained drawdown from the mine
10		pit.
11		So Dr. Fennell estimates estimates of the extent of
12		the drawdown from the pit boundary using analytical
13		equations indicate a much larger area of influence up
14		to 1,880 metres over 50 years. How do you explain this
15		discrepancy from the 400 metres projected by the SRK
16		groundwater model?
17	A	MR. HOUSTON: Mr. Chair, it seems to me that
18		Dr. Fennell should be speaking to his work. I I
19		don't I don't understand why we're being asked to
20		speak to Dr. Fennell's evidence here.
21	Q	I guess my question, Ms. Grainger, is: Why is only
22		400 metres being projected by the SRK groundwater
23		model, whereas Dr. Fennell suggests that the impact
24		distances could be anywhere from 860 to 1,880 metres?
25		And I guess as a further question: Have you looked at
26		this issue? I think in his initial report in his

1		initial report, I think he used the figure 1,500
2		metres, and I'm just wondering whether you've examined
3		this at all?
4	A	Again, Mr. Chairman, I don't think it's up to us to
5		discuss Dr. Fennell's findings. That that should be
6		something he defends when he's giving his own direct
7		evidence. It's difficult for us to understand exactly
8		what he's done and why he's done it.
9	Q	Yeah. Well, Mr. Houston, are you a hydrogeologist?
10	A	No. I'm I'm I'm the policy
11	Q	So so
12	A	witness. Yeah. So I'm I'm
13	Q	So I so I
14	A	I'm saying
15	Q	So I
16	A	I don't think we should be yeah. I don't think we
17		should be defending Dr. Fennell's calculations. That's
18		all.
19	Q	No. No.
20		MR. IGNASIAK: Mr. Chair, I think the
21		question can be rephrased to ask Ms. Grainger about her
22		work in this area, but I would agree that asking her to
23		interpret why Dr. Fennell's done something is it's
24		not something she should be expected to testify to.
25		THE CHAIR: Okay. Mr. Secord?
26		MR. SECORD: Right.

1 MR. SECORD: Well, in Mr. -- in 0 2 Dr. Fennell's initial report, he indicated that he 3 thought there would be an impact distance of anywhere -- of up to 1,500 metres. He's since 4 5 suggested that. 6 Ms. Grainger, have you done any work in this area 7 to determine whether this 400 metres projected by SRK in its model may be understated? 8 9 Α MS. GRAINGER: Well, I don't -- excuse me. Ι 10 don't believe it's understated. I -- I believe it's the right order of magnitude, and the -- the reason 11 12 that I think some interpretations might expect a larger 13 area drawdown is a -- a simple calculation which looks 14 at, essentially, a flat-line structure. And so 15 drawdown propagates that outwards, kind of like a dish or a bowl, if you will, in a very simplistic way. 16 17 What we have to remember is that the structure of the units that we have has essentially tilted that on 18 an angle at the project site, and therefore, the 19 drawdown extends over a much smaller area than it would 20 21 if it was in a -- a flatter setting, let's say. 22 And I have seen this in my experience working at prairie coal mines as compared to mountain coal mines. 23 24 So we do see larger drawdown cones associated with prairie coal mines, where they have flatter structure 25 26 of the geology. In mountain coal mines, the drawdown

is usually much tighter and doesn't extend as far. 1 2 And why does the tilt cause the area of impact to be 0 3 less? 4 Because of the contrast in conductivities. You've got Α 5 different units one on top of another, and they all 6 have different conductivities. Some are higher, and 7 some are lower. But the net result is that it's difficult for the -- or for the drawdown to transmit 8 9 from one unit to the next. As soon as it encounters a unit of lower permeability, it transmits much more 10 11 slowly. 12 So the result is that the drawdown extends 13 laterally within a unit, and because of the structure, 14 as I've indicated, that's tilted on an angle that 15 extends within the bed that is on an angle, and so in a 16 map view, that's a very small distance. 17 And what angle is it tilted at in this case? Q I'll have to look up that number, if you require that. 18 Α But we've shown it on our cross-sections in Consultant 19 20 Report Number 3. I can refer to those. And what about the faults of the fractures? 21 0 How do they affect the projected distance in this tilted 22 23 environment? 24 So CIAR 42, Consultant Report Number 3, there's Α Yeah. 25 a series of cross-sections starting on PDF 79. 26 Yeah. Sorry. We may have -- I don't know if we

can rotate it. But that shows -- I believe there's a 1 2 vertical exaggeration applied to the figure so the dip 3 of the units can't be directly measured, but it does 4 illustrate the dipping nature of the bedrock units, and then there's a fault also illustrated on this feature, 5 6 on this cross-section. 7 And where is the fault indicated? 0 So you can see -- if you follow the Seam Number 4 shown 8 Α 9 in red, and you can actually see the displacement on 10 Seam Number 4. If you follow it from the left-hand side, you can see that it -- it -- it goes up towards a 11 12 fault; it terminates because the fault has then 13 displaced both sides of the -- the fault block. So the 14 side -- the rocks on the left-hand side have been moved upwards relative to the rocks on the left-hand side --15 or the right-hand side, sorry, to the east. 16 17 All right. Let's turn to PDF page 194, Table 2-5 of CR 0 And we'll take a look at some of these hydro --18 3. hydraulic conductivity values that you were talking 19 20 about a moment ago. 21 Just could we go back to that figure that you were 22 just looking at for a minute? 23 Ms. Grainger, does that show west-to-east faults? Those faults would -- the strike of the fault is 24 Α 25 north-south. 26 Okav. All right. Back to PDF page 194. So would you 0

1		agree that most of the hydraulic conductivity k-values
2		used to constrain the groundwater model have focused on
3		coal-bearing rocks?
4	A	Yes, that's correct. We've stated that most of our
5		testing focused on the coal-bearing rocks.
6	Q	And this leaves many of the other formations, including
7		those below the mine footprint, as unknown or
8		unassessed?
9	A	They're not completely unassessed, but there's limited
10		data for the other units. Part of the reason we
11		focused on the coal-bearing or the coal seams
12		themselves is 'cause frequently they are the more
13		permeable units within the sequence.
14	Q	And what is a "slug test type"?
15	A	A "slug test" is a test that's completed in a
16		monitoring well where you create an instantaneous
17		displacement of the water level, and then you measure
18		the water level as it responds within that well, and
19		then there are analyses that you conduct to you
20		analyze that data to give you an assessment of the
21		conductivity. So it's measuring horizontal
22		conductivity.
23	Q	All right. So if we go to page PDF 209, the first
24		bullet of CR 3. And this is under "Model Properties"
25		at the bottom sorry. The first bullet on page
26		yeah, the first bullet on page 209. So it talks about:

1		(as read)
2		Hydraulic conductivities 'K' in bedrock
3		parallel to bedding range between 6 times 10
4		to the 10 to 1.7 times 10 to the to the
5		minus 7.
б		Table 3-1. K-values are constant within
7		a given layer. This hydraulic testing
8		generally targeted coal seams. The 'K' of
9		the host rock is not completely
10		characterized.
11		So does that go back to that earlier your earlier
12		remark that basically many of the other formations,
13		including those below the mine footprint, are basically
14		unknown or unassessed for the most part?
15	A	We have less data on them. The table that we were
16		looking at just before I don't know if we can return
17		to that, but there are packer tests in that table also,
18		and the packer tests are completed over larger
19		intervals within the core holes. So I believe the
20		longest interval was 116 metres.
21	Q	Yeah.
22	А	And the nature of
23		MR. SECORD: So we could scroll down, and,
24		Zoom Host, maybe you could just maybe reduce it to
25		there we go.
26	Q	MR. SECORD: So we see the packer tests in

1 RGSC-004, for instance?

2 A MS. GRAINGER: Correct, and then -- and then 3 further down.

So they just show the interval that was 4 5 essentially used for the test, so the top and the 6 bottom. And so they're over larger intervals. So 7 although they reference the coal seam, they also include significant portions of the other units. 8 So 9 it's not perfect, but it does mean that substantially 10 larger portions of the material were tested than just 11 the coal seams themselves.

12 And the nature of these tests is that we get a 13 response from the most conductive unit that is tested. 14 So the lower permeability units would not essentially 15 respond because they're too slow within the scale of 16 the test. So these tend to give us a higher rather 17 than a lower bound on the conductivity of the material 18 that's tested.

19 Q Looking at that first bullet from PDF page 209. What 20 is the host rock? What does it consist of in the 21 project area?

A So the Mist Mountain Formation, which is the main unit,
it's a -- a sequence of sandstone, mudstone, siltstone,
shale, and then coal.

Q Okay. So regardless, k-values are given to the variousnine layers of the groundwater model.

1 So if we could turn to PDF page 211 of CR 2 Number 3. 3 So you'll see here you've got the linear recharge that would be the baseline model conditions; is that 4 5 right? 6 Α These are the calibrated conductivity values that were 7 used in the model. So they reflect, after calibration, what the conductivities are in each of the units. 8 9 Ο And the one below is the exponential recharge; correct? 10 Α That's correct. 11 So regardless, as I say, k-values are given to the Ο 12 various nine layers in the SRK groundwater model. How 13 can the JRP be confident that the model is accurately 14 reflecting the transmissive capabilities of the rocks when there is little local information to describe the 15 host rocks? 16 Well, as I've indicated, the conductivity not -- test 17 Α 18 results not only come from discrete testing of the coal seams themselves but also from these longer intervals 19 of testing. Conductivities would've been entered into 20 21 the model, and then it was calibrated such that the 22 model matches the hydraulic head observations that we have in the monitoring wells and the vibrating wire 23 24 piezometers as well as the base-flow measurements. 25 So can you -- let's just take a look at Table 3-1, the 0 26 "Calibrated Hydraulic Conductivity Value by Model

1		Layer". How were these first three numbers selected
2		-
	_	for K1, K2, and K3?
3	A	So there's a process of calibration, which is described
4		in the model report. So there's a systematic way in
5		which the values are modified. So there would've been
6		some values close to these, presumably, that was input
7		into the model initially, and then they would do a
8		series of iterations of runs. So if we go to page 216
9		in the PDF, it describes the model calibration process.
10	Q	Let's go to
11	А	Does that answer your question?
12	Q	No.
13		MR. SECORD: Let's go to page 209. And if
14		we can you can you make it there we go. Keep
15		going. Yes. This is the at the bottom of the page.
16	Q	MR. SECORD: It says here: (as read)
17		Table 3-1 and Figure 3.3 present the site 'K'
18		data together with calibrated model k-values.
19		Note that the values for the fractured
20		bedrock incorporate the hydraulic barrier
21		effects of the thrust faults in the K2 value
22		which otherwise would be similar to K1.
23		So if we go back to Table 3-1 on PDF on PDF 211, is
24		this saying, then, that for the first layer, the K2
25		value would be similar to K1 but for the hydraulic
26		barrier effects of the thrust faults? Is that is

that correct?

1

26

A MS. GRAINGER: Yes. There's a -- generally
about a half order of magnitude difference between K1
and K2; the lower one being in the east-west direction;
the higher conductivity being in the north-south
direction.

7 Okay. And so if we go back to Table -- to Table 2-5 at 0 PDF page 194, we see the -- we see various k-values 8 calculated for various monitoring wells; correct? 9 10 Α Correct. These are the site data that was determined, 11 yes, from the slug tests and the packer tests. 12 So are numbers from the actual summary of the 0 Right. 13 'K' tests -- do they find themselves -- do -- are they 14 allocated in some fashion to the figure on PDF page 211? 15 So -- yes. As -- so there's several -- that's --Α essentially what's described on 209 is there's a -- a 16 17 set of assumptions that were used to order the 18 variations in -- in conductivity. So one of them 19 was -- as we've talked about, the K1 and K2 vary by 20 about a half order of magnitude, and those are both 21 higher than K3, so that's consistent within each layer. 22 You can see that there's -- typically K3 is two orders of magnitude lower than K2, and then there's a half 23 24 order of magnitude difference between K1 and K2. 25 In addition, as was outlined on page 209, it talks

about conductivity decreasing, and there's an -- an

1 equation that was used to reduce it by depth. 2 Q Okay. 3 Α So we go from Layer 1 to Layer 2. Layer 2 has lower 4 conductivity overall than Layer 1. So can you tell me: What was the justification 5 Okay. 0 6 for selecting 2.7E-07 for Layer 1 for K1? I'd like to 7 just go over that first row and just understand what was the rationale and -- you know, given the limited 8 9 number of 'K' tests that we see, you know, in that 10 summary of 'K' tests -- and there really aren't very 11 many monitoring well tests. Most of them are in coal. 12 I'm just wondering: What was the -- you know, why was 13 that number selected? What was the rationale? What's 14 the backup? Is there averaging? I'm just trying to understand how you -- obviously you didn't do this, but 15 how did SRK pick these first three numbers for Layer 1? 16 17 Α So these are not the numbers they would've picked. So, for example, they would've, as I described, set up 18 initial values on that basis of using the relationships 19 between K1 and K2 and K3 and the different layers. 20 21 They would've input those into the model and run the 22 model, and then they would've began a systematic 23 process through calibration of varying certain parameters at a time in order to replicate the 24 25 hydraulic head measurements at all of the -- the 26 monitoring wells and the vibrating wire piezometers,

1		and then also to replicate, as best as they could have
2		the model do, the base-flow observations.
3		So it's it's an iterative and lengthy process,
4		and the values that we see here is the final calibrated
5		model in this case for the linear recharge
6		scenario that best fits all of the data that we
7		have, the hydraulic heads and the base-flow
8		measurements.
9	Q	So the first layer is 40 metres, correct
10	A	That's correct.
11	Q	each of these
12		And if we look at Table 2-5, the summary of 'K'
13		tests that's on page there we go. So if we look
14		here at the screened intervals, would I would it be
15		correct that Monitoring Well 15-12-7 would be in that
16		first layer?
17	A	So these are not applied in that manner. We can talk
18		about surficial deposits, the first one, because the
19		surficial deposits are not explicitly included into the
20		model. But it's not a matter of taking by depth the
21		physical measurements and then applying them to
22		the layer that corresponds to that depth. The
23		full data set was looked at on a a a
24		conductivity-versus-depth basis, and that was the
25		relationship that was then applied to the model.
26	Q	Well, Table 2-5 is the full data set. This is the
1		

1		summary of 'K' tests that were conducted for the model;
2		correct?
3	A	This is the conductivity tests that were completed as
4		part of the study.
5	Q	This is all of them? This is all of the 'K' tests that
6		were performed for the purpose of SRK constructing its
7		model?
8	A	Well, that were yes, it's all of the available
9		conductivity data.
10	Q	Right. And so for the first layer, as I look at this,
11		the only data that you have for the first layer of the
12		model would be the first four well ID numbers here?
13		Once you get into the Mist Mountain Formation, you're
14		below 40 metres below ground surface; correct?
15	A	Sorry. It it varies depending on location. We can
16		see oh, sorry. MW1406-32, for example, is in the
17		Mist Mountain Formation and is at a depth that's
18		shallower than 40 metres.
19	Q	Sure. But there's not a lot in that first 40-metre
20		that first 40-metre interval. So, again, I'm just
21		trying to understand. When I look at these 'K' numbers
22		in Table 2-5, I just don't see how you get from those
23		numbers to Table 3-1 and these calibrated hydraulic
24		conductivity values for the first layer. That's, I
25		guess just wondering whether you can help me with
26		that, if there's any correlation between what was

1		actually recorded and what SRK used in its model?
2	А	Well, I would say that all of this information was
3		used, and it was pooled. It's just not used directly
4		as in, We measured this value, at this depth, at this
5		location, and so, therefore, it's directly applied into
6		the model in in the same manner. It's it's
7		pooled there was a an interpretation made of
8		depth relationship to conductivity, and that's what was
9		applied into the model. So the resulting I think
10		if you review these conductivity results with those
11		that were applied in the model, the ranges are
12		consistent.
13	Q	If we could turn up, please, PDF page 55 of CR 3.
14		Just while we're pulling that up, Ms. Grainger,
15		just one question about the model. Benga's removing
16		the coal, so how are the k-values in the coal relevant
17		to the model?
18	А	Would you like me to answer that question right away,
19		Mr. Secord?
20	Q	Sure. Sure.
21	А	Sure. So the I mean, the pit is being advanced into
22		the coal, and so, therefore, those units are the ones
23		that we are most interested in because that is where
24		the pit is being developed and and where drawdown is
25		being propagated from.
26	Q	Okay. If we could scroll down, please, to the second
1		

3564

		5505
1		paragraph under "Assessment Results". So this
2		paragraph starts: (as read)
3		Groundwater residence time, travel time to
4		the creeks from the LTC scenario is predicted
5		to be mostly greater than ten years.
6		Then the part that I'm interested is in the next
7		sentence: (as read)
8		The groundwater modelled with the longest
9		residence time, greater than 50 years, is
10		close to the topographic highs, and the
11		shortest, less than 20 years, are close to
12		the topographic lows.
13		And in terms of the you understand what the "LTC"
14		definition is, Ms. Grainger?
15	A	"Long-term closure", yes.
16	Q	Right. It's representing the completed open pit with
17		in-pit backfilling, saturated rock fill, and open-pit
18		lake, and a reclaimed surface water management system?
19	A	Correct.
20	Q	That's the yeah.
21		If we could please turn up PDF page 112 of CR
22		Number 3. And this is the Table 5.3-9, "Predicted
23		Groundwater Travel Time to Creek Discharge for LTC".
24		And if we go to the legend below, there is a heading
25		"Mean Lifetime Expectancy Per Year"; correct,
26		Ms. Grainger?
1		

1 Α That's correct. 2 And the green is the 50 to 100, and then we have a lime 0 3 green at 20 to 50, and yellow from 10 to 20? 4 That's correct. Α 5 Could you please explain what is meant -- what is meant Ο 6 by "mean life expectancy" using your terminology or 7 Millennium's terminology? Well, the travel time represents the time it would take 8 Α for water at the location that's shown -- groundwater 9 10 at the location that it's shown to migrate to the 11 nearest creek following the groundwater flow pathways. 12 So obviously closer to the creeks, travel time is short, and as we get more distant from the creeks, then 13 14 travel time is much longer. 15 So the residence time or mean life expectancy, 0 Okay. to use your terminology, that's one and the same? 16 17 Α Yeah. I just -- you referred to it as the "travel time", but ... 18 19 So maybe I'll just use that, then. The travel 0 Okav. 20 time of groundwater is stated as being in excess of 21 50 years over most of the model domain represented by 22 the turquoise colour? MR. SECORD: 23 So we go -- maybe we can 24 reduce that to -- maybe to 50 percent. Let's reduce it 25 to 50 percent. There we go. Maybe even 20 -- yeah. Perfect. 26

<pre>2 travel time of groundwater is stated as being in excess 3 of 50 years over most of the model domain represented 4 by the turquoise colour? 5 A I believe that's what we read just before in the in 6 the paragraph previously, correct. 7 Q And with values of less than 20 years in the valley 8 bottoms? 9 A Yeah, the 10 Q That would be that that would be represented by 11 the yellow colour? 12 A Yes, the yellow colour would represent 10- to 20-year 13 travel time. 14 Q Right. So less than 20 would be the yellow; right? 15 A Or red, yes. 16 Q Right. Okay. 17 Now, the ponds on the east side of the mine 18 footprint, the NESP and the ESP near Fran Gilmar and 19 the SESP located south of Fran Gilmar and, I guess, to 20 the west of the Donkersgoeds, are located in some of 21 the areas where transit times are listed as zero to 22 ten years; is that correct? 23 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years 25 or one year or nine years or 26 A Well, it's it's a range. So obviously if it's, you</pre>	1	Q	MR. SECORD: So would you agree that the
 4 by the turquoise colour? 5 A I believe that's what we read just before in the in the paragraph previously, correct. 7 Q And with values of less than 20 years in the valley bottoms? 9 A Yeah, the 10 Q That would be that that would be represented by the yellow colour? 12 A Yes, the yellow colour would represent 10- to 20-year travel time. 14 Q Right. So less than 20 would be the yellow; right? 15 A Or red, yes. 16 Q Right. Okay. 17 Now, the ponds on the east side of the mine footprint, the NESP and the ESP near Fran Gilmar and the SESP located south of Fran Gilmar and, I guess, to the west of the Donkersgoeds, are located in some of the areas where transit times are listed as zero to ten years; is that correct? 13 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years or one year or nine years or 	2		travel time of groundwater is stated as being in excess
 5 A I believe that's what we read just before in the in the paragraph previously, correct. 7 Q And with values of less than 20 years in the valley bottoms? 9 A Yeah, the 10 Q That would be that that would be represented by the yellow colour? 12 A Yes, the yellow colour would represent 10- to 20-year travel time. 14 Q Right. So less than 20 would be the yellow; right? 15 A Or red, yes. 16 Q Right. Okay. 17 Now, the ponds on the east side of the mine footprint, the NESP and the ESP near Fran Gilmar and the SESP located south of Fran Gilmar and, I guess, to the west of the Donkersgoeds, are located in some of the areas where transit times are listed as zero to ten years; is that correct? 13 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years or one year or nine years or 	3		of 50 years over most of the model domain represented
 the paragraph previously, correct. Q And with values of less than 20 years in the valley bottoms? A Yeah, the Q That would be that that would be represented by the yellow colour? A Yes, the yellow colour would represent 10- to 20-year travel time. Q Right. So less than 20 would be the yellow; right? A Or red, yes. Q Right. Okay. Now, the ponds on the east side of the mine footprint, the NESP and the ESP near Fran Gilmar and the SESP located south of Fran Gilmar and, I guess, to the west of the Donkersgoeds, are located in some of the areas where transit times are listed as zero to ten years; is that correct? A Yes, I think that's correct. Q And so is it going to be are we talking zero years or one year or nine years or 	4		by the turquoise colour?
7 Q And with values of less than 20 years in the valley bottoms? 9 A Yeah, the 10 Q That would be that that would be represented by the yellow colour? 12 A Yes, the yellow colour would represent 10- to 20-year travel time. 14 Q Right. So less than 20 would be the yellow; right? 15 A Or red, yes. 16 Q Right. Okay. 17 Now, the ponds on the east side of the mine footprint, the NESP and the ESP near Fran Gilmar and the SESP located south of Fran Gilmar and, I guess, to the west of the Donkersgoeds, are located in some of the areas where transit times are listed as zero to ten years; is that correct? 23 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years or one year or nine years or	5	A	I believe that's what we read just before in the in
 8 bottoms? 9 A Yeah, the 10 Q That would be that that would be represented by 11 the yellow colour? 12 A Yes, the yellow colour would represent 10- to 20-year 13 travel time. 14 Q Right. So less than 20 would be the yellow; right? 15 A Or red, yes. 16 Q Right. Okay. 17 Now, the ponds on the east side of the mine 18 footprint, the NESP and the ESP near Fran Gilmar and 19 the SESP located south of Fran Gilmar and, I guess, to 20 the west of the Donkersgoeds, are located in some of 21 the areas where transit times are listed as zero to 22 ten years; is that correct? 23 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years 25 or one year or nine years or 	6		the paragraph previously, correct.
9 A Yeah, the 10 Q That would be that that would be represented by 11 the yellow colour? 12 A Yes, the yellow colour would represent 10- to 20-year 13 travel time. 14 Q Right. So less than 20 would be the yellow; right? 15 A Or red, yes. 16 Q Right. Okay. 17 Now, the ponds on the east side of the mine 18 footprint, the NESP and the ESP near Fran Gilmar and 19 the SESP located south of Fran Gilmar and, I guess, to 20 the west of the Donkersgoeds, are located in some of 21 the areas where transit times are listed as zero to 22 ten years; is that correct? 23 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years 25 or one year or nine years or	7	Q	And with values of less than 20 years in the valley
10 Q That would be that that would be represented by 11 the yellow colour? 12 A Yes, the yellow colour would represent 10- to 20-year 13 travel time. 14 Q Right. So less than 20 would be the yellow; right? 15 A Or red, yes. 16 Q Right. Okay. 17 Now, the ponds on the east side of the mine 18 footprint, the NESP and the ESP near Fran Gilmar and 19 the SESP located south of Fran Gilmar and, I guess, to 20 the west of the Donkersgoeds, are located in some of 21 the areas where transit times are listed as zero to 22 ten years; is that correct? 23 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years 25 or one year or nine years or	8		bottoms?
11 the yellow colour? 12 A Yes, the yellow colour would represent 10- to 20-year 13 travel time. 14 Q Right. So less than 20 would be the yellow; right? 15 A Or red, yes. 16 Q Right. Okay. 17 Now, the ponds on the east side of the mine 18 footprint, the NESP and the ESP near Fran Gilmar and 19 the SESP located south of Fran Gilmar and, I guess, to 20 the west of the Donkersgoeds, are located in some of 21 the areas where transit times are listed as zero to 22 ten years; is that correct? 23 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years 25 or one year or nine years or	9	A	Yeah, the
12 A Yes, the yellow colour would represent 10- to 20-year 13 travel time. 14 Q Right. So less than 20 would be the yellow; right? 15 A Or red, yes. 16 Q Right. Okay. 17 Now, the ponds on the east side of the mine 18 footprint, the NESP and the ESP near Fran Gilmar and 19 the SESP located south of Fran Gilmar and, I guess, to 20 the west of the Donkersgoeds, are located in some of 21 the areas where transit times are listed as zero to 22 ten years; is that correct? 23 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years 25 or one year or nine years or	10	Q	That would be that that would be represented by
<pre>13 travel time. 14 Q Right. So less than 20 would be the yellow; right? 15 A Or red, yes. 16 Q Right. Okay. 17 Now, the ponds on the east side of the mine 18 footprint, the NESP and the ESP near Fran Gilmar and 19 the SESP located south of Fran Gilmar and, I guess, to 20 the west of the Donkersgoeds, are located in some of 21 the areas where transit times are listed as zero to 22 ten years; is that correct? 23 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years 25 or one year or nine years or</pre>	11		the yellow colour?
14 Q Right. So less than 20 would be the yellow; right? 15 A Or red, yes. 16 Q Right. Okay. 17 Now, the ponds on the east side of the mine 18 footprint, the NESP and the ESP near Fran Gilmar and 19 the SESP located south of Fran Gilmar and, I guess, to 20 the west of the Donkersgoeds, are located in some of 21 the areas where transit times are listed as zero to 22 ten years; is that correct? 23 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years 25 or one year or nine years or	12	A	Yes, the yellow colour would represent 10- to 20-year
15 A Or red, yes. 16 Q Right. Okay. 17 Now, the ponds on the east side of the mine 18 footprint, the NESP and the ESP near Fran Gilmar and 19 the SESP located south of Fran Gilmar and, I guess, to 20 the west of the Donkersgoeds, are located in some of 21 the areas where transit times are listed as zero to 22 ten years; is that correct? 23 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years 25 or one year or nine years or	13		travel time.
16 Q Right. Okay. 17 Now, the ponds on the east side of the mine 18 footprint, the NESP and the ESP near Fran Gilmar and 19 the SESP located south of Fran Gilmar and, I guess, to 20 the west of the Donkersgoeds, are located in some of 21 the areas where transit times are listed as zero to 22 ten years; is that correct? 23 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years 25 or one year or nine years or	14	Q	Right. So less than 20 would be the yellow; right?
Now, the ponds on the east side of the mine footprint, the NESP and the ESP near Fran Gilmar and the SESP located south of Fran Gilmar and, I guess, to the west of the Donkersgoeds, are located in some of the areas where transit times are listed as zero to ten years; is that correct? A Yes, I think that's correct. Q And so is it going to be are we talking zero years or one year or nine years or	15	A	Or red, yes.
18 footprint, the NESP and the ESP near Fran Gilmar and 19 the SESP located south of Fran Gilmar and, I guess, to 20 the west of the Donkersgoeds, are located in some of 21 the areas where transit times are listed as zero to 22 ten years; is that correct? 23 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years 25 or one year or nine years or	16	Q	Right. Okay.
19 the SESP located south of Fran Gilmar and, I guess, to 20 the west of the Donkersgoeds, are located in some of 21 the areas where transit times are listed as zero to 22 ten years; is that correct? 23 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years 25 or one year or nine years or	17		Now, the ponds on the east side of the mine
20 the west of the Donkersgoeds, are located in some of 21 the areas where transit times are listed as zero to 22 ten years; is that correct? 23 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years 25 or one year or nine years or	18		footprint, the NESP and the ESP near Fran Gilmar and
21 the areas where transit times are listed as zero to 22 ten years; is that correct? 23 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years 25 or one year or nine years or	19		the SESP located south of Fran Gilmar and, I guess, to
22 ten years; is that correct? 23 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years 25 or one year or nine years or	20		the west of the Donkersgoeds, are located in some of
 23 A Yes, I think that's correct. 24 Q And so is it going to be are we talking zero years 25 or one year or nine years or 	21		the areas where transit times are listed as zero to
24 Q And so is it going to be are we talking zero years 25 or one year or nine years or	22		ten years; is that correct?
25 or one year or nine years or	23	А	Yes, I think that's correct.
	24	Q	And so is it going to be are we talking zero years
26 A Well, it's it's a range. So obviously if it's, you	25		or one year or nine years or
	26	А	Well, it's it's a range. So obviously if it's, you

Г

1		know, in the red zone but close to the yellow boundary,
2		then it would be closer to ten years. And if it's
3		closer to the creek, then it's it's some number less
4		than that, but it's a range within that area, and it
5		it varies linearly; right? So
6	Q	So where the travel times are listed as zero to ten
7		years, does that lead to concerns that seepage of
8		contaminants to Gold Creek will occur?
9	А	Well, I believe we were talking about the sedimentation
10		ponds which we've talked about this morning in that
11		there aren't any concerns with respect to the water
12		quality from the sedimentation ponds.
13	Q	But these red areas encompass more than the NESP, ESPs,
14		and SESPs; correct? These red areas are far more
15		cover far more territory than those structures?
16	A	MR. HOUSTON: Mr. Chair, can we just take a
17		minute to have a discussion here?
18		Apologies, Mr. Secord. Could you repeat the
19		question the last question?
20	Q	Okay. We can see in the in this figure the areas
21		where the travel times are zero to ten years. The
22		areas that are sitting in red, let's say in the area
23		where the ESP and SESP were located, is the is the
24		travel time zero years, or is it ten years?
25	А	MS. GRAINGER: It's somewhere between those
26		two values. So, I mean, the this map is not

1		intended to show precisely at every location what the
2		travel time is. It's intended to give an indication of
3		the areas where it is short, as you pointed out, and
4		and other areas where it is much longer under the
5		long-term closure conditions.
6	Q	Okay. And where you have these travel times listed as
7		zero to ten years, does that lead to concerns that
8		seepage of contaminants to Gold Creek will occur from
9		the mine site area shaded with these short travel time
10		[sic]?
11	A	Well, it was part of the evaluation, so our assessment
12		looked specifically at where there could be sources.
13		So, for example, the rock disposal areas, which is the
14		section that we were reading from previously that you
15		quoted, that was specifically looking at concerns
16		related to the rock disposal areas and where those are
17		located and what the travel time is from those areas
18		towards the creek. With respect to the sedimentation
19		ponds, there isn't a concern with respect to
20		contamination, particularly under the long-term closure
21		scenario, so
22	Q	And this is the this is the long-term disposal
23		the long-term closure scenario here in Figure 5.3-9;
24		correct?
25	A	Yes.
26	Q	This is showing this is showing what the travel

times will be at long-term closure? 1 2 I think we should understand too -- and I --Α Correct. 3 I just looked, and I can't see it in the modelling 4 report, but we've only produced this map for long-term closure, not under baseline conditions. But I would 5 6 expect quite a large portion of the areas, in fact, 7 unchanged between current conditions and the long-term 8 closure. 9 Ο Okay. Now, do you agree that hydraulic conductivity 10 testing of monitoring wells only provides an idea of 11 the transmissive properties of the soil or rock in a 12 very small area around the monitoring well? 13 Yes, that's accurate. Α 14 Do you agree that the accuracy of k-values is very 0 important when modelling the effects of drawdown and 15 residence or travel times? 16 17 Α Conductivity is certainly an important parameter in a numerical model. 18 19 Do you agree that when longer term pumping tests are 0 20 conducted, the k-values obtained are often higher, 21 sometimes by an order of magnitude? 22 Yes. That presumes that you were able to conduct Α 23 As we've seen, a lot of the pumping tests. 24 conductivities in the rocks here at the site are --25 are -- and low, and therefore, pumping tests would just 26 be impractical, unfortunately.

1	Q	Is it correct that Benga did not do any pumping tests
2		to better constrain the k-values used in the SRK
3		groundwater numerical model?
4	A	There was one pumping test that was completed from a
5		flowing core hole that gave us some information, but as
6		I've indicated in general, it was it was just not
7		simply possible to do pumping tests in lower
8		permeability rocks.
9	Q	Was it attempted? Did Millennium attempt to do any
10		pump any other any other pumping tests other than
11		the one that was done?
12	А	Since the application was submitted, we have undertaken
13		some limited pumping tests, which don't change our
14		our understanding of the conductivity of the materials
15		on the property in any substantive way.
16	Q	Okay. And was that data given to SRK?
17	A	No. This was work that was undertaken subsequent to
18		the model being completed, but as I said, it it
19		doesn't change our interpretation of the conductivity
20		of the materials on the site.
21	Q	Okay. So going back to PDF page 55 of CR Number 3, I
22		had read you the passage about travel times being
23		greater than 50 years and less than 50 years. It's the
24		next sentence I want to focus on: (as read)
25		Therefore, most basal leakage from the waste
26		rock dumps would reside in the groundwater
1		

		3572
1		system for a duration that substantially
2		exceeds the critical residence time to
3		attenuate any selenium.
4	A	Yes. I see that there.
5	Q	What is the justification for this statement given that
6		no transport and fate modelling was done?
7	A	The justification was based on observations from the
8		site. We collected data at water that was emanating
9		from historical mining, like old rock piles and so on,
10		which did not contain elevated concentrations of
11		selenium, and from information from other sites. So
12		that's summarized in the preceding text.
13	Q	And how does this statement in this sentence apply to
14		other constituents, such as arsenic, chromium, mercury,
15		or cobalt that might be mobilized?
16	A	Well, in general, I mean, fundamentally, those weren't
17		specifically looked at within the assessment, as there
18		weren't concerns identified with those parameters
19		specifically, but metals frequently do absorb absorb
20		to particles during transport and can be attenuated in
21		a very general sense.
22	Q	Now, Benga indicates that the dominant pathways for
23		groundwater flow in the project area are faults and
24		fractures in the rock; correct?
25	A	Correct. That is our understanding.
26	Q	What work did Benga do to map or better understand
I		

1		these important features in the area of the proposed
2		mine as well as areas beneath the solid and liquid
3		waste management areas?
4	A	So we looked this morning at the significant thrust
5		faults that have been mapped at the project site.
6		We've also talked this morning in regards to additional
7		work that would be done in specific areas as needed in
8		order to better characterize the underlying rock.
9	Q	Did Benga do any lineament mapping, fracture
10		orientation assessments, or borehole televiewer
11		surveys?
12	A	MR. HOUSTON: Just give us a minute,
13		Mr. Chair. We'll we'll
14	А	MS. GRAINGER: Mr. Secord, to the best of my
15		knowledge, those analyses were not completed at this
16		time.
17	Q	Did Benga do any pumping tests and monitoring of
18		bedrock wells to determine if there was evidence of
19		hydraulic connectivity between the areas where the
20		waste solids and liquids will be stored, and local
21		water features?
22	A	So as I mentioned just previously, there was one
23		pumping test that was completed; however, it was not
24		for that purpose.
25	Q	So why not, then?
26	A	Well, I think, as we've talked about also, the

1 conductivities are generally low, and pumping tests 2 are -- are not practical in rocks that have these lower 3 conductivities. So Benga indicates that if faults are 4 Ο Okay. 5 encountered that present a risk as acting as pathways 6 for groundwater flow and contaminant movement, the 7 mitigation will be to seal them off. Do you agree that visual identification of faults in the mine workings 8 9 will not likely be possible due to the obscuring by 10 residual fines and rock fragments? 11 Mr. Secord, I'd have to look up the reference, but Α 12 there is a -- a response to a -- an information request 13 where we did provide some additional information that 14 discussed geophysical techniques and overhead imaging 15 techniques and other approaches to identify and map the orientations of fractures at the site in -- in areas 16 17 such as the mine specifically and also at the rock disposal areas. 18 19 So similarly, do you agree that on the outside of the 0 20 mine footprint, rock dumps and water management ponds 21 will be established in areas covered by soil, also 22 obscuring any faults present? MR. HOUSTON: 23 Maybe I could take that one, Α Mr. Secord --24 25 Sure. 0 26 -- if you don't mind. Α

1 And take -- and take -- take the one before as well, 0 2 Mr. Houston. 3 Sure. Sure. Sure. So before we develop the ex-pit Α 4 rock dumps, we're going to strip all of the topsoil and the trees, and -- and we will do additional 5 6 investigation to, as -- as Ms. Grainger pointed out, to 7 more -- more precisely map out any -- any fault structures in -- underneath those areas. 8 So that --9 that work will all be done as part of the mine 10 development. 11 So back to Ms. Grainger. Do you agree that the 0 12 placement of any monitoring well could very well miss 13 these obscured features? 14 Α MS. GRAINGER: Well, that is part of the 15 intent of doing the analysis and it would be considered in the monitoring well placement. We've also talked in 16 17 some of our IR responses about some of the different approaches we can use during monitoring well 18 installation in order to identify fracture zones within 19 20 a -- a borehole and target those for monitoring. How will Benga ensure that all faults and fractures are 21 0 22 identified and monitored accordingly so that no contaminants bypass the surveillance system and reach 23 24 Blairmore and Gold Creeks? Well, I -- I -- I think it would be impractical to 25 Α 26 monitor all faults and fractures; however, the intent

1		would be to monitor downgradient immediately in the
2		area of the rock disposal areas, for example, and to
3		collect information there at a representative number of
4		locations and also to monitor upstream of the
5		receptors. And, again, we've we've provided
6		additional detail and description of the monitoring
7		plans.
8	Q	Okay. And in relation to the the ESP, what
9		what what would be downgradient of the ESP? Where
10		would that monitoring well go, Ms. Grainger?
11	A	I might just need a minute or two to pull up a map, if
12		that's all right.
13	Q	I'm thinking of Ms. Gilmar at her property enjoying the
14		water from the springs and Gold Creek.
15	A	MR. HOUSTON: Mr. Secord, just to be clear,
16		the ESP is a settlement sedimentation pond, and
17		SO
18	Q	I understand that, but it's going to be aboveground.
19		I'm just wondering what is
20	А	Yes.
21	Q	downgradient what is downgradient from the ESP?
22		That's the only question
23	A	Yeah.
24	Q	outstanding. I
25	A	Yeah, I know.
26	Q	I understand I understand you're saying,

1		Everything's going to be wonderful; nothing's going to
2		be mobilized. But I just want to know what
3		downgradient is, and we'll leave that we'll leave
4		the debate over what might be coming Ms. Gilmar's way
5		or the way of the fish for a little later, when I talk
6		to your geochemist.
7	А	Okay. I I I just wasn't sure that that you
8		were clear that that's a sedimentation pond that
9		doesn't have contact water in it. It's got water with
10		high sediment loads.
11	A	MS. GRAINGER: So on CIAR 313, Addendum 11,
12		PDF page 311. I'll just wait till that comes up, but
13		there there is a map that was provided, and it
14		illustrates locations of monitoring wells. And there
15		are two, in fact, planned downgradient of the east
16		sediment pond.
17	Q	What page is it? 311?
18	A	Yes, 311.
19	Q	Maybe while the Zoom master is getting Addendum 11,
20		picked out oh, he's there already. 311.
21	A	Yeah. If you just scroll down a little bit further,
22		you can see "east sediment pond". Yeah. A little too
23		far. Sorry. Just back up a little bit. Yeah. Now
24		we're right near the top of right of the figure.
25		So there is, in fact, an existing monitoring well
26		in that area, and then there are two additional wells
1		

1 that are proposed. 2 So basically that's -- that is -- let me just -- just 0 3 bear with me for a second. So essentially the monitoring wells -- the one MW5 4 would be essentially directly above Fran Gilmar's 5 6 property in the southwest of 30, and then MW5-2 would 7 be basically on the north -- basically the northeast 8 corner of her property and the northwest corner of Vern Emard's property; correct? 9 10 I'll have to take your word on that. Α I -- yes. 11 MR. HOUSTON: I -- I can confirm that, Α 12 Mr. Secord. 13 Okay. Thank you. 0 14 All right. So let's go to my next question. Ι 15 had to scroll up. So I'm not sure who, Mr. Houston, is best to 16 17 handle this. Does Benga agree that sealing off faults and fractures is a tricky activity? So that's the --18 that's Part 1 of the question. And then the second 19 20 part is probably over to Ms. Grainger, which is: And if successful, can result in changes to local 21 22 groundwater flow patterns? I suppose it may be a hydrogeological question in its entirety in terms of, 23 24 you know, putting in grout curtains, you know, when you 25 think about, you know, some of the efforts that have 26 polluters -- that polluters have gone to to try and

1 prevent contamination from, you know, migrating off of 2 their properties. So maybe it's entirely to 3 Ms. Grainger. Do you agree that sealing off faults and fractures 4 is a tricky activity and, if successful, can result in 5 6 changes to local groundwater flow patterns? 7 So maybe I'll start, and Α MR. HOUSTON: 8 Ms. Grainger can add to that, Mr. Secord. We -- we 9 don't expect to find anything dramatic in these areas 10 that we're -- we're talking about the -- the ex-pit 11 rock dumps, I think, are we not? 12 No. 0 Maybe I misunderstood the question, then. 13 Α Okav. 14 Yeah. So the -- the general -- the general question 0 15 Will Benga ensure that all faults and was that: fractures are identified and monitored accordingly so 16 17 that no contaminants bypass the surveillance system and reach Blairmore and Gold Creeks? Okay? 18 That was the -- and then we have Ms. Grainger, who showed us 19 20 where there are a number of monitoring wells. 21 Presumably those monitoring wells, they were -- the two 22 new ones that were put in downgradient from the ESP where -- to the north of where my clients Gilmar and 23 24 Emard live were put there for a purpose. 25 So the question was: Will Benga ensure that all faults and fractures are identified and monitored 26

accordingly so that no contaminants bypass the
 surveillance system and reach Blairmore and Gold
 Creeks?

So I'm assuming that you're going to look at those monitoring wells, and if there are contaminants in MW5-1 or MW5-2, you're going to do something about that. Or did you put them there just for the -- just because you could? I don't know. Why did you put them there?

10 A So I -- again, I -- I think the -- the -- the rigour, I 11 guess, that one would invest in sealing or otherwise 12 dealing with faults and fractures would -- would depend 13 on the expected consequences associated with that.

14 So directly with respect to Ms. Gilmar's property, 15 we're -- we're talking about a sedimentation pond and the -- the opportunity for water in the sedimentation 16 17 pond to be -- well, it -- it won't be contact water. 18 And -- and so seepage of that water is a fairly benign 19 issue. So -- so I wouldn't expect to invest a lot of 20 time and -- and money in sealing off fractures. 21 Although we would -- we would want to understand that 22 the pond is -- you know, and it's got a solid bottom on it. 23 24 Why were these two monitoring wells put in downgradient 0 25 from the ESP? What was the purpose of that, Ms. 26 Grainger?

1 Α MS. GRAINGER: I think they were identified 2 as low risk, but it also demonstrates that there isn't 3 an impact to groundwater quality, so that is the intent of this location. I can reference we have provided a 4 5 description of the groundwater monitoring program and 6 response plan which would, you know -- in all cases of 7 groundwater monitoring wells, we would be looking at the groundwater quality data, comparing it against 8 9 thresholds, and in the event of a -- you know, 10 increasing trends or values that exceed certain 11 thresholds, there would be a response plan and actions 12 undertaken. So that's across the board regardless of 13 location, but in this instance, the sedimentation 14 ponds, as have been described, are low risk, but 15 proactively some monitoring was identified in order to 16 demonstrate that there isn't an impact to groundwater 17 quality in those areas. Okay. Back to you, Mr. Houston, then. 18 I think you 0 really thought that the sealing off of faults and 19 20 fractures would be, I quess, in areas around 21 the rock -- the rock pit areas? Do I understand that? 22 Is that where -- is that where they're really more concerned to seal off faults and fractures? 23 24 MR. HOUSTON: Certainly the more -- more Α 25 effort is required to investigate the -- the ground

underneath the rock dumps and to ensure ourselves, you

26

1		know, that all the organic material's stripped off.
2		We're going to construct subdrains. We're going to do
3		a number of things to try to facilitate the extraction
4		of water that seeps through those rock dumps, which
5		would be contact water.
6	Q	So if you are successful in sealing off faults and
7		fractures, can that result in changes to local
8		groundwater flow patterns, Ms. Grainger?
9	А	MS. GRAINGER: I think it would just depend
10		on the significance of the groundwater movement that
11		was occurring along that fault or fracture. I don't
12		know if that answers your question.
13	Q	Do you agree that this could alter contaminant-movement
14		patterns and reduce the effectiveness of monitoring
15		wells positioned to detect releases from mine-related
16		structures and waste management areas?
17	A	So if I understand you, you're asking if by sealing
18		faults and fractures that would reduce the
19		effectiveness of our monitoring program?
20	Q	Yes. That could reduce the effectiveness of monitoring
21		wells positioned to detect releases from mine-related
22		structures and waste management areas?
23	А	Well, my understanding would be that by sealing the
24		faults or fractures, if they were providing a
25		significant pathway for groundwater movement, that that
26		would require the groundwater to then move more through
1		

1 the matrix of the rock as opposed to through fractures 2 or faults. It would move more slowly, and it would 3 make -- it would slow groundwater movement. It doesn't necessarily affect the effectiveness of the groundwater 4 5 monitoring program. It's just going to result in some 6 changes and slow the groundwater movement potentially. 7 How will Benga determine the best locations to place 0 monitoring wells to ensure their continued 8 effectiveness once installed? 9 10 Α MR. HOUSTON: So that's -- I was just going 11 to jump in and add on to Ms. Grainger's response and --12 and comment that once we've done our investigation, 13 and -- and I'm talking about the ex-pit rock dumps 14 and -- and done the work that we're required to do there, that -- that would inform the location of the --15 final location of the monitoring wells. 16 So the --17 the -- the whole thing comes as a package, Mr. Secord, and we -- we would use the best information we have 18 after that detailed investigation to perform the work 19 20 underneath the ex-pit rock dump and -- and to locate the monitoring wells. 21 22 Yeah. Monitoring wells typically consist of small 0 diameter PVC pipes installed in 6-inch boreholes. 23 24 Given the size of the structures to be monitored and 25 the dominant control that faults and fractures are 26 anticipated to have on groundwater flow directions,

1 what spacing of monitoring wells is Benga proposing to 2 ensure that contaminant plumes are detected? 3 MS. GRAINGER: I don't think it's so much a Α 4 question of spacing. Monitoring wells have been located in all instances downgradient of potential 5 6 sources, and as we've discussed, they will be located 7 targeting preferential flow pathways once those have been defined. 8 9 But you would agree that sealing fractures could push 0 10 groundwater away from installed monitoring wells, 11 Ms. Grainger? 12 Well, I think the -- as Mr. Houston has discussed, the Α 13 intent is to look at this wholistically, so we would 14 investigate, determine the locations of any significant There would be a determination on 15 faults or fractures. 16 which ones were going to be sealed, if any; and then 17 based on that, we would select the locations for the monitoring wells. 18 Now, surge and sedimentation ponds, as well as waste 19 0 20 rock dumps, are to be established in upslope locations to provide suitable setback from Blairmore and Gold 21 22 Creeks; correct? 23 MR. HOUSTON: So they'll be located in Α 24 appropriate locations. All of the structures are a 25 hundred metres or more from Gold Creek and Blairmore 26 Creek.

1	0	De sur envee that heire situated at a bishey alcostice
1	Q	Do you agree that being situated at a higher elevation
2		will result in a driving head of water that will push
3		any mobilized contaminants downward through the base of
4		these structures and into the underlying rock and
5		fracture systems?
6	A	MS. GRAINGER: Mr. Secord, these structures
7		are planned to be lined, so there is a the surge
8		ponds.
9	A	MR. HOUSTON: Just a minute, Mr. Chair.
10	Q	I think you're wrong, Ms. Grainger. The sediment ponds
11		are not being lined, at least not as as of this
12		morning's evidence.
13	A	MS. GRAINGER: My apologies, Mr. Secord. I
14		thought we were talking about the surge ponds, not the
15		sedimentation ponds.
16	Q	My question is: Surge and sediment ponds as well as
17		waste rock dumps are to be established on in upslope
18		locations to provide suitable setback from Blairmore
19		and Gold Creeks. And then so that I think the
20		answer was yes. And then do you agree that being
21		situated at higher elevation will result in a driving
22		head of water that will push any mobilized contaminants
23		downward through the base of these structures and into
24		the underlying rock and fractures systems?
25	A	MR. HOUSTON: So, Mr. Secord, the
26		sedimentation ponds and the surge ponds will will

1		be, let's say, 10 or more metres indepth, and so I
2		would expect that there yes, there there could be
3		a a hydraulic head created around those ponds, and
4		that would have a a limited effect on on pushing
5		groundwater downslope.
6	Q	Do you agree that it is unclear how deep contaminants
7		will migrate before moving laterally so there is
8		considerable risk that they will eventually reach
9		Blairmore Creek and Gold Creek undetected?
10	A	MS. GRAINGER: Generally speaking,
11		Mr. Secord, the any contaminants would migrate
12		downwards towards the water table and then migrate in
13		the water table following the groundwater flow path, so
14		that would be a combination of downwards and lateral.
15		It's not just down and then straight across. It it
16		would move through the unsaturated zone, if there is
17		such an unsaturated zone beneath the structure, such as
18		there is at some of the rock disposal areas, for
19		example, and then once reaching the water table, would
20		move in a combination of downwards and lateral.
21	Q	Do you agree that considerable faith is being placed by
22		Benga on the groundwater monitoring? So how will Benga
23		guarantee nothing is missed and any impacts are
24		mitigated prior to and not after causing an adverse
25		effect?
26	A	MR. HOUSTON: So, Mr. Secord, first of all,

1 the monitoring program that we've proposed is a layered 2 As Ms. Grainger pointed out, we'll have program. 3 monitoring wells adjacent to most of the structures. We'll have additional groundwater monitoring wells 4 5 adjacent to the receiving environment, i.e., the 6 creeks, and -- and I think what's really important to 7 remember is the slow speed at which change occurs in the groundwater environment. It -- we're talking about 8 9 changes on the -- on the scale of years, and so we 10 would expect to see at the monitoring wells a very, very slow change in -- if -- if there was seepage and 11 12 there was a contaminant issue, very, very slow change 13 in concentrations commensurate from the movement of 14 water in that environment.

I guess a third layer, Mr. Secord, will be the monitoring of the water in the creeks itself, and -and that is another layer of monitoring where we would expect any changes to occur very, very slowly, and certainly giving sufficient time for a change in strategies if required.

Q Okay. If we could turn up CIAR 42, Section E, PDF page 126, and this is Heading E.6.3.1.3.2, "Potential Changes in Water Quality", and the authors write: (as read)

As the mine progresses through operations,there's the potential for changes to sediment

1		and water quality variables that may have
2		chronic or lethal acute effects on aquatic
3		biota if they have the potential to enter the
4		aquatic ecosystem.
5		And then if we could turn up PDF page 216 of CR 3. And
6		this is under Heading 3.5, "Model Calibration", the
7		last paragraph. It says: (as read)
8		The overall calibration approach provides an
9		estimate of the regional 'K', storativity,
10		and recharge values; however, although
11		calibration is considered reasonable for
12		larger scale approximations, models may
13		exhibit large uncertainties at the local
14		scale due to localized heterogeneities not
15		recognized or incorporated into the larger
16		model.
17		How does this caveat provide confidence to the Joint
18		Review Panel that the SRK model is generating accurate
19		and reasonable results that significantly influence
20		ramifications for base-flow reductions and waste
21		assimilation calculations both during mine development
22		and post closure?
23	А	MS. GRAINGER: Mr. Secord, I can just speak
24		to the model and the localized heterogeneities and
25		and that specific piece.
26		So my understanding is your concern is: How do we

have confidence in the model given that there are some 1 2 uncertainties at specific locations? And that's a 3 function of the -- the model. It cannot accurately 4 represent -- it is a -- any model is a simplification 5 of a very complex system. It provides us an overall 6 understanding, and we believe it's representative in 7 terms of the base-flow reductions that are predicted. Could there be variations at a specific location? 8 9 Potentially. But the overall understanding and -- and 10 predictions, we believe, are informative and do give us confidence in completing the assessment. 11

12 And does this model factor in climate change? 0 13 Climate change isn't explicitly incorporated into the Α The model was calibrated, and as we've talked 14 model. significantly about, the sensitivity analyses -- and 15 that would be one manner in which potential changes, 16 17 such as climate changes and those effects -- could be 18 understood in terms of the model predictions, so specifically recharge, which we've looked at earlier. 19

20 So if there's a change in recharge due to climate, 21 how would that affect the model? And the conclusions 22 were that the change resulting from the project itself 23 was consistent regardless of whether there was a change 24 in the overall amount of -- of recharge. So what I 25 mean is if a base-flow reduction of 10 percent was 26 predicted with the recharge that was used, that -- that

10 percent base-flow reduction would be maintained even 1 2 if recharge was reduced or greater. 3 MR. SECORD: Mr. Chair, I am going to move 4 on to a new area of questioning. You'll be happy to 5 know my questions on hydrogeology are over. I intend 6 to move into questions on groundwater/surface water 7 interaction and mine water balance, and then I have a 8 further area on geochemistry. 9 I wonder whether we should give the court reporter 10 a break now before I move into this new area? 11 THE CHAIR: I think that's a good idea, 12 Mr. Secord. I was about to suggest that. 13 So it's 2:30. We'll break till 2:45. And just by 14 way of time, depending on how we account for 15 yesterday's head start, if I'm generous, I'm going to say you have probably about an hour and a half left of 16 17 your allocated time, Mr. Secord. I don't know how well that works for your other questions, but just keep that 18 in mind. 19 20 MR. SECORD: Thank you. I'm hoping Okay. 21 you might give me another half hour, but I'll do my 22 best, sir, and obviously I know we -- Mr. Yewchuk was -- he was very efficient yesterday, so it's a 23 24 difficult process estimating time, and --25 THE CHAIR: Yeah. Understood. 26 -- also with, you know, the MR. SECORD:

1 So I quess I'll see where I get. responses. I did 2 have those climate-change questions left over. I've 3 got those at the end, so -- but I'll do my best. Hopefully I can get the job done in the time allocated. 4 5 THE CHAIR: Okay. Thank you. 6 MR. SECORD: I will do my best. 7 THE CHAIR: Okav. Thank you. 8 We'll see everybody after the break. 9 (ADJOURNMENT) 10 THE CHAIR: Okay. Go ahead, Mr. Secord. 11 MR. SECORD: Thank you, sir. 12 And just to be clear, you'd like me to be 13 completed by 4:15, if at all possible? 14 THE CHAIR: Yeah. As I said, Mr. Secord, 15 I'll be flexible. I just want you to try and, you know, continue to be efficient, and, you know, the goal 16 17 is to wrap you up today and hopefully not go too, too late. 18 19 MR. SECORD: I really appreciate Sure. 20 that, sir. MR. SECORD: 21 So these next set of questions 0 22 are on groundwater/surface water interaction and mine 23 water balance. I think, Ms. Grainger, do you agree there is no 24 25 indication of how areas of groundwater contribution to 26 streamflows were identified and quantified in Blairmore

1		and Gold Creeks?
	7	
2	A	MS. GRAINGER: Sorry, Mr. Secord. Can you
3		rephrase the question perhaps. I'm not understanding
4		what you're asking.
5	Q	Do you agree that there is no indication of how the
6		areas of groundwater contribution to streamflows were
7		identified and quantified in Blairmore Creek and Gold
8		Creek?
9	A	From my perspective, there were you're correct in
10		that there were not specific we didn't map exactly
11		where and how much base-flow recharge was occurring
12		along Blairmore and Gold Creeks. The base flow was
13		estimated by reach.
14	Q	Please turn up PDF page 236 of Appendix 10 of CIAR 42.
15		This is the water and load balance model. Appendix 10B.
16	A	What was the PDF number, Mr. Secord?
17	Q	236. This is under "Model Description", and then 3.2,
18		"Scenarios", and Item 3, "Worst case for water
19		quality": (as read)
20		The "worst case" predictions was run using
21		the upper-limit source terms with average
22		hydrological conditions.
23		And maybe just to put this in context, maybe,
24		Mr. Jensen, this maybe this is you. The model
25		under 3.1, the "Model Platform and Time Scale", the
26		water balance and quality model for the Grassy Mountain

Project was developed using the GoldSim software 1 2 package, Version 11.1, GoldSim Technology Group 2014. (as read) 3 So: The water balance and load-modelling work 4 5 done to support this application indicates 6 that the worst case predictions were based on 7 upper-limit source terms and average 8 hydrological conditions. 9 Mr. Jensen, how is using average hydrological 10 conditions considered "worst case" when extreme or 11 upper-limit conditions would be more appropriate. 12 MR. DAY: Mr. Secord, I think I -- I Α 13 kind -- I think I understand your question, but could 14 you -- which part of it are you -- are you asking about the combination with the average hydrological 15 16 conditions or which part? 17 Exactly. So the worst-case predictions was run using 0 the upper-limit source terms with average hydrological 18 19 conditions. So how is using average hydrological conditions considered worst case when extreme or 20 21 upper-limit conditions would be more appropriate? 22 I think we'll need to confer for a moment on who should Α respond to this question. 23 Good to go? 24 MR. JENSEN: Α 25 So, Mr. Secord, I will -- I'll answer this question. It's Soren -- Soren Jensen here. 26

When we talk about the different -- the -- the 1 2 model scenarios that are listed in Table 3.1, we 3 specifically -- when we talk about a worst-case water 4 quality scenario, what we're looking at there, we're 5 looking at it as opposed to the base-case water quality 6 scenario. And when we look at water quality, what 7 really drives the difference in water quality is the range of possible -- I -- I won't say "likely", but the 8 9 range of possible water quality conditions, which are 10 driven by the source terms much more so than any -- any 11 sort of hydrological variability we might -- we might 12 encounter.

13 So, you know, a lot of the times we're looking at 14 sort of an order of magnitude difference in source 15 terms, and we want to -- we want to fixate the -- the 16 assessment of water quality -- the potential water 17 quality outcomes. We want to look at those through the 18 lens of how do -- how do base-case source terms or the 19 expected source terms -- how do they stand up or how do 20 they compare to the worst-case source terms. So what 21 we do is we fix the hydrology, and then we look at that 22 dimension.

23 So I hope that answers your question. Like, it --24 it's an examination of the effect of different source 25 term assumptions.

26 Q Okay. Let's turn up PDF page 236 of Appendix 10B. So

3594

1 we're right there. And I read to you from Section 3.1 2 about the use of the GoldSim software package. So the 3 GoldSim software package is used to predict water quality impacts, yet there is no description of how the 4 5 model was set up in the application documents. 6 Why is that? 7 And do you agree, Mr. Jensen, it is important to communicate how a model is set up so that others can 8 9 review its efficacy? 10 Α So I would -- I would respond to that by saying that the GoldSim model is really nothing other than a 11 12 graphical user interface on -- on a spreadsheet model. It's nothing we couldn't do in a spreadsheet that --13 14 that -- or there's nothing you can do in GoldSim that 15 you couldn't do in a spreadsheet. So it really is more a matter of, you know, I -- I -- the -- the assumptions 16 17 we've stated, the inputs we've used, and the model assumptions we've used to arrive at our model results 18 19 are stated. You know, so we're happy to -- to discuss 20 We didn't prepare the -- the model code itself them. for distribution, but, you know, an experienced 21 22 modeller would be able to look at our inputs here and -- and replicate our results. 23 24 THE CHAIR: Sorry to interrupt. I just 25 want to check. I think we've lost Mr. Matthews. So I 26 just want to give him an opportunity to reconnect

before we continue. 1 2 Mr. Matthews is just trying to reconnect. Let's 3 just take a minute. MS. ARRUDA: Mr. Chair, I believe we have 4 5 Mr. Matthews on the phone now while he's trying to 6 reconnect his audio and video through Skype. 7 THE CHAIR: Okav. Mr. Matthews, can you hear us? 8 9 Mr. Matthews, can you hear us? 10 MR. MATTHEWS: Hello. 11 THE CHAIR: Okay. Can you hear us okay, 12 Mr. Matthews? MR. MATTHEWS: Yeah, I can hear you fine. 13 14 Can you hear me? 15 THE CHAIR: Yeah. Okay. So we'll proceed 16 while you try and log back in on your video. 17 MR. MATTHEWS: Okay. I'll just listen on the 18 phone. Thanks. 19 THE CHAIR: 20 Sorry, Mr. Secord. Please proceed. 21 MR. SECORD: Thank you, Mr. Chair. 22 Welcome back, Mr. Matthews. 23 Ο MR. SECORD: So, Mr. Jensen, are you saying 24 we are using a spreadsheet to understand water quality 25 and the fate of the westslope cutthroat trout? 26 Α MR. JENSEN: Well, in as far as we're using

1		math, I mean, the the the type of computations
2		that go into this model you could do equally well in
3		the spreadsheet as you as you can in a GoldSim
4		model, the mechanics the conceptual model and the
5		mechanics of the computations are all the same,
6		whether
7	Q	Do you agree?
8	A	Irrespective of of if you calculate it by hand or in
9		a spreadsheet or or in GoldSim. It it doesn't
10		make a difference.
11	Q	Do you agree that the GoldSim model used in this report
12		also identifies some constituents in Blairmore and Gold
13		Creeks approaching or exceeding chronic guidelines for
14		the protection of freshwater aquatic life? These
15		include aluminum, ammonium, cobalt, selenium, and
16		mercury.
17	A	Mr. Secord, that would be a question for my for my
18		biology colleagues who handled the the aquatic
19		toxicity aspects of this project.
20	Q	And who are they?
21	A	That would be Martin Davies.
22	Q	And is he there?
23	А	Yes.
24		Do you do you want to take it, Martin?
25	А	MR. DAVIES: Yeah, I can.
26	A	MR. JENSEN: Okay.

1 Α MR. DAVIES: Hi, Mr. Secord. 2 I -- I will need to look that up, but from what 3 you've said, it sounds correct. 4 Ο Are you with SRK? 5 I am, yes. I'm -- I don't work with SRK. Α I mean I'm 6 in the same room as SRK, but ... 7 This is the SRK water and load balance 0 Okav. Okav. model. 8 9 Are you familiar with the appendices 10 essentially -- they're not bookmarked for some strange 11 reason, but are you familiar that in Appendix 10B there 12 is something called an "Appendix D3", which is the 13 Blairmore Creek water quality projections from PDF 309 14 to 334, and in Appendix D4 of Appendix DP -- of Appendix 10B of -- of CIAR 42 --15 Yeah. 16 Α 17 -- whereas the Gold Creek water quality projections 0 18 from PDF pages 335 to 360, have you taken a look at 19 those? MR. HOUSTON: 20 So, Mr. Secord, I -- I think Α 21 we're -- we're just a little bit confused about what 22 the question is. So in terms of --Well, there's --23 Ο 24 No. Yeah. Α No. 25 There's no question. 0 26 Yeah. Okay. Α

1 Q There's no question yet.

2	А	Yeah. No. So I just want to make sure we have the
3		right person talking with you. If it's with regard to
4		the numbers that were generated and what the values are
5		under various scenarios, that's the person who ran the
6		model, which would be Mr. Jensen, supported by others.
7		If it's with regard to what is the health effect on the
8		fishies [sic] downstream, Mr. Davies could be more
9		appropriate. And and so I you know, I'm just not
10		sure where you're going with your question.
11	Q	Okay. So what I'm what I'm looking at is the SRK
12		data, and I'm particularly interested in some of these
13		water quality projections that are in these appendices.
14		So perhaps what we could do, maybe, is just turn up
15		let's take a look at aluminum.
16	A	Do you have a PDF page, Mr. Secord?
17	Q	I do. PDF page 337. And I'm looking at BLO2. Sorry.
18		I'm sorry. I've got this is this should be GC
19		this is should be GC10; right? It's so hard to
20		read, but this doesn't look this doesn't look right.
21		Are we on 337? We are.
22	A	So this is Gold Creek
23	Q	Yeah, it is.
24	А	values here.
25	Q	I've got to pull up my document 'cause, unfortunately,
26		it's really hard to see on the Zoom screen here. So

1 I'm going to pull up my document. 2 MR. SECORD: All right. Okay. So I'm 3 sorry, Zoom Host. So the first document I want to take a look at is PDF page 311. And this is the Blairmore 4 5 Creek 02 reach, and this is the second graph -- sorry. 6 Yeah. The -- it would be the third -- the third graph 7 here. So BC -- there we go. BL02. My apologies. 8 MR. SECORD: So I'm not sure who's going to 0 9 answer this question, but as I understand it, the 10 GoldSim modelling is predicting that the aluminum 11 concentration in Blairmore Creek at its peak between 12 2039 and 2043 will be point -- approaching .045 milligrams per litre; correct? 13 14 Α Yes, that -- that's correct. 15 And would you agree, subject to check, that the FWAL is Ο 16 point -- 0.05 for aluminum? Do you know what the FWAL is? 17 I believe that's correct. 18 Α So do I understand, then, that this -- that the 19 0 Okav. 20 GoldSim modelling is projecting that the aluminum 21 levels in Blair [sic] Creek will be essentially 22 approaching the FW -- can we call it the "FWAL" for 23 aluminum? 24 MR. HOUSTON: So, Mr. Chair, we -- we have Α 25 recognized in our reporting that a number of metals 26 approach or even -- even marginally exceed -- and I'm

not talking about selenium, but other metals, like 1 2 aluminum, zinc, they approach or even exceed allowable 3 guidelines. And what we've proposed in our -- our project is that as -- as we get a better handle on what 4 the final values may be, it's -- it's important to 5 6 remember that these values are calculated based on 7 conservative assumptions and early data. It's also 8 important to recognize that the buildup occurs over 15 9 or 20 years. And so as we get a better appreciation 10 based on real-world experience with the mine, we'll 11 possibly need to implement a metal treatment plant, 12 which we've committed to as part of our application, if 13 required. 14 And if we turn up to PDF page 325. And this is the 0 second graph here showing BC07, "Ammonium Concentration 15 Milligrams Per Litre". Can we agree that in this reach 16 17 of Blairmore Creek, the ammonium level reaches 18 5 milligrams per litre --That's what the --19 Α 20 -- Mr. Jensen? 0 21 That's what the modelling shows. Α 22 Right. Yeah. And then can we agree that this -- the Ο 23 maximum level that -- where it reaches a peak of 24 5 milligrams per litre in 2039 is well over the 25 1.5-milligram-per-litre threshold in the 2014 and 2018 26 Alberta Environment quidelines?

That would be a question for the Hatfield witness. 1 2 We're just confirming that, Mr. Secord. One minute. Α 3 MR. SECORD: Maybe while they're conferring, Zoom Master, would you turn up AQ1 AEP 4 environmental quality surface water guidelines from 5 6 2014? 7 This is the Coalition aid to MR. SECORD: Ο So it's -- this is described as "AQ Number 1, 8 cross. 9 Coalition AEP Environmental Quality Surface Waters 2014 Water Topics". 10 That's not it. 11 MR. HOUSTON: Mr. Secord, we're going to Α 12 have to get back to you on the question around ammonia. 13 It's going to take a little bit of time for us to look 14 things up. So what I understand you want to know is 15 whether these predictions exceed the water quality parameters for Blairmore Creek. 16 17 Okay. That's great. I've produced an aid to cross 0 here, which are the AEP environmental quality surface 18 19 water guidelines for 2014. Those were the guidelines 20 that SRK used in the -- in the GoldSim model; correct? MR. JENSEN: 21 Mr. Secord, I'm just reminding Α 22 myself whether we did put in guidelines 'cause the way 23 the workflow worked in -- in this model assessment is 24 that we -- we did the characterization of site, 25 compiled the inputs, completed the model, and the model 26 results then were handed off to Hatfield for an

		2002
1		assessment of
2	Q	Okay.
3		
	A	potential aquatic effects. So let me
4	Q	So the
5	A	Let me just
6	Q	So the Hatfield witness can just confirm these are the
7		guidelines that Hatfield used to determine whether some
8		of these metals were above or below the FWAL
9		guidelines; is that correct?
10	А	MR. DAVIES: Yeah, that would be correct,
11		Mr. Secord.
12		MR. SECORD: Can we mark this as the next
13		exhibit?
14		THE CHAIR: Any concerns, Mr. Ignasiak?
15		MR. IGNASIAK: No, sir.
16		THE CHAIR: Okay. Do we have a number?
17		MS. ARRUDA: Elaine Arruda here. The next
18		CIAR number is 849.
19		THE CHAIR: Thank you.
20		EXHIBIT CIAR 849 - AQ#1 - COALITION - AEP
21		ENVIRONMENTALQUALITYSURFACEWATERS - 2014 -
22		WATER TOPICS
23		MR. SECORD: And then can we pull up AQ
24		Number 2, Coalition AEP environmental quality surface
25		water guidelines, March 28, 2018?
26	Q	MR. SECORD: And perhaps I can ask the

		3001
1		Hatfield witness: Have these guidelines superseded the
2		2014 guidelines?
3	A	MR. HOUSTON: Mr. Secord, we're we're
4		going to have to take an undertaking to get a response
5		on the ammonia question.
6	Q	I'm not asking that question now.
7	A	Okay.
8	Q	Mr. Houston, you're behind.
9	A	Okay.
10	Q	So I think the question I think we've already got
11		that undertaking.
12	A	Okay.
13	Q	But the next question was the this aid to cross, the
14		2018 Alberta government environmental quality
15		guidelines for Alberta surface waters, this document
16		has now superseded the 2014 guidelines that have been
17		marked as CIAR 849; correct? That would be a question
18		for Hatfield.
19	A	MR. DAVIES: Yes, that's correct.
20		MR. SECORD: And can we mark this as
21		CIAR the next CIAR exhibit?
22		THE CHAIR: Mr. Ignasiak, no concerns?
23		MR. IGNASIAK: No concerns.
24		THE CHAIR: Okay. Can we get a number?
25		MS. ARRUDA: Mr. Chair, that will be
26		CIAR 850.
1		

1 THE CHAIR: Thank you. EXHIBIT CIAR 850 - AQ#2 - COALITION - AEP 2 3 ENVIRONMENTALOUALITYSURFACEWATERS - MAR28 -2018 - WATER TOPICS 4 5 MR. SECORD: All right. And then if we 6 could turn to PDF page 357 of the GoldSim projections. 7 This is Appendix 10B in CIAR 42. We're at page 357. So can we have the -- the GC02 graph -- you're going to 8 9 have to scroll down. Right. 10 0 MR. SECORD: So I believe this is the 11 stretch or the area of Gold Creek that had previously 12 been identified as having dried out in September of And if we look at this model projection, it 13 2016. 14 shows that starting in 2037, the selenium levels move 15 up to .002 and then remain above .002 up and to the end 16 of 2099. Can you confirm that this -- the selenium 17 FWAL is .001 milligram per litre? 18 MR. DAVIES: No. It's .002 milligram --Α 19 or, yeah, 002 milligrams per litre, 2 micrograms per 20 litre. 21 Q Well, I don't think you're right. Let's go to -- let's 22 qo to --23 Α Mr. Secord, it's PDF page 35. 24 Let's go to Table B8, "Dissolved Metal Results", 0 No. 25 page 137 of CR Number 3 of CIR -- CIAR 42. Perhaps you 26 haven't seen this document, Mr. Davies. 137.

		2000
1		All right. So you have identified as Exhibit A49
2		the 2014 FWAL ESRD aquatic life guidelines. On this
3		table, the FWAL for selenium is .001.
4	A	Yes. That's not exactly correct. There's if you
5		look in the 2018 guidelines document that's also an aid
6		to cross there, you'll see that there's two there
7		there's a guideline of 2 micrograms per litre and
8		there's an alert concentration of 1 microgram per
9		litre, and that 1 microgram per litre value is intended
10		to use in high-risk environments where there's a high
11		risk of selenium accumulation through selenium cycling
12		in the environment.
13	Q	So you're
14	A	But in this case, that is not the case.
15	Q	So you're saying this Millennium document, this
16		Table B8, "Dissolved Metals Results", the number that's
17		recorded there as the FWAL is incorrect?
18	A	They've used an overly conservative number. The number
19		that they should've used that would apply to this case
20		would be .002.
21	Q	Okay. So back to the previous document. The GC02
22		selenium is above .002, the level the FWAL level
23		from two thousand and approximately 2041 through to
24		2099? It's above the FWAL?
25	A	MR. HOUSTON: This Mr. Secord, this
26		this graph has been updated. This this particular
1		

1		graph reflects the possibility of having the in-pit
2		lake outflow into Gold Creek which has since been
3		shelved, so we're not we're not doing that. So
4		there there is a new graph in I believe it's
5		Addendum 10. Is it Addendum 10? Yeah. We're just
6		confirming that. But it's in Addendum 10. We redid
7		all of these graphs based on another information
8		request, and Gold Creek remains below .002 micro
9		milligrams per litre or 2 micrograms per litre.
10	Q	Do you have that reference?
11	А	We're we're looking for it.
12	Q	Maybe I'll just carry on, and you can give that to me.
13	A	We we have it, Mr. Secord, so why don't we just
14		close this off?
15	Q	Sure.
16	A	Can you just do it, Mike?
17	A	MR. BARTLETT: Mr. Chair, it's Registry
18		Document 313. PDF page 250 is the relevant information
19		request, and there's a series of figures that speak to
20		these updates.
21	Q	Okay. Thank you.
22		So given the these numbers and the updated
23		numbers, do you agree that there is a likelihood that
24		the contaminant levels could be higher than reported if
25		mitigation techniques are not as effective as as
26		as hoped for?
I		

1	А	MR. JENSEN: So, Mr. Secord, as we sort of
2		clearly state in the in the introduction to this
3		this model assessment and and, indeed, the purpose
4		of this model assessment is to define what's required
5		in terms of mitigation, that's that's I would say
6		that's the primary purpose of this model assessment.
7		So, you know and we also clearly state in
8		our in our assumption and, indeed, in the
9		conclusions that that the design basis that we
10		derived based on these model results need to be met;
11		otherwise otherwise, yes, the the projections
12		that we include in this model assessment here wouldn't
13		apply. So it's it's it's a bit of a circular
14		argument in that sense.
15	Q	Now
16	А	MR. HOUSTON: If I could just add to that,
17		Mr. Secord, just add to that answer a little bit.
18		We we have provided Plan B and Plan C. Of course
19		we've talked about the saturated backfill zone as the
20		primary treatment for selenium, for example. But we
21		we have we have provided other backup plans,
22		including a commitment to install a a a water
23		treatment plant or a gravel bed reactor, if if
24		necessary, to run in parallel or or in in in
25		replacement of the saturated backfill zone.
26	Q	Okay. So given that the GoldSim modelling is showing
1		

that contaminant levels in both the water management 1 2 structures and creeks will be approaching or exceeding 3 Alberta's chronic guidelines for the protection of aquatic life, you mentioned, I guess -- you indicated 4 5 that water treatment may be required or will be 6 required? 7 So we have to understand that the -- the predictions of Α the model are based on conservative assumptions that 8 are yet to be realized, and so we have -- we have 9 10 committed that, for example, if arsenic is -- is a 11 metal of concern and over the early years of operation 12 appears to be exceeding requirements, that we will 13 install a water treatment plant to -- to deal with that 14 issue and the -- and so -- so we have committed to 15 that. We have --16 17 Okay. Q -- also committed to backup plans if the saturated 18 Α 19 backfill zone, which is treating things like nitrogen, 20 ammonia, and selenium, is -- is not -- not operating as 21 expected. 22 And do you agree that the proposed method is to use 0 lime that will result in a high-density sludge? 23 24 One minute. Α 25 Α MR. JENSEN: Yeah. I mean, when -- when we 26 looked at the model results generated to date, and,

1 again, in the spirit of defining mitigation measures, 2 it -- it would appear -- it appeared at the time that 3 some dissolved metals might be of concern. So the use of high-density sludge treatment, lime treatment is --4 is -- I would call it the standard. It -- it's a very 5 6 common approach for -- for treating for -- for removing 7 dissolved metals, so that's what we've proposed. So it is unclear how this treatment sludge will be 8 0 9 disposed of. Where does Benga plan on disposing 10 this -- of this sludge, and what will be the risk to 11 groundwater and surface water from the disposal of the 12 sludge? 13 Mr. Chair, using -- using this MR. HOUSTON: Α 14 water treatment process that Mr. Jensen has proposed, 15 this -- this is a standard kind of process that you 16 might find in -- in sewage treatment plants or other 17 industrial applications. We would -- if and when we need to implement the 18 metals treatment plant, we'll work with -- we'll --19 20 we'll -- we'll develop a plan for properly disposing of 21 the sludge, which -- which would be similar to what you 22 would find in -- in another treatment plant of the --23 of the same type. 24 So if we could turn to PDF page 240 of Appendix 10B of 0 25 CIAR 42. It states here in this first bullet: 26 (as read)

1 Waste rock hydrology was simplified. Runoff from waste rock disposal areas was assumed to 2 3 accumulate in the waste rock pile and seep out once the pile had wet up and field 4 5 capacity of 3 percent had been reached. 6 After the storage capacity of the waste rock 7 was reached, runoff from the area responds immediately to changes in precipitation. 8 9 Why was a field capacity of 3 percent selected, and 10 what is Benga's justification for selecting that value? Well, it's -- it's -- first of 11 MR. JENSEN: Α 12 all, it -- Mr. Secord, I would say that it correctly 13 should've stated a -- an increase in 3 percent is -- is 14 the number that was used to -- and -- and it was -- it 15 was selected as a -- I'd say a very conservative 16 Typically, I mean, for this type of waste number. 17 rock, we might expect to see field capacities -- you know, we might expect to see mine of -- run of mine 18 rock come in at around 3 percent in situ as it is, and 19 20 then it might increase to somewhere in the 21 neighbourhood of -- of 8 to maybe 11 percent, depending 22 on the -- the material, the characteristics of the material. 23

In this case, we -- we elected to assign a value of 3 percent sort of above what it comes in with to be conservative 'cause that means that waste rock seepage

		5012
1		would emerge that much earlier
2	Q	So
3	ء A	in our modelling. So it's really just a
4		conservative assumption.
5	Q	So what did it come in at? You said it you said
6	×	that it should have read you increased it by
7		3 percent?
8	7	-
	A	Yeah.
9	Q	What was the number that you increased?
10	A	Well, I mean, typically it comes in at 3 percent
11		already. What we're interested in is how much more
12		water will be retained in the waste rock mass before it
13		starts to drain. So the 3 percent the 3 percent
14		is is is the additional moisture or additional
15		water that needs to be added to the waste rock before
16		it starts to drain freely.
17	Q	If a higher value, like 5 percent or 10 percent, had
18		been selected, how would this have affected model
19		outputs and mine water balances?
20	A	It would just take that much longer before the seepage
21		would start to emerge from the toe of the waste rock
22		dump.
23	Q	Okay.
24	A	So any effect that you see represented in the model
25		would would be delayed by, you know, the
26		corresponding amount of time.

1 All right. So I'd like to now move to geochemistry 0 questions. 2 3 So Benga chose to only model dissolved concentrations of contaminants and not total 4 5 concentrations; is that correct? This may be for 6 Mr. Stephen Day, but ... 7 MR. DAY: Yeah, I can -- I can answer Α Yeah, so the -- the modelling that 8 that, Mr. Secord. 9 we do is intended to understand what happens when rock 10 starts to break -- when it kind of weathers and breaks 11 down. And those processes are creating soluble 12 minerals that go into solution, and so that -- or 13 that -- so the -- the water that's inside the waste 14 rock is -- contains dissolved concentrations. It's 15 only when that emerges that you get erosion occurring 16 that adds to the -- the suspended load and makes --17 Right. 0 -- makes up the total. So that's -- that's why we --18 Α when we do the -- what we call a "source term" 19 20 prediction", we focus on the dissolved concentrations. 21 Do you agree that the use of total concentrations 0 22 would've been more conservative and reflective of the 23 effluent that will discharge from the mine water 24 management structures? 25 Soren, I think maybe you -- could you speak to how Α 26 the -- 'cause, I mean, usually what we do is we add the

load from the dissolved to the -- to the totals from 1 2 the background areas. Could you speak to that, please? 3 MR. JENSEN: Yeah, I can. I just need one Α 4 minute here to -- actually, I -- no. I -- I'll -- I'll So what we did from -- with respect to 5 outline that. 6 the -- the water management structures, yes, it's --7 it's -- we did, indeed, use the dissolved concentrations from those structures, and then we -- in 8 the model, we mixed them in with that dissolved 9 10 component, in with the -- both dissolved and totals. 11 So we added those dissolved components to the dissolved 12 and total from our assumed background concentrations. 13 0 Okay. 14 Α So, yes, it -- it would be more conservative to -- to assume some solids load, but what -- what we 15 16 effectively assumed is that the -- that the 17 sedimentation structures operate as designed. So why did Benga decide to use -- or why did SRK decide 18 0 19 to use this less-conservative approach? 20 Again, the -- the purpose of the assessment here is Α 21 to -- is to evaluate what sort of mitigation's 22 required. And given the fact that, you know, we have 23 incorporated the -- the operation of sedimentation 24 ponds into this assessment, it -- you know, it -- it 25 it's consistent, I think, with the fact that our 26 assumptions, as clearly stated in this -- in this model

1 report, that we assumed that the mitigation measures 2 that are reflected here are effective. 3 So if we could turn up Table B8, "Dissolved Metals 0 4 Results", page 137 of CR Number 3. And if we scroll 5 down to PDF page forty -- 142, we have, essentially, 6 the values exceeding freshwater aquatic life and 7 drinking water guidelines. That's the brown. Then a sort of salmon colour, value exceeds freshwater aquatic 8 9 life guidelines, and then the blue, we have values 10 exceed drinking water guidelines. 11 So over these -- essentially from pages 137 to 12 142, we have -- we have these various categories --13 various metals listed, right, at the top of the 14 document in Table B8, the "Dissolved Metals Results"; correct? Mr. Day? 15 MR. DAY: 16 Yeah, that's what the -- the Α 17 table says, yeah. And has this table been updated as a result of the new 18 0 work that was done in Addendum Number 10? 19 20 MR. HOUSTON: Um --Α 21 MR. DAY: Α Sorry. Go ahead, Gary. 22 MR. HOUSTON: No. So I -- I was going to Α 23 Mr. Chair, could we just take a minute to -say: 24 before we respond? One minute. 25 Mr. Secord, Mr. Chair, these are -- these are 26 water samples that were taken in our efforts to collect

3615

		5010
1		data. Most of these are groundwater samples. And just
2		wondering how you're connecting this to the modelling?
3		These are samples of water in from from wells
4		from 2015.
5	Q	Okay. So my understanding is that that Mr. Day was
6		saying that that FWAL line was inaccurate in terms of
7		some of these model guidelines.
8	A	The so Mr. Davies responded to that, and he he
9		talked about the selenium number, which, as he pointed
10		out, the the 1 microgram per litre for selenium is a
11		conservative guideline used in in the most high-risk
12		waters, which means risk in terms of selenium uptake
13		into the the the aquatic biology. And and
14		that one he he corrected and said that .002 or
15		2 micrograms per litre is a more appropriate number.
16	Q	Yeah, and I appreciate that
17	A	MR. DAVIES: If I could sorry. If I
18		could add to that, just to clarify. The guideline is
19		2. The alert concentration is not formally considered
20		a guideline.
21	Q	So I'm just I mean, you and I were talking about the
22		GoldSim modelling, obviously, and the results done in
23		Addendum 10 and, you know, what they showed, but this
24		particular table obviously is looking at at what has
25		been, I take it, measured at various locations, you
26		know, obviously starting on this page with the Bellevue

1		mine, but do I understand that that some of these
2		guidelines these FWAL numbers are wrong in this
3		document? Are you saying that, for instance, for
4		selenium, these shaded areas are wrong, that they
5		shouldn't be shaded orange?
6	A	Now, if I could clarify, this is data for 2016. It is
7		using the 2014 guidelines. And and in the 2014
8		guidelines, as you showed in your aid to cross, the
9		the guideline was 1 in in Alberta. And that that
10		had been taken from a 1987 guideline for that was
11		produced by CCME.
12		The current Alberta guideline is derived from the
13		BC 2014 guideline and was adopted after this table
14		would've been made. So it's not incorrect, but it's no
15		longer accurate with regard to the current set of
16		guidelines.
17	Q	And it hasn't been updated for the for the Joint
18		Review Panel?
19	A	This table?
20	Q	Yes.
21	А	I'm I can't speak to that, actually. No. It's
22		included in the baseline from 2016, I believe.
23	Q	Okay. So as things stand, then, the presence of some
24		trace elements of levels above established guidelines
25		for drinking water and/or the protection of freshwater
26		aquatic life has been confirmed in some of the

Г

		
1		monitoring well samples assessed by Benga. So
2		that's
3	A	MR. HOUSTON: That's that's correct.
4	Q	So that's what's produced at Table B8?
5	A	That's right.
6	Q	And do you agree that in addition to selenium, this
7		includes aluminum, cadmium, chromium, copper, mercury,
8		nickel, and zinc?
9	A	I I I would note, Mr. Secord, that in in some
10		of the samples, that is correct, but not in all.
11	Q	Do you agree that these results indicate their natural
12		presence in the waters of the project area and the risk
13		of them being mobilized as a result of Benga's mining
14		and waste management processes? This would probably be
15		a question for Mr. Day.
16	А	So what what I'll I'll start, and and if
17		Mr. Day has something to add, he he can jump in, but
18		these water samples were taken at a variety of
19		locations, and some of them were in historical mining
20		works, for example, or close to, and and so we would
21		expect first of all, we expect some level of all of
22		these elements to be to be present in in most
23		water samples, and I I think we need to get down to
24		specifics of each sampling location to to understand
25		whether whether an exceedance in one location is a
26		significant issue.

1		MR. SECORD: Well, let's look at PDF 137,
2		Zoom Master.
3	Q	MR. SECORD: So these are some of the
4		few the some of the 19 monitoring wells that you
5		managed to drill on the project area; correct?
6	A	That that's correct.
7	Q	That's what you're talking about in terms of
8		exceedances of FWAL and guidelines? That's a good
9		picture of of what you found from some of the
10		19 wells that were drilled that weren't didn't end
11		up being dry?
12	A	Yeah. Yeah. So so, Mr Mr. Chair, Mr. Secord,
13		yes, these are these are samples that are taken from
14		groundwater wells, and, you know, using a wildlife
15		criteria for groundwater is is not really
16		appropriate. It's it's a way for us to identify
17		and and screen the the various elements that may
18		be present in the water. But using a a wildlife
19		lens and and saying there's an exceedances,
20		it's it's really just to highlight which which
21		elements are are need to be looked at closely
22		more closely.
23	Q	What do you mean by "a wildlife lens", Mr. Houston?
24	A	The the FWAL is aquatic life. I'm sorry.
25	Q	You thought it was wildlife?
26	A	No. No. I I misspoke, Mr. Secord.

1 Q Yeah, you did.

You might not want to jump in in the rest of these
questions, Mr. Houston.

If you could turn up -- so -- so do you agree that the results -- these results indicate their natural presence in the waters of the project area and the risk of them being mobilized as a result of Benga's mining and waste management processes? And that's a question for you, Mr. Day.

 10
 A
 MR. DAY:
 Yeah, I'll -- I'll -- I'll

 11
 take that.

12 So, yeah, you -- you're correct that we -- we do 13 look at -- we look at waters that are close to the --14 the mine -- the existing mine operations as a -- as a -- an indication of what might leach from them. 15 And 16 we -- we actually did incorporate that into our 17 assessment. So it is -- it is appropriate to use the data that way, yeah. 18

19 Do you agree that there is no SRK modelling done to 0 20 explore how these contaminants might be mobilized and 21 moved through the subsurface of the mine project area? 22 Actually, we do. We use the -- we do -- we do Α 23 modelling of the -- the waste rock dumps, for example, 24 of pit walls to -- to understand what mobilizes from 25 the -- from them. And where are those model results? 26 0

-		
1	A	You can look in Appendix 10.
2	Q	Okay. I've done that. I've done that. I know where
3		those are.
4	A	Yeah. So
5	Q	And we're going to look at some of those.
6	A	Okay.
7	Q	Okay. I'm trying to speed through my questions, as my
8		time is evaporating.
9		Oh, yeah. Yeah. So this is interesting. So
10		please turn up PDF page 112 of Addendum 10, which is
11		Package 5 of CIAR 251. So the response here so:
12		(as read)
13		So identify all planned source locations,
14		i.e., rock pile areas and other any other
15		potential sources of contamination, including
16		sources that may arise due to extreme flood
17		events.
18		And then the response is listed. And I want you to
19		focus on the last sentence here. It says: (as read)
20		The end-pit lake is not identified as a
21		potential source as the water stored in the
22		lake is located in its own groundwater
23		catchment area.
24		The statement then is made that the EP the end-pit
25		lake is not identified as a potential source of
26		contamination to the groundwater and potential
I		

		3022
1		receptors; correct?
2	A	I I see that, yeah.
3	Q	So if we turn up Appendix 10B, the water and load
4		balance model in CIAR 42, and then if we go to PDF
5		page 380. This shows the pit lake the mercury level
б		in the pit lake; correct?
7	A	Yeah. Correct. Yeah.
8	Q	And it shows from 2040 2041 on that the mercury
9		level is at at or above .000012. Can you confirm
10		that the FWAL for mercury is .000005?
11	A	I'll have to let Martin respond on that.
12	A	MR. DAVIES: Yes, I believe that's correct.
13	Q	Okay. And then if we turn to PDF page 404. For the
14		end-pit lake, we have the selenium concentrations
15		starting in 2041 and continuing to 2099, the selenium
16		levels being at .006, which is well above the FWAL of
17		.0002; correct, Mr. Davies?
18	A	It it's above .002.
19	Q	Right. And have these and were these were these
20		projections also changed in Addendum Number 10, or did
21		they remain the same after you reworked the model?
22	A	MR. HOUSTON: I I don't believe the
23		numbers for the end-pit lake changed, Mr. Secord.
24	Q	Right. And then if we go to PDF page 410 for the
25		end-pit lake, we see zinc levels from 2041 to the end
26		of the life to the end of the next or I guess the

			3023
	1		end of this century at .03 sorry, at at above
	2		.05. Can you confirm, Mr. Davies, that the FWAL is
	3		is .03?
	4	A	MR. DAVIES: Yes, I believe that's correct.
	5		
		A	
	6		recognized that the numbers in the end-pit lake based
	7		on the modelling that we've done to date, in a few
	8		cases, may exceed water quality guidelines. We we
	9		also understand that we we have options for for
	10		treatment, especially of the metals or of the selenium.
	11		So there are options available.
	12		But more more importantly, with the
	13		conservative nature of the modelling, we we'd like
	14		to get a little bit further down the line so that we
	15		could see which of those mitigation measures, if
	16		necessary, would be best suited to to managing the
	17		water in the end-pit lake.
	18	Q	If we could turn up PDF page 255 of the same appendix,
	19		10B. And this is under the heading 5.4, "Concentration
	20		Limits". And in the second sentence, it states:
	21		(as read)
	22		Elevated concentrations in pit lake water may
	23		occur due to potential acidity. Pit lake
	24		water leaves the project area via two
	25		pathways: One, as overflow to the northeast
	26		sedimentation pond and subsequently to Gold
ļ			

		3024
1		Creek via horizontal drains after reaching
2		the flood elevation; two, as leakage. Once
3		the pit lake begins to fill, pit lake leakage
4		reports to Gold Creek at Prediction Node
5		GC10.
6		I take it, Mr. Houston, all of this has changed? None
7		of this is correct information?
	7	
8	A	We're we're not currently planning an overflow for
9		the end-pit lake. That's correct.
10	Q	So the overflow to the NESP is not something that
11		you're applying for?
12	A	No.
13	Q	And in terms of this Point Number 2: (as read)
14		As leakage, once the pit begins to fill, pit
15		lake leakage reports to Gold Creek at
16		Prediction Node GC10.
17		How was that determined?
18	A	MR. JENSEN: So that was determined based
19		on sort of the general direction of the groundwater
20		flow in in that area. We looked to we looked to
21		the groundwater model assessment for some input to what
22		appropriate assumption to apply in this case.
23	Q	Okay. So I thought, Mr. Jensen, from my extensive
24		conversation with Ms. Grainger, that the groundwater
25		flow was north-south, that the model constrained
26		groundwater flow to from the from in the

directions from the west to the east and from the east 1 2 So I just am confused now how you're to the west. 3 saying that the groundwater flow would be east --4 sorry -- yes, it would be east from the end-pit lake. 5 I apologize, Mr. Secord. We're just debating who best Α 6 to answer this question. I think Nancy will handle it. 7 MS. GRAINGER: I just wanted to provide a Α clarification, Mr. Secord, 'cause this morning we were 8 9 speaking of hydraulic conductivity and the differences 10 in the north-south direction versus east-west, and 11 that's not synonymous with the direction of groundwater 12 So I can provide you references to maps in flow. 13 CR 3 -- 'C' -- Consultant Report Number 3 which show the groundwater flow direction, but it's -- it's not 14 just north-south or east-west. 15 And what is the groundwater residence time from the --16 0 17 travel time from the end-pit lake to Gold Creek? 18 Well, perhaps the map that is relevant is to look at Α Consultant Report Number 3 in CIAR 42, PDF 109. 19 20 Is that the one we looked at already? 0 21 This is a different map than what we've looked at Α No. 22 previously. This map shows the groundwater flow 23 contours at long-term closure. Or, sorry, the flow direction at -- at -- at long-term closure. 24 25 So this map shows in the area of the end-pit lake 26 at the north end that there's a -- sort of a mini

			3020
	1		groundwater basin that's formed where the the mining
	2		has occurred, and groundwater flow direction is
	3		actually very localized and towards that end-pit lake
	4		in that area.
	5	Q	Okay. So going back to your August 2019 response to
	6		the information request in CIAR 251 that the end-pit
	7		lake is not identified as a potential source of
	8		contamination and the statement in in on PDF
	9		page 255 of Appendix 10B in CIA 42, that is leakage
	10		(as read)
	11		Once the end-pit lake begins to fill, pit
	12		leakage reports to the Gold Creek Prediction
	13		Node GC10.
	14		Can you can you tell me can you explain this
	15		discrepancy?
	16	А	MR. JENSEN: Well, I would say oh, am
	17		I
	18	Q	Yeah, you're on.
	19	A	Okay. There appears to be it might have been a
	20		misinterpretation of some sort in classifying this as
	21		not a as a source. It certainly is incorporated in
	22		our water and load balance as a source. So there might
	23		have been a misunderstanding on the you know,
	24		perhaps the the author of this response was not
	25		aware that we are treating it as a source, and it is
	26		incorporated as a source in the assessment.
- 1			

1 Q Okay.

2 MR. HOUSTON: I think that, Mr. Secord, the Α 3 confusion might come from the question. I mean, we're 4 talking about extreme flood events. And so in extreme 5 flood events, the end-pit lake wouldn't create an 6 additional source of contamination, but we have 7 recognized in the modelling that seepage from the end-pit lake can and does -- will occur. 8 9 But just specifically in the case of an extreme 10 flood event, it's not an -- you know, an additional 11 source under those circumstances. 12 So, Ms. Grainger, would you agree that it looks like --0 13 looking at this figure that you pulled up, that the 14 travel time would be somewhere between zero to ten years from the end-pit lake to Gold Creek? 15 MS. GRAINGER: I don't think that's evident 16 Α 17 on this picture. We can go back to 112 -- PDF 112, 18 which is the map which shows the groundwater travel 19 time --20 That's the one --0 -- for creek discharge. 21 Α 22 That is the one we were looking at this morning. 23 Ο Okay. 24 You're right. Α 25 Okay. So we don't need to go there, then. 0 26 Α Okay.

1	Q	All right. I'm going to pass over my questions on the
2		waste rock humidity salt test charts. You'll probably
3		be happy to hear that.
4		MR. SECORD: If we could please turn up PDF
5		page 251 in Appendix 10 in CIAR 42. That is not it.
б		251 in Appendix 10 of CIAR 42. There we go. 5.2,
7		"Groundwater Quality" at the bottom.
8	Q	MR. SECORD: So it says: (as read)
9		Due to limited data availability, certain
10		parameters have not been analyzed for in
11		groundwater, including beryllium, bismuth,
12		lithium, molybdenum, ammonium, phosphorous,
13		tin, strontium, titanium, thallium, vanadium,
14		and zirconium. For these parameters, no
15		source term was included for groundwater, and
16		the concentration was assumed to be
17		0 milligrams per litre.
18		Mr. Day, are any of these elements considered toxic to
19		humans or aquatic life?
20	А	MR. DAY: Again, I will have to ask
21		Martin to respond on that, please.
22	А	MR. DAVIES: What what I can say is
23		that, you know, pretty much anything at at some dose
24		is toxic to something. Yeah. What what stands out
25		in this list to me: Most of these are metals that
26		that don't receive very much attention in in

-		5027
1		environmental quality studies. Ammonium does.
2		Molybdenum does sometimes. The others much less so, I
3		would say.
4	Q	Okay. So would you agree, subject to check, that
5		ammonia how do you say it "molybdenum" and
6	A	Perfect.
7	Q	and thallium, would you agree, subject to check,
8		that they have listed guidelines in Alberta for the
9		protection of freshwater aquatic life? Those are the
10		2014 guidelines marked as CIAR CIAR 849. Do you
11		accept that?
12	A	Yeah, that sounds reasonable.
13	Q	And would you accept that ammonia, molybdenum, and
14		thallium also have listed guidelines in the 2018
15		guidelines marked as CIAR 850?
16	А	I believe that they do, yes.
17	Q	When faced with no data maybe this is for you,
18		Mr. Jensen.
19		When faced with no data for chemical constituents,
20		is it common to use some percentage of the respective
21		method-detection limits, e.g. 50 percent, so that the
22		impact modelling can be done in a conservative manner?
23	А	MR. JENSEN: I would say generally, yes,
24		I'd agree with that.
25	Q	And why did SRK choose not to employ this common
26		approach in its impact modelling in this case?
1		

1 Well, Mr. Secord, as you were posing your questions, Α 2 I'm -- I'm just looking for the model 'cause our use 3 of -- of background water quality for groundwater is very, very limited in this model. We only used that 4 5 particular input in situations where groundwater's 6 directly, you know, somehow extracted and then -- and 7 then, let's say, conveyed to another surface water, another reservoir. 8

9 So in this case, whenever we have, for example, 10 quality of water that would seep from the end-pit lake 11 into Gold Creek at GC10 following a groundwater path, 12 we wouldn't be using this source term. And, in fact, 13 I'll have to get back to you, but I'm not 100 percent 14 sure if -- you know, exactly how much -- sometimes we'll use easier -- easier -- "easier" assumptions when 15 16 we know that the source terms have absolutely no 17 relevance to the outcome of the model, and that's most certainly the case here. 18

19 So I hope -- I hope that makes sense. It -- I'm 20 not excusing our use of -- of zero in -- in this case. 21 You know, we really don't expect there to be any 22 detectible limits of any of these -- well, for sure ammonia -- the ones that matter -- in this groundwater 23 24 source, and most certainly loadings would be, you know, 25 not -- not measurable, really, in terms of the final 26 outcome. So we -- we don't -- whenever we do this, we

1		don't do it lightly. We always do it as an we don't
2		try and cut corners in that sense, except when it's
3		completely irrelevant to the outcome of the model.
4	Q	Mr. Houston, I'm not sure who is best for this
5		question, but is it clear from the humidity cell tests
6		that when oxic conditions exist, selenium and other
7		harmful trace elements increase in concentration?
8	A	MR. HOUSTON: Mr. Day
9	A	MR. DAY: Yes.
10	A	MR. HOUSTON: would that be something for
11		you?
12	A	MR. DAY: Yes. So I can speak to that.
13		Yeah, the humidity cells are a very useful
14		indication. It's a actually, why we perform them is
15		to understand weathering of the materials. So they are
16		a very useful indication of what what will come out
17		of them as they they get exposed to the atmosphere.
18	Q	Right. So is it clear from the humidity cell tests
19		that are part of this application that when oxic
20		conditions exist, selenium and other harmful trace
21		elements increase in concentration?
22	А	I certainly agree that selenium is shown to come out
23		when these materials are weathered, yeah.
24	Q	And do you agree the success of the SBZs to sequester
25		selenium is dependent on the conditions in those
26		structures remaining anoxic?

1	А	I agree that the option must be low. I I take issue
2		with the use of "anoxic". It's more like suboxic, but
3		low oxic conditions is correct. Yeah.
4	Q	How will Benga ensure that the SBZs remain anoxic or
5		suboxic into perpetuity after Benga is gone?
6	А	Well, the the the way that suboxic conditions are
7		created is using methanol, and my expectation is that
8		that would continue until those conditions can be
9		demonstrated to be sustained.
10	Q	Now, a void ratio of 25 percent that's porosity, and
11		I don't think we I don't know if you need to turn it
12		up; the reference is Appendix 10, PDF page 249 was
13		used for the SBZs. Do you agree that would it be
14		fair to say, Mr. Day, that you would've expected that
15		this number would've been much higher, around
16		40 percent or so, given the volume expansion to the
17		excavated rock or maybe put or maybe
18	A	Yeah.
19	Q	Or maybe put another maybe put another way, another
20		way to approach it is: What is the justification for
21		the selection of 25 percent? And if a higher number
22		had been used, how would this affect the mine water
23		balance?
24		(SIMULTANEOUS CROSS-TALK)
25	A	MR. DAY: Go ahead.
26	А	MR. HOUSTON: Okay. Mr. Jensen's going to
1		

answer that, Mr. Secord.

1

2 Α MR. JENSEN: Okay. Yeah. So the 3 assumption of 25 percent is another example of -- of a conservative assumption we used. It -- it certainly is 4 5 low. It -- it's not outside the range of what you 6 might expect for -- for waste rock. But, you know, 7 in -- in certain cases, we are -- we're closer to 30, 8 and in other cases I'm aware of we're as high as 35.

9 25 just means that it gives us the least amount of 10 residence time and the least amount of -- of available storage volumes within the -- within that -- in this --11 12 the saturated backfills. So that means when we are 13 looking to evaluate mitigation measures and constraints 14 on -- on managing the volume of water, we're saying, 15 Okay. Let's say 25 percent -- that's the least 16 we would -- we would ever expect. So what does that 17 give us in terms of a volume? If we increase that number, it just means we have more storage volume, 18 19 and -- and in terms of planning for mitigation, it's --20 you know, I prefer to be conservative on that count. And what was the void ratio selected for the waste rock 21 0 22 dumps? 23 Α I believe it was 25 percent. Let me just quickly check 24 that. 25 Yes. That's correct. 26 So, so much attention has been given to selenium that 0

other harmful elements appear to be overlooked. 1 Is 2 there a reason for that and, if so, please explain. 3 MR. HOUSTON: I -- I don't know if that's a Α 4 fair statement, Mr. Secord. We've -- we've modelled many elements that we believe will be present in the 5 6 treated water, and we have identified a few, like --7 like zinc, for example, or aluminum, that may be issues. Our modelling is conservative, and so -- and 8 9 the results are, in many cases, on the borderline. So 10 they -- they may be issues. If they are issues, we've 11 committed to installing a metals treatment plant to --12 to deal with that. So -- so I -- I don't think it's 13 fair to say they've been ignored.

14 So dousing of the SBZs with an organic substrate will 0 15 likely have to occur to promote the reduction in redox conditions necessary to precipitate and sequester the 16 17 selenium. Has Benga looked into how this will affect the mobility of other harmful elements like arsenic, 18 19 chromium, cobalt, copper, lead, mercury, molybdenum, and nickel? 20

21 MR. JENSEN: So our expectation is Α Yeah. 22 that certain elements, in particular manganese and possibly arsenic and -- and other metals that we --23 24 that we know, tend to mobilize during reducing 25 conditions, so under reducing conditions. We're 26 keeping a close eye on those, and that's one of the reasons that we have recommended our -- and Benga has committed to two things. One is the -- the test work at various different scales to try and -- and come to terms with exactly what -- what concentrations or what constituents might be mobilized. The other one is the -- the post-SRF treatment that the company has committed to.

8 So we are -- we are by no means ignoring the 9 potential for -- for constituents to be mobilized, and, 10 in fact, what's required on our end is -- is a little 11 bit better quantification of exactly which ones, if 12 any, will be mobilized so we can -- so we can manage 13 them appropriately.

14 Α MR. HOUSTON: I think I'd just like to add 15 to that, Mr. Secord. I forget what verb you used for the addition of the -- the hydrocarbon, which probably 16 17 will be something like methanol. But it -- it's a very 18 well-controlled amount of methanol we'll be adding to 19 this -- this SBZ. We want to create just the right 20 level of oxygen so that we reduce the selenium, we 21 reduce the nitrates, but we don't go so far as to 22 reduce other elements and -- and create problems. So it -- it's a very closely monitored process. 23 24 All right. So I think I'd like to move on to this last 0 25 area of questioning. Monitoring conducted by Teck Resources Limited, Teck, in the Elk Valley to the west 26

1 has identified the presence of elements such as 2 cadmium, cobalt, nickel, and zinc above guidelines for 3 the protection of freshwater aquatic life and occasional detections of chromium and uranium above 4 those same guidelines. The same -- the same can be 5 6 expected for this project given the similarity of the 7 So why would we create another problem in formations. an area -- in another -- why would we create another 8 problem area in another sensitive watershed of the 9 10 Rocky Mountains? Mr. Secord, first of all, we can't speak to the 11 Α 12 situation at Teck. We -- we can only speak to the project we've got in front of us. We've -- we've gone 13 14 to lengths to identify what are the potential contaminants of concern emanating from the Grassy 15 Mountain Project, and -- and we've done our best to 16 17 model those in a conservative fashion and develop mitigation techniques to -- to ensure that the 18 19 environment is protected. 20 MR. SECORD: Zoom Master, if you could pull 21 up Aid to Cross Number 4 Coalition, Elk Valley water 22 quality 2018 annual report. If you turn to -- first of 23 all, could you turn to PDF page 160? 24 MR. SECORD: Probably this is for you, 0 25 Mr. Houston. Would you agree, subject to check on this 26 figure, that the LC WLC monitoring station is -- is

1		located in the lower left inset panel and basically at
2		the south end of the operation of the Teck
3		operation?
4	А	MR. HOUSTON: I have to confess, I can't
5		read it at this scale, Mr. Secord.
6		MR. SECORD: Can you blow it up there?
7		The the the lower left inset panel? Go up. Up.
8		No. Go up on the document.
9	Q	MR. SECORD: There's the lower left inset
10		panel. Can you see the LC_WLC?
11	A	MR. HOUSTON: If that stands for West Line
12		Creek is that what you're looking for?
13		MR. SECORD: Don't move the document.
14		You're fine where you were. Just leave it there.
15	Q	MR. SECORD: It's Line Creek WLC LC_WLC.
16		You see that?
17	A	MR. HOUSTON: I I see that, yes.
18	Q	Okay.
19		MR. SECORD: And if we could then go to PDF
20		page 85 sorry, 4858 in the Teck report. And if
21		you if you scroll down, please. Put it at
22		100 percent.
23	Q	MR. SECORD: So you'll see there is a
24		line and this is probably for Mr. Day. There is a
25		line for the LW_WLC [sic]
26		MR. SECORD: And can we go up to the top so

Г

1		we can see the and is it possible to to get rid
2		of Mr. Houston's picture so we can see the whole
3		document? Can you move the photograph over? Why don't
4		you reduce it further to 75 percent.
5	Q	MR. SECORD: So, Mr. Day I guess it's
6		maybe I guess we'll need it at 100 percent.
7		All right. So on page 4858 and I've got my
8		you've got it at, I guess, 100 percent, so that's fine.
9		But, Mr. Day, you'll see the very first entry for
10		LW LC_WLC under the heading "Cadmium", there's a
11		reading of .307; correct?
12	A	MR. HOUSTON: Mr. Chair, there's a lot of
13		things going on at Elk Valley. A number of mines
14	Q	Just let just let me
15	A	Yeah. I just don't want to be I don't want to be
16		answering for, you know, another company here. That
17		that's where I don't want to go, Mr. Secord.
18	Q	Sure. Let's just take a look at the data, Mr. Houston.
19		Perhaps we can just go there first.
20	A	Okay.
21	Q	On page 8 on page 8 4858 of this aid to cross,
22		for the first entry for LC_WLC, for cadmium, there is a
23		reading of .307; correct?
24	A	Cadmium. I've got Cadmium D and Cadmium T.
25	Q	Yeah. So for
26	A	.322 and .307.

1	Q	So for cadmium for Cadmium T, it's .307. For
2		Cadmium
3	A	'D', yeah.
4	Q	For Cadmium D yeah, for Cadmium D, it's it's
5		.322; correct?
6	А	Yes.
7	Q	And then if we go to PDF page 848, so two more two
8		pages down or two pages yeah, two pages into the
9		document, so from so this would be 4860. We have
10		for mercury a reading of point this is in Mercury T,
11		a reading of .00111; correct?
12	A	Where where are you reading that?
13	Q	The first first line of LC_WLC for mercury
14	A	No.
15	Q	we have
16		THE CHAIR: I don't think we're on the
17		correct page anymore.
18		MR. SECORD: 4860.
19	A	MR. HOUSTON: Okay.
20	Q	MR. SECORD: So on the bottom, on the far
21		right-hand side of the document.
22	А	Yeah.
23	Q	Again, I don't know why the Zoom Master can't reduce
24		your screen picture, but there we go. There's a
25		reading of .00111; correct?
26	А	I see that. Just above the dark darker black line,

		3640
1		the thicker black line, yeah.
2	Q	That's right.
3	A	Yeah. I see that, yes.
4	Q	And then for on page so two further two
5		further pages in, so this would be 4862, we have for
6		the 'W' LC_WLC for Selenium D, 512 and 523 recorded;
7		correct?
8	A	512 and 523. I see the numbers, yes.
9	Q	Yeah. And then if we go to PDF two more pages over,
10		so this would be 4864, we have, for the first entry for
11		LC_WLC, uranium at 19.9 for Uranium D; Uranium T, 21;
12		for zinc, 10.7 for Zinc D, 10.7; for Zinc T, 10.2.
13	А	Yes.
14	Q	Okay.
15	А	Was there a question, Mr. Secord?
16	Q	Yeah. I'm just going back to my my questions,
17		Mr. Houston.
18		And perhaps you'd accept, just to speed things
19		along, that that LC_WLC monitoring station it is
20		listed in Table 4 on PDF page 25 as receiving
21		environment West Line Creek. And we don't need to turn
22		that up.
23	А	Yes. That doesn't mean much to me, Mr. Secord, but
24	Q	You don't know what a receiving environment is,
25		Mr. Houston?
26	A	I do, but I don't know where these measurements are

1 taken.	You know,	I	
----------	-----------	---	--

2 Q Yeah. What --

3	A	This is not this is not my project, Mr. Secord.
4	Q	Yeah. And what are the what will be the receiving
5		environments for the Grassy Mountain Project?
6	А	So the treated water, after it leaves the SBZ and after
7		it leaves the the metals treatment plant, if if
8		we need to install one, will eventually make its way
9		into Blairmore Creek, only after it's been monitored
10		and measured and and that we've ensured that it
11		meets the requirements for return to the environment.
12	Q	Has Benga assessed the risk that their operation might
13		have has Benga assessed the risk that their
14		operation might have on the concentrating and potential
15		release of NORM in capitals naturally occurring
16		radioactive materials, or TENORM, technically enhanced
17		naturally occurring radioactive materials, into the
18		local environment?
19	А	No, we haven't looked at that, Mr. Secord. It wasn't
20		one of the risks that we, you know, assessed important
21		for the project.
22	Q	Well, why not, when your neighbour a couple of valleys
23		over is showing high uranium levels at one of its
24		monitoring stations?
25	А	Again
26	Q	Or do you know about that, Mr. Houston?

1 A No, again --

2 Q Is that a surprise to you?

3 Mr. Secord, we're -- we're looking at the rock Α No. 4 that we're dealing with for Grassy Mountain. We've done the testing on the rock to determine what metals, 5 6 especially, and -- and other elements could potentially 7 be released. I can't speak for Teck. There -- there's They date back 30, 40 years or more. 8 five mines. So I 9 can't speak to what the situation is for Teck.

All we can say is that we've evaluated the -- the issues related to Grassy Mountain mine. Yes, where we've been able to adopt technology that's been advanced by another company, we have done so. But we've done it based on what we've found at Grassy Mountain, not what somebody else has found in a different place.

17 Okay. So I quess what you can say is you haven't 0 looked at -- you haven't looked at all at the potential 18 19 release of NORM or TENORM, even though you're dealing 20 with exactly the same type of rock, Mr. Houston? 21 We -- we're -- we're dealing with the rock from Grassy Α 22 It's not exactly like anything. It's the --Mountain. the rock that we have for this project, and -- and 23 24 that's the basis for our analysis, Mr. Secord. 25 It's the same type of rock that Teck are mining. 0 It's 26 a metallurgical mining rock; correct?

1	A	No. I I think that's a super oversimplification
2		of of mining in general. We're we're we're
3		dealing with the rock on Grassy Mountain.
4	Q	And how does that differ from Teck's rock?
5	A	I again, I don't have a sample of Teck's rock. What
6		we do have are samples of Grassy Mountain rock, and
7		and that's what we've been analyzing.
8	Q	So it could be exactly the same as Teck's rocks?
9	A	I don't have rock from the Teck project to compare
10		with.
11	Q	Right. Okay. I think we've established that success
12		of the SBZs in sequestering selenium for the long-term
13		will be contingent on keeping redox levels low in those
14		waste disposal areas and in the suboxic range, as
15		Mr. Day puts it.
16		What will happen after the mine is complete and
17		reclamation is done? How will Benga guarantee that
18		selenium will not be mobilized later by infiltrating
19		oxygenated waters that will shift the redox conditions
20		into a conducive range?
21	A	So so, Mr. Chair, as we've discussed many times in
22		this hearing, the the selenium will be removed from
23		the water through this biochemical process, and and
24		that will be at some depth within the SBZ to to
25		avoid possible minor variations in the level of the
26		natural groundwater.
1		

1 So I -- I think we all can appreciate that even in 2 a -- a very deep end-pit lake, even though it's exposed to oxygen at the surface, unless there is a mixing 3 mechanism, it's -- it's very common to have suboxic 4 5 or -- or low oxygen levels at depth, and it's simply 6 because the -- without the mixing of the water from top 7 to bottom, it's difficult for oxygen to -- to penetrate to depth. So we -- we would expect that once the 8 9 selenium is deposited inside the waste rock saturated 10 backfill zone, that -- and -- and left to its own 11 devices, that the saturated backfill zone would not 12 reoxygenate naturally.

13 It is indicated that it may take a long time, 50 years 0 14 or more, for any contaminants mobilized by the mine development to be detected at monitoring stations. 15 16 Benga will be long gone by then. So how can area 17 residents be sure that legacy contamination will not become a problem for them down the road health-wise or 18 19 cost-wise? I'm thinking specifically of Ms. Gilmar and 20 her successors.

A Mr. Chair, I think what we've been discussing is exactly the opposite. We're expecting to see the selenium, nitrates, other metals during the life of the mine. And what we've said is that we fully expect to leave the water treatment facilities, some pumps, monitoring stations, maybe even injection facilities

1		for for methanol we expect to leave that system
2		in place for a number of decades after end of mining,
3		and we expect to continue to operate and monitor the
4		water quality and the water management system until
5		such time as it's demonstrated that the the system
6		is is naturally reaching a safe level of water
7		effluent.
8	Q	There is a lot of faith being placed in the SBZs to
9		attenuate selenium. The retention factors are quite
10		high at 95 percent that's in Appendix 10 water and
11		load balance model and it is likely that this
12		capture efficiency do you agree that it is likely
13		that this capture efficiency will be much less, given
14		some of the expected geotechnical complications, e.g.
15		pH, CO2 levels, redox conditions?
16		What would and then as a follow as a little
17		add-on to that 'cause I'm down to my last I'm
18		probably past my time. So as a little add-on to that
19		question, Mr. Houston, what will be the time lag
20		between when Benga finds out that the SBZs are not
21		working as planned and when suitable water treatment
22		can be deployed?
23	А	Again, Mr. Chair, we expect that this system is going
24		to be slow in developing. Mr. Jensen talked about the
25		buildup time of to to get a minimum of water in
26		the ex-pit rock dumps so that we start to see
I		

Dicta Court Reporting Inc. 403-531-0590 percolation of water through those rock dumps. And then the SBZ itself, water selenium concentrations, the -- the long duration of retention in the SBZ, that's all a very slow system.
We have committed, should that start to show signs

6 of moving offtrack, that we would implement a water 7 treatment plant or a gravel bed reactor in parallel or in series with the SBZ to take up the slack, so to 8 9 speak. We -- we think that a gravel bed reactor based 10 on the preliminary design that we -- we provided in one 11 of our IRs that we could install that kind of a 12 treatment facility in -- in a year, and that would be 13 provided that we do some additional planning and design 14 work in advance, but it would be about a year to put 15 one of those in and -- and probably longer in -- in the 16 two-year time frame or -- or -- or maybe three for a 17 water treatment plant.

Will enough water treatment capacity be able to be 18 0 achieved in the time needed to deal with the volume of 19 20 water, given what we know about the challenges faced by Teck Resources in their Elk Valley operations? 21 22 Again, very different operation. Mr. Chair, Α 23 Mr. Secord, we -- we like to think that we're -- and --24 and Teck is moving forward and learning and -- and that

we're also learning along with them, and -- and we've

implemented -- we are implementing a number of -- I

26

Dicta Court Reporting Inc. 403-531-0590

don't know if I should call them "technologies", but 1 2 just practical measures in this mine to reduce the 3 amount of water that we have to treat and to deal with 4 the selenium issue from the ground up. So -- so we're -- we're thinking this through from 5 6 the very start of this project. We're at the 7 conceptual stage now, but as we move into engineering -- detailed engineering designs, timelines 8 9 will be developed that will be designed to deal with 10 the selenium issue. 11 Okay. And this is my last question, Mr. Houston. 0 12 Adaptive management seems to be the overarching 13 solution to contaminant issues that are not completely 14 understood at this point in time. Do you agree this is 15 a reactive stance, not a proactive one; and how will Benga ensure that contaminants will be isolated from 16 17 the groundwater and surface water environments during mine development and into perpetuity? 18 I -- I don't think it's reactive at all. I -- I think 19 Α 20 we're trying -- first of all, we're -- we're modelling 21 the -- the mine -- the project using conservative 22 parameters, trying to err on that side of the equation, 23 so that -- so that our predictions encompass an 24 envelope that is -- and that the project outperforms 25 the predictions. 26 The other thing I would say is that we've -- we've

1 planned in advance for a metals treatment plant or for 2 a backup selenium treatment plant. We -- we've done 3 some preliminary design on groundwater extraction well 4 So we've thought through a lot of these systems. things. We've identified that these are all possible 5 6 solutions that we can employ practically on this 7 project if required. And so I -- I -- I actually think 8 that's a very proactive stance, and -- and I guess 9 that's the spirit of adaptive management or contingency 10 planning or -- or whatever you want to call it. 11 MR. SECORD: Mr. Chair, thank you very much 12 for extending me the generous time allowance, and I 13 will sign off. 14 I have to say this area is very complex, and I probably could've used the initial 12 that I asked for, 15 but I appreciate these hearings have to have limits, so 16 17 I'm done. Thank you very much. And thank you, Mr. Houston, and your witnesses and 18 19 the answers --20 THE CHAIR: Thank you, Mr. --21 -- they gave. MR. SECORD: Yeah. 22 THE CHAIR: Thank you, Mr. Secord. Just one thing before you sign off. You and 23 24 Mr. Houston had a discussion earlier, and I just wasn't 25 quite sure it got resolved, and it had to do with ammonia levels in Blairmore Creek at 2039. And you 26

> Dicta Court Reporting Inc. 403-531-0590

were looking for a confirmation from Benga that those 1 2 levels exceeded the environmental quality quidelines 3 based on the Alberta surface water 2018 guidelines. And I think Benga agreed to get back to you. 4 I think 5 Mr. Houston was about to provide a response. You 6 indicated it was an undertaking. We don't actually --7 didn't actually assign an undertaking, so I quess my 8 question for you, Mr. Secord, is that still a question 9 that you want Benga to respond to? 10 MR. SECORD: Yes. 11 THE CHAIR: And, Mr. Houston --Okay. 12 yeah, Mr. Houston, were you able to respond to that? 13 Mr. Chair, if we could come MR. HOUSTON: Α 14 back to that first thing in the morning, I think that 15 would be the best thing. 16 THE CHAIR: So we'll get a -- we Okay. 17 will assign an undertaking number just to track it 18 until you respond. 19 MR. HOUSTON: Okay. Α 20 THE CHAIR: So what would that undertaking 21 number be, staff? 22 MS. ARRUDA: It will be Undertaking 23 Number 18, Mr. Chair. 24 THE CHAIR: Okay. Thank you. 25 Okay. Yeah. It's quarter to 5, so I think that's 26 probably about as far as we can go today. So according

1	to my list, up next for	cross would be Mr. Rennie, if
2	he has any questions for	Benga, followed by Timberwolf.
3	Is there any other	business we need to take care
4	of today?	
5	MR. RENNIE:	I'm here. Jim Rennie.
6	THE CHAIR:	Yeah.
7	MR. RENNIE:	I have a quick question as to
8	what time we will be sta	arting tomorrow morning.
9	THE CHAIR:	Yeah. We will be starting at
10	9 AM tomorrow.	
11	MR. RENNIE:	Thank you. That's good.
12	THE CHAIR:	Okay. Thank you, Mr. Rennie.
13	Anything else?	
14	MR. SECORD:	No. Thank you, sir.
15	THE CHAIR:	Okay. Have a good evening,
16	everyone.	
17	MR. SECORD:	Yeah. Thanks.
18	THE CHAIR:	See you tomorrow morning at
19	9 AM.	
20		
21	PROCEEDINGS ADJOURNED UN	TIL 9:00 AM, NOVEMBER 18, 2020
22		
23		
24		
25		
26		

Г

```
1
     CERTIFICATE OF TRANSCRIPT:
 2
 3
          I, Christy Longacre, certify that the foregoing
     pages are a complete and accurate transcript of the
 4
     proceedings, taken down by me in shorthand and
 5
     transcribed from my shorthand notes to the best of my
 6
 7
     skill and ability.
          Dated at the City of Calgary, Province of Alberta,
 8
     this 17th day of November 2020.
 9
10
11
       <Original signed by>
12
13
     Christy Longacre VRPR, CSR(A)
14
15
     Official Court Reporter
16
17
18
19
20
21
22
23
24
25
26
```

		1		
0 0 3628:17 0.05 3600:16 0.4 3487:10 000005 3622:10 000012 3622:9 0002 3622:17 001 3605:17 3606:3 00111 3639:11,25 002 3605:15,18, 19 3606:20,22 3607:8 3616:14 3622:18 006 3622:16	 1.7 3556:4 10 3451:26 3454:16 3503:19 3529:18 3530:3 3556:3,4 3566:3 3586:1 3589:25 3590:1 3592:14 3607:5,6 3612:17 3615:19 3616:23 3621:1,10 3622:20 3628:5,6 3632:12 3645:10 10- 3567:12 10-7M/S 3549:26 3550:5 10.2 3640:12 100 3475:5,6.8 	1 3621:10 3627:17 116 3556:20 12 3451:26 3453:26 3537:4 3648:15 126 3587:22 12:59 3541:21 13 3535:3,4 137 3605:25,26 3615:4,11 3619:1 14 3500:13 3536:9 3546:24 3548:10 142 3615:5,12 15 3493:15 3601:8 15-12-7 3562:15	194 3554:17,26 3560:8 1970 3501:23 1975 3486:25 3487:1,18 3488:7 3489:11 3490:24 3500:12 1975-to-2012 3501:14 1980s 3501:20 1987 3617:10 1:00 3537:8 2 2 3449:10 3451:13 3461:2 2526:10 2528:18	3499:5,21 3500:13,21 3501:12 2013-2016 3488:3 2013-to-2016 3487:14 2014 3491:3 3500:25 3593:2 3601:25 3602:6, 9,19 3603:21 3604:2,16 3606:2 3617:7,13 3629:10 2015 3616:4 2016 3464:4 3467:12 3468:25 3486:16 3487:26
02 3600:5 03 3623:1,3 045 3600:13 05 3623:2 1	100 3475:5,6,8 3494:19,20,21, 22,23 22,23 3566:2 3630:13 3637:22 3638:6,8 103 103 3464:17,19 109 3625:19 10:28 3493:15	 150 3454:9 3478:22 3479:22 151 3480:1 160 3636:23 17 3538:3 17.4 3535:11,25 3545:12 	3451:13 3461:2 3526:10 3528:18 3535:24 3561:3 3603:24 3605:19 3606:7 3607:9 3616:15,19 3624:13 2-5 3554:17 3560:7 3562:12, 26 3563:22	
1 3451:25 3483:5 3487:6 3489:12 3490:21 3498:22 3518:22,24 3521:13 3522:4 3527:5 3535:24 3537:4 3561:3,4, 6,16 3578:19 3602:8 3606:8,9 3616:10 3617:9 1,500 3551:1 3552:4	10:45 3493:16 10A 3454:21 3455:13 10B 3592:15 3594:26 3598:11, 15 3605:7 3610:24 3622:3 3623:19 3626:9 11 3451:10 3454:7 3521:15 3522:5,19 3535:25 3543:15	 17.9 3535:10 179 3460:9 3530:24 17th 3651:9 18 3649:23 3650:21 18.6 3535:10 183 3459:3 184 3534:23 3544:9,11 1851 3451:11 	 2.2.2.4 3450:8 2.2.2.5 3450:17 2.7E-07 3561:6 20 3481:3 3482:1 3529:18 3530:3 3535:8 3565:11 3566:3,25 3567:7,14 3601:9 20,000 3492:24 20-year 3567:12 	 2018 3601:25 3603:25 3604:14 3605:4 3606:5 3629:14 3636:22 3649:3 2019 3466:23 3626:5 2020 3538:3 3650:21 3651:9 2037 3605:14 2039 3600:12
 1,500-hectare 3477:9 1,880 3549:23 3550:14,24 1.1 3549:26 1.5-milligram- per-litre 3601:25 	3535.25 3545.15 3577:11,19 3611:21 11.1 3535:25 3593:2 11.5 11.5 3535:25 110 3515:26 112 3565:21	 1882 3451:11 1896 3478:23 19 3619:4,10 19.3 3535:9 19.9 3640:11 193 3450:6 	 2004 3521:19 2011 3451:10 3487:1 3489:12 2012 3486:25 3487:18 3488:7 2013 3464:4 3468:4 3486:16 3487:26 3491:2 	3601:24 3648:26 2040 3622:8 2041 3606:23 3622:8,15,25 2043 3600:12 205 3458:11 207 3486:13 3499:2

		2		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	257 3519:17 28 3459:8,10,11, 13 3461:17,18 3486:22 3499:9, 10 3521:9,26 3522:19 3524:3, 25 3526:15 3527:4,12 3530:26 3531:11 3532:2,13,26 3536:7,9 3545:17 3546:23 3548:10 3603:25 295 3528:11 3536:18 3546:17 2:30 3590:13 2:45 3590:13 3 3449:11 3450:5 3451:15 3452:19, 20 3455:10 3459:3 3460:9 3463:8 3465:1 3469:18 3476:7 3486:13 3495:1 3499:2 3512:1,2 3515:22 3517:14 3519:17 3521:18 3523:12 3524:16 3528:11 3533:20 3534:23 3539:2 3542:16 3549:6, 15 3553:20,24 3554:18 3555:24 3565:22 3571:21 3588:5 3592:18 3605:25 3611:5, 9,13,19,25 3612:7,10,13 3615:4 3625:13, 19	23 3563:23 3-2 3517:13 3-22 3469:19 3470:14 3471:26 3474:7,13 3476:13,25 3-25 3476:17,25 3-4 3515:21,23 3516:13 3-5 3524:1,15,17 3525:4 3531:1 3532:4 3-6 3529:22 3533:19,25 3543:24 3545:9 3548:8 3.1 3550:5 3592:25 3594:2 3595:1 3.1.1 3471:26 3.2 3592:17 3.3 3559:17 3.5 3499:15 3588:6 30 3470:3,26 3472:4,7,9 3474:14,23 3475:1 3536:15, 24 3578:6 3633:7 3642:8 30-metre 3470:12 3471:9 300 3470:18 307 3638:11,23, 26 3639:1 309 3598:13 311 3577:12,17, 18,20 3600:4 313 3577:11 3607:18 314 3463:11 322 3638:26	325 3601:14 33 3530:3,8 3536:5,11,24 3545:19 3546:26 3547:23 334 3598:14 335 3598:18 337 3599:17,21 34 3495:1 3530:8 35 3536:15 3605:23 3633:8 357 3605:6,7 36 3530:8 3536:10,24 360 3598:18 37 3490:22 38 3521:14 3522:4 3526:25 3527:5,16 3550:7 380 3622:5 4 4 4 3451:13 3486:21 3534:8 3535:24 3554:8, 10 3636:21 3640:20 40 3550:9 3562:9 3563:14,18 3632:16 3642:8 40-metre 3517:17 3563:19, 20 400 3477:1 3549:14 3550:15, 22 3552:7 404 3622:13 410 3622:24 42 3449:11 3450:5 3452:18 3460:9 3463:9	3499:16 3512:2 3519:17 3523:12 3534:9,12,23 3553:24 3587:21 3592:14 3598:15 3605:7,25 3610:25 3622:4 3625:19 3626:9 3628:5,6 430 3470:18,19 3512:13 3550:4 44 3469:1 3490:21 3498:22 450 3525:13 3526:2,15 4858 3637:20 3638:7,21 4860 3639:9,18 4862 3640:5 4864 3640:10 492 3454:10 4:15 3591:13 5 5 3449:3 3451:2 3454:1,3,4,5 3455:11 3470:3, 7,26 3474:14 3480:3 3520:8 3524:15 3550:7 3601:18,24 3612:17 3621:11 3649:25 5- 3471:9 5-14 3463:9 5-metre 3470:11 5.1-1 3464:17 5.1.1 3464:24 3471:19 5.2 3628:6 5.3-9 3565:22
3626:6 3628:5,6 255 3623:18	3612:7,10,13 3615:4 3625:13,	3607:18	410 3622:24 42 3449:11	3471:19 5.2 3628:6
			5 100.22 5475.1	

		3		
5.4 3623:19		9:00 3650:21	3504:24 3646:19	10 3646:13
50 3459:16	7	9:04 3447:21	acidity 3623:23	addressed
3529:26 3530:1,2	·	3001 3117.21	acting 3449:7	3491:17 3517:24
3531:12 3536:3,	7 3486:13,14,20		3574:5	addressing
9,13,22 3547:22	3487:22 3499:1	A	Action 3540:24	3483:16
3550:14 3565:9	3556:5	A3 3490:21		adds 3495:26
3566:2,3,21,24,	70 3515:25	A49 3606:1	actions 3581:11	3613:16
25 3567:3	719 3459:6		active 3449:23	
3571:23 3629:21	74 3519:4	AAPG 3451:3,10	activities	adjacent 3455:25 3457:18 3474:23
3644:13	3520:13	ability 3651:7	3474:11 3491:24	3498:13 3512:20
50-year 3549:23	75 3638:4	aboveground	3495:8	3513:13 3516:26
500 3526:2		3576:18	activity 3502:1	3517:5 3587:3,5
512 3640:6,8	77 3530:25	absolutely	3578:18 3579:5	ADJOURNED
523 3640:6,8	777 3459:6	3485:4 3504:9,25	actual 3457:26	3537:8 3650:21
533 3519:4	3530:25	3630:16	3548:7 3560:12	ADJOURNME
	78 3549:10	absorb 3572:19	acute 3588:2	NT 3493:18
55 3523:7	79 3553:25	accent 3490:7	adaptive 3647:12	3591:9
3525:15 3526:2, 16 3527:8	793 3478:21	accept 3629:11,	3648:9	
3531:3,12 3532:6		13 3640:18	add 3490:9	adopt 3642:12
3533:10 3564:13	8	acceptable	3495:15 3497:26	adopted 3617:13
3571:21	·	3533:16	3501:18,21	advance 3448:7
550 3525:13	8 3478:22	accepted 3463:5	3579:8 3583:11	3646:14 3648:1
3526:16	3611:21 3638:21	access 3512:14	3608:16,17	advanced
553 3519:6	8.6 3535:25	accommodate	3613:26 3616:18	3564:21 3642:13
3520:13 3521:1,2	80 3534:8	3448:9 3517:3	3618:17 3635:14	adverse 3586:24
571 3458:10	844 3549:5	accommodated	add-on 3645:17,	AEP 3602:4,9,18
5th 3480:24	848 3639:7	3489:15 3513:23	18	3603:20,24
3481:1	849 3603:18,20	3514:3,20,25	added 3458:24	3605:2
5401.1	3604:17 3629:10	account 3458:6	3612:15 3614:11	AER 3456:8
	85 3452:19	3590:14	addendum	3493:22 3538:9,
6	3637:20	accumulate	3468:26 3490:21	10,16,17,18,19,20
6 3451:16,17	850 3604:26	3465:22 3611:3	3498:22 3577:11,	AER's 3448:1
3490:21 3498:22	3605:2 3629:15	accumulation	19 3607:5,6	affect 3458:26
3521:16 3522:6,	860 3549:22	3606:11	3615:19 3616:23	3476:1 3478:18
20 3535:25	3550:24	accuracy	3621:10 3622:20	3513:12 3514:4
3556:3	5550.24	3496:24 3497:16	adding 3458:23	3515:11 3517:4
6-inch 3583:23		3570:14	3459:24 3635:18	3518:11,15
6.0 3535:26	9	accurate 3570:13	addition 3560:25	3553:22 3583:4 3589:21 3632:22
611 3460:13	9 3535:24	3588:18 3617:15	3618:6 3635:16	3634:17
66 3486:21	3650:10,19	3651:4	additional	affected 3513:9
3486:21 3502:13,18	95 3451:10	accurately	3503:21 3506:5 3573:6 3574:13	3612:18
3539:14	3645:10	3489:5 3558:13	3575:5 3576:6	Affirmed
660 3502:18	992 3460:13	3589:3	3577:26 3587:4	3448:19 3542:11
000 3302.18	JH JH00.13	achieved	3612:14 3627:6,	JTT0.17 JJ42.11
		1		

		4		
afraid 3452:11 3472:11 3496:25 3531:23 Afternoon 3538:3 Age 3521:19 agree 3449:16,26 3451:12,18,25 3452:8,14 3453:3,12 3454:22 3457:18 3459:15,17,23 3461:24 3462:19, 26 3463:3,20,24 3464:10 3472:13 3477:10,16 3478:13 3479:4,5 3481:4 3482:26 3491:15 3492:2, 11 3493:26 3495:25 3496:10 3498:3 3501:5,11 3503:23 3504:3 3505:2,13 3508:11 3510:26 3512:13,18 3520:16 3525:12, 26 3527:21 3528:20,23 3529:10 3531:20 3533:10 3536:3 3548:8 3551:22 3555:1 3567:1 3570:9,14,19 3574:7,19 3574:7,19 3575:11 3578:17 3579:4 3582:13 3584:9 3585:1,20 3586:6,21 3591:24 3592:5 3595:7 3597:7,11 3600:15 3601:16	7,24 3631:22,24 3632:1,13 3636:25 3645:12 3647:14 agreeable 3537:2 agreed 3649:4 agricultural 3502:1 Agudelo 3540:9 ahead 3457:9 3462:25 3476:20 3504:25 3591:10 3615:21 3632:25 aid 3451:1 3454:3 3521:18 3602:7, 17 3604:13 3606:5 3617:8 3636:21 3638:21 Alan 3521:19 albeit 3482:5 Alberta 3539:1, 22,24 3540:18 3601:26 3604:14, 15 3617:9,12 3629:8 3649:3 3651:8 Alberta's 3609:3 alert 3606:8 3616:19 Alfalfa 3540:2 align 3549:18 Alistair 3541:3 allocated 3560:14 3590:17 3591:4 allowable 3601:2 allowance 3648:12 allowance 3648:12 allowad 3456:20	altered 3480:9 3513:8 alternate 3524:19,24 alternative 3523:20,26 3524:21,24 aluminum 3597:15 3599:15 3600:10,16,20,23 3601:2 3618:7 3634:7 ammonia 3602:12 3604:5 3609:20 3629:5, 13 3630:23 3648:26 ammonium 3597:15 3601:15, 17 3628:12 3629:1 amount 3469:2,4 3509:21 3528:4 3589:24 3612:26 3633:9,10 3635:18 3647:3 amounts 3549:1 analyses 3555:19 3573:15 3589:15 analysis 3477:22, 26 3488:8 3519:21,24 3520:24 3527:25 3528:1,11 3529:24 3545:19, 22,25 3546:5 3548:14,20 3575:15 3642:24 analytical 3550:12	analyzing 3643:7 and/or 3617:25 angle 3552:19 3553:14,15,17 angles 3518:1 anisotropic 3478:6 Anisotropy 3478:6 annual 3460:12 3464:6 3479:13 3486:26 3502:17 3521:9,26 3525:15 3526:3, 17 3527:8 3536:7,8,9 3546:24 3548:9 3636:22 anoxic 3631:26 3632:2,4 answering 3456:9,11 3465:11 3489:7 3514:1 3638:16 answers 3459:16 3467:5 3485:19 3514:23 3524:9 3582:12 3594:23 3648:19 anthropogenic 3501:26 anticipated 3479:26 3480:4,5 3516:25 3583:26 anticlines 3455:13 Anticlinorium 3451:6 anymore 3639:17	apologize 3485:19 3487:19 3625:5 apparent 3488:13 appeared 3493:7 3610:2 appears 3452:2 3463:24 3489:21, 22 3521:2 3609:12 3626:19 appendices 3598:9 3599:13 appendix 3490:21 3592:14, 15 3594:26 3598:11,12,14,15 3605:7 3610:24 3621:1 3622:3 3623:18 3626:9 3628:5,6 3632:12 3645:10 applicability 3522:7,14 3527:20 application 3459:10 3491:18 3492:17,20 3496:11 3571:12 3593:5 3595:5 3601:12 3631:19 applications 3610:17 applied 3461:5, 13,15,20 3518:22 3523:5,16 3525:1 3526:1,14 3527:18,21,22 3533:6,10,11,26 3554:2 3562:17, 25 3564:5 9 11
3574:7,19 3575:11 3578:17 3579:4 3582:13 3584:9 3585:1,20 3586:6,21 3591:24 3592:5	allocated 3560:14 3590:17 3591:4 allowable 3601:2 allowance 3648:12	3528:1,11 3529:24 3545:19, 22,25 3546:5 3548:14,20 3575:15 3642:24 analytical	3516:25 3583:26 anticlines 3455:13 Anticlinorium 3451:6	applied 3461:5, 13,15,20 3518:22 3523:5,16 3525:1 3526:1,14 3527:18,21,22 3533:6,10,11,26

3517:25.26 3466:1, 16 3468:6 3527:13 3532:19 3602:23 3603:1 3645:9 3527:13 3536:22 3470:1, 2, 10, 14, 3333:15 3567:21 3608:3, 4, 6, 12 3614:20, 24 3527:13 3536:22 3614:20, 24 3527:13 3536:22 attenuated 3507:13 360:12 13, 42, 02 3737:10 3608:3, 4, 6, 12 3562:20 audio 3447:23, 22 359:6, 6 3600:26 3601:2 13, 14 3494:1, 2 3573:10, 8858:8 3490:26 3491:2, 3579:9, 3581:17, 36497;17 36497:10 assimilation 3467:20 3600:26 3601:2 3495:3, 7, 13 20, 21 3582:16, 22 assimilation 3467:20 3607:13 3500:12, 3575:18 3504:16 3506:23 3592:6, 3611:2 3588:10 3538:16 359:25 3541:1 3609:1 3511:12 3527:17, 332:3 argument 3588:16 359:18 3614:12 3614:12 3614:12 3614:12 357:12 357:12 357:21 358:16 359:64 3511:12 361:14 3614:12 3614:15 357:12 357:21 373:357:62 358:14 369:64 3511:14 3614:15 3614:15 357:12 357:21 358:14 369:64 3511:14 3614:15 3511:14			5		
3525:13 3536:22 3470:12.10.14, 3562:13 3533:15 3567:21 3608:3,4,6,12 attenuated 357:20 3562:13 3470:12.10.14, 3562:13 3568:13,14,20,22 3614:20,24 3572:20 approaching 16.26 3477:1.9 3562:13 3620:17 3624:21 3470:4348:12 3573:23,71.9 3626:26 3576:20 3566:13 3573:20 3576:20 3576:20 3576:20 3576:20 3576:20 3576:20 3576:20 3576:20 3578:17 3649:7,17 3649:71.07 36469:12 3586:18 3591:25 3586:16 3592:25 3541:1 3586:14 3518:12 3586:14 3586:14 3518:12 3586:14 3586:14 3589:25 3541:1 3589:12 3589:13 352:10 352:11 3589:13 352:11 223:467:17 3539:10 362:14 3639:13 352:11 3539:10 352:11 3539:10 362:14 3639:13 352:11 3539:10 352:11 3539:10 362:14 3611:23:361:12 3661:12 3614:12 36111:12 3614:12 36111:12<	applying	3465:25,26	3512:16 3523:7	3589:11 3594:16	attenuate 3572:3
3547:26 3548:20 24,26 3471:8,9, 3568:13,14,20,22 3614:20,24 3572:20 3502:21 362:11 21 3472:3,615, 3569:3,4,13,16, 3626:26 3626:26 3626:26 audio 3447:23,25 3601:9 3479:4 3488:12 3573:2,3,7,19 3526:14 3573:10 assessments 3596:6 augment 3600:26 3601:2 13,14 3494:1,2 3579:9 3581:17, 36497.17 36497.17 3648:17 3469:12 3564:13 356:1.2 3588:18 3646:20 3588:16 3647.17 36497.17 3468:17 3469:12 3588:16 36497.17 3468:17 3469:12 3588:16 3611:24 3592:5 3541:1 assimilation 3592:5 3541:1 assume 3529:25 3541:1 astimilation 3589:25 3541:1 3599:18 3614:15 astime 3523:16 3614:15 astime 3523:16 3614:15 astime 3523:16 3614:15 3628:9 3628:9 3628:9 3624:16 3521:8,14,25 3521:8,14,25 3521:8,14,25 3521:8,14,25 3521:8,14,25 3521:8,14,25 3521:8,14,25 3521:8,14,25 3521:8,14,25 3521:8,14,25 3521:8,1442 3611:2,3614:12,3614:12,3621:9 <	3517:25,26	3466:1,16 3468:6	3527:13 3532:19	3602:23 3603:1	3645:9
3547:26 3548:20 24.26 3471:8.9, 3568:13,14,20,22 3614:20,24 3572:20 appreciation 16,26 3477:1.9, 17 3570:6 3620:17 3624:21 audio 3447:23,25 appreciation 16,26 3477:1.9, 17 3570:6 3620:17 3624:21 audio 3447:23,25 appreciation 16,26 3477:1.9, 3573:23,37,19 assessments asign 3611:24 3600:23 630:23 3490:25,37,13 20,21 3582:16,22 asimilation 3469:7,17 3609:26 3632:20 3504:16 3505:23 3592:6 3611:2 assimilation 3588:13 462:20 approaches 3504:16 3505:23 3592:6 3611:2 assume 3459:21 assume 352:16 astimilation 3571:13 3500:12, 3523:10 3525:11, argument assume 352:16 athors 3587:23 approval 3552:6,13,20 Arruda 3464:21 assume 352:16 3614:15 approximately 3568:4,22 366:9 3503:17 3604:22 3580:1 3521:8,142:59 aya2:3606:23 3577:12 3590:4 3570:12 357:21 3571:14 5396:4 3568:42:16 3521:8,142:59 aya2:2,449 3603:17 3604:22 <	3525:13 3536:22	3470:1,2,10,14,	3533:15 3567:21	3608:3,4,6,12	attenuated
3562:21 3624:11 21 3472:3.615, 3601:9 3569:3.4,13,16, 3601:9 3602:17 3624:21 3626:26 audio 3447:23,22 3596:6 approach 3588:8 3490:26 3491:2, 3600:26 3601:2 3479:4 3488:12 3574:16,18,21 3626:26 3596:6 approach 3588:8 3490:26 3632:20 3490:26 3491:2, 3495:3,57,13 3574:16,18,21 3576:8 3576:2 3661:7,17 3661:7,17 3468:17 3469:12 approaches 3506:14 3516:14 3561:4 3516:14 3511:2,2 3574:15 3575:18 3506:14 3516:14 3614:2 3617:4 Association 3588:21 3255:10 3626:52 approaching 3517:21 3519:15 3621:14 3643:14 assume 359:18 3611:2 3614:12 authors 3587:23 avaitors 3587:24 avaitors 3587:14 avaito	3547:26 3548:20	24,26 3471:8,9,	3568:13,14,20,22	3614:20,24	
appreciation 16.26 3477:1.9 17 3570:6 3526:26 3596:6 3601:9 3479:4 3488:12 3573:2.3,7,19 assesments 3360:26 3600:26 3601:2 4,25 3492:3,4,8, 3573:8 3576:2 assign 3611:24 3649:7,17 3600:26 3601:2 3495:3,5,7,13 20,21 3582:16,22 assign 3611:24 3469:7,17 3600:26 3601:2 3495:3,5,7,13 20,21 3582:16,22 assign 3611:24 3469:7,17 3600:66 363:20 3497:13 3498:5 3592:6 3611:2 assign 3611:24 augmenting 3574:15 3575:18 3506:14 3516:14 3614:2 3617:4 Association 3538:10 3626:5 approaching 3517:21 3519:15 3621:14 3643:14 3539:25 354:11 authors 3587:23 3611:22 3550:13 355:12 arrive 3995:18 3611:2 361:12 avilability 3628:19 3552:6 357:21 3538:16 3596:4 3521:14 3540:12 3521:18 3511:22 3550:13 355:12 3538:16 3596:14 arrive 349:10 3628:16 322:18,14,25 349:223 3564:23 3592:21 3568:4,22 3569:9 3649:12	3562:21 3624:11	21 3472:3,6,15,	3569:3,4,13,16,	3620:17 3624:21	
3601:9 3479:4 3488:12 3573:10, 3573:10 assessments augment 3600:26 3601:2 13,14 3494:1,2 3573:16,18,21 3573:10 3573:10 3467:20 3600:26 3601:2 13,14 3494:1,2 3579:13 357:80,373:10 3649:71,3 3649:71,3 3649:71,3 3649:71,3 3649:71,3 3649:71,3 3649:71,3 3649:71,3 3649:71,3 3649:71,3 3649:71,3 3649:71,3 3649:72,0 3588:21 3578:15,3 350:16,3,55:13 350:16,3,55:13 3517:21,3519:15 3621:14,3,66:20,3 3538:21 3535:10,3,66:24 3628:14 3614:15 3611:2,3,61:41:2,3,61:41:2,3,61:41:2,3,61:41:2,3,61:41:2,3,22:3,55:721 3608:14 3611:1,3,61:41:2,3,61:41:2,3,62:16 3608:14 3608:14 3628:16 3628:16 3628:16 3628:16 3628:16 3628:16 3628:16 3628:16 3628:16 3524:1,25 3524:1,25 3524:1,25 3524:1,25 3524:1,25 3524:1,25 3524:1,25 3524:1,25 3524:1,25 3524:1,25 3524:1,25 3524:1,25 3524:1,25 3524:1,25 3524:1,25 3524:1,25 3524:1,25 3524:1,25 <td< td=""><td>appreciation</td><td>16,26 3477:1,9</td><td>17 3570:6</td><td>3626:26</td><td>· · · · · ·</td></td<>	appreciation	16,26 3477:1,9	17 3570:6	3626:26	· · · · · ·
approach 3588:8 3490:20 3491:2, 3600:26 3601:2 3574:10, 18.21 3573:10 3467:20 3600:26 3601:2 13,14 3494:1,2 3579:93 3581:17, 3574:15 3575:18 3609:1,2 3468:17 3469:12 3468:17 3469:12 approaches 3504:16 3505:23 3592:63 611:2 3588:21 3588:21 3588:21 22 3467:17 3358:21 3607:13 3600:12, 3574:15 3575:18 3506:14 3516:14 3614:2 3617:4 3539:25 3541:1 assume 3459:21 3535:10 3626:52 3608:14 3527:17 3552:3 3608:14 3614:15 3614:15 3614:15 3628:16 availability 3605:13 3527:17 3552:3 arrive 3483:10 3668:14 3668:14 3614:15 3628:16 3628:16 3628:16 3628:16 3628:16 3524:17.3522:3 availability 3628:19 3628:16 3524:12.5 3571:26 3500:4, 3609:10 3634:18, 3571:26 3500:4, 3609:10 3634:18, 3571:26 3500:4, 3580:4 3531:10 3532:2, 3546:23 3592:21 3546:23 3592:21 3546:23 3592:21 3546:23 3692:21, 3546:23 3692:21, 3546:23 3692:21, 3546:23 3692:21, 3561:14 3527		3479:4 3488:12	3573:2,3,7,19	assessments	
3600:26 3601:2 4.25 3492:3.4.8, 314 3494:1.2 3575:8 3576:2 3579: 3581:17, 3629:26 3632:20 assign 3611:24 3649:7.17 augmenting 368:17, 3649:7.17 3610:6 3614:19 3349:33 494:1,2 3579:9 3581:17, 3597:13 3600:12, 3506:14 3516:14 3586:18 3591:25 3506:14 3516:14 assimilation 3588:21 augmenting 3688:21 3574:15 3575:18 3506:14 3516:14 3614:2 3617:4 Association 3539:25 3541:1 author 3626:24 approaching 3509:2 3517:21 3519:15 3621:14 3643:14 assume 3459:21 author 3626:24 appropriately 3609:2 3526:7,8,9,10,18 arise 3621:16 assume 3523:16 3611:2 3614:12, 3611:2 3614:12 availability 3551:2 3553:2 3557:21 3538:16 3596:4 arrive 3483:10 3628:9 availability 3454:2:3 3606:23 3577:21 3570:4 3509:10 3634:18, 3577:22 3500:4, 3578:12 3502:62 arsenic 3572:14 assumption 3521:10 3532:2, 3494:23 3606:23 3521:12 350:26 3454:2 3603:23 3624:20 3625:25 article 3526:22, 26 3527:11,11,5, 3588:12 3561:14 3599:7.9,15,18, 3469:12 3509:13 3486:19 3449:3 34062:12, 3506:12 3661:26 3649:22 artificial 3509:23 3614:26 3630:15 3488:15 3490:11	approach 3588.8	3490:26 3491:2,	3574:16,18,21	3573:10	
3610:6 3614:19 13.14 3494:1,2 3579:9 3581:17, 3649:7,17 asginitizing 3629:26 3632:20 3495:3,5,7,13 20.21 3582:16,22 assimilation 3648:17 3469:12 approaches 3504:16 3505:23 3592:6 3611:2 3588:12 Association 3588:10 22 3467:17 approaches 3506:14 3516:14 3614:2 3617:4 3539:25 3541:1 3539:25 3541:1 3539:25 3541:1 appropriately 3526:7,89,910,18 3608:14 argument 3608:14 3611:2 3614:12. appropriately 3552:6,13,20 Arruda 3464:21 assume 3459:21 3628:16 3611:2 3614:12. approval 3552:6,13,20 Arruda 3464:21 assumes 3512:9 3522:8,14.25 3522:18,14.25 approximately 3568:12, 357:12 357:21 3588:16 3596:4 assumes 3512:9 3522:12,125 3522:12,125 3494:23 3606:23 3577:26 3590:4, 3577:26 3590:4, 3577:12 3572:23 3669:10 3634:18, 3580:17 3446:12,33532:16 3524:1,25 3580:14 3531:10 3532:2, 3557:19 3588:17 354:12,25 3580:4 3531:10 3532:2, 3557:21 3580:4 3531:10 3532:2, 3557:21 3580:4 3531:10 3532:2, 3557:21 3580:4 3531:10 3532:2, 35		4,25 3492:3,4,8,	3575:8 3576:2	assign 3611.24	
3629:26 3632:20 3495:3.5,7,13 20.21 3582:16.22 assimilation 3406:17 3409:12 approaches 3397:13 3498:5 3586:18 3591:25 3588:21 August 3466:20, 22 3467:17 approaching 3517:21 3519:15 3601:14 3516:14 3614:2 3617:4 Association 3539:25 3541:1 approaching 3517:21 3519:15 3601:14 3561:1 3611:1 assumed 3459:21 availability 3628:13 3527:17 3532:3 arive 3595:18 af11:2 3614:12, availability 3628:9 approval 3552:61,32.00 Arruda 3464:21 assumed 3512:9 3521:814.25 3521:814.25 approximately 3553:2 357:21 3538:16 3596:4 assumes 3512.9 3521:81.42.55 3571:1 370:21 357:22 3573:1 357:6:2 arsenia 3577:14 3649:22 3588:12 3531:10 3532:2, 349:23 3606:23 3573:13 357:2 3538:16 3596:4 assumption 352:18, 14.25 3588:12 3611:7 3618:12 3560:11 23 3588:12 3597:10 3471:73821:8, 3597:19 3501:17 3521:8, 3524:12,5 3524:12,5 3602:8 303:23 3624:20 3635:25 aspect 3483:12 361:7 3609:13		13,14 3494:1,2	3579:9 3581:17,	0	8
approaches 3574:15 3575:18 3497:13 3498:5 3504:16 3505:23 3506:14 3516:14 3586:18 3591:25 3592:6 3611:2 3588:121 August 3466:20 22 3467:17 approaching 3597:13 3600:12, 23 609:2 3506:14 3516:14 35267.89,10,18 3621:14 3643:14 Association 3539:25 3541:1 3538:10 3626:5 appropriately 3635:13 3527:17 3532:3 argument 35267.89,10,18 assume 3523:16 assume 3523:16 approval 3642:23 3555:61,3,20 arrive 3595:18 af11:2 3614:12, 3668:14 assume 3523:16 approximately 3462:23 3556:4,22 3669:9 3538:16 3596:4 assumes 3512:9 assumes 3512:9 approximately 3462:23 3573:1 3576:2 3573:1 3576:2 arean 3572:14 assumption 3609:10 3634:18, 3588:12 3546:23 3592:41 3524:125 AQ#1 3603:20 3624:20 362:25 3624:20 362:25 article 3526:22, 3624:22 3633:4 3449:3 3462:10 3546:23 3592:41 AQ#1 3603:20 3624:24 3624:25 3597:19 3560:17 3594:25 3597:19 3560:13 3077.3609:8 3561:14 AQ#1 3603:20 3646:21 3645:25 3466:12,0.21 3597:19 3660:17 3594:25 3661:13 3617.26 AQ#1 3602:2 3466:22,0 <td></td> <td>3495:3,5,7,13</td> <td>20,21 3582:16,22</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>		3495:3,5,7,13	20,21 3582:16,22	· · · · · · · · · · · · · · · · · · ·	
3574:15 3504:16 3504:16 3504:14 3504:14 3504:14 3532:10 3526:17.4 Association 3597:13 3600:12, 3517:21 3510:14 3611:2 3611:2 3611:12 3532:10 3526:17.4 3532:10 3526:7.4 3532:10 3526:7.4 3532:10 3526:7.4 3532:10 3526:7.4 3608:14 3539:25 3541:1 asume 3459:21 athors 3538:10 3626:5 availability 3526:7.8,9,10,18 3532:10 3521:6 3611:2 3614:15 availability 3628:16 availability 3628:16 3521:8,14,25 3530:12 3603:17 3609:10 3522:4,19 3522:4,19 3522:4,19 3522:4,19 3522:4,19 3522:4,19 3522:4,19 3522:4,19 3522:4,19 3522:4,19 3522:1,31,11,15 3580:1 3580:1 3580:1 3580:1 3609:10 3609:10 3604:16 3531:10 3522:4,19 3522:1,21 3530:12 3580:1 3580:1 3580:1 3580:1 3580:1 3580:1 3580:1 3580:1 3580:1 3580:1 3580:1 3580:1 3580:1 3580:1 3580:1 3580:1 <td></td> <td>3497:13 3498:5</td> <td></td> <td></td> <td>0</td>		3497:13 3498:5			0
approaching 3597:13 3600:14 3506:14 3510:14 3517:21 3519:15 3523:10 3525:11, 3523:10 3525:11, 3523:10 3525:11, 3523:10 3525:11, 3523:10 3525:11, 3523:10 3525:11, 3523:10 3525:11, 3523:10 3525:11, 3527:17 3532:3 3550:13 351:22 1assemed 3523:16 364:15 3611:2 3614:12, 3611:2 3614:12, 3611:2 3614:12, 3611:2 3614:12, 3611:2 3614:12, 3628:16 author 3626:24 availability 3628:9 approval 3456:23 3550:13 3551:22 3550:13 3551:22 arrive 3995:18 353:1 3570:12 3572:11 3538:16 3596:44 assumed 3523:16 3611:2 3614:12, 3611:2 3614:12, 3611:2 3614:12, 3628:16 availability 3628:9 approved 3456:23 3552:26,13,20 Arruda 3464:21 3538:16 3596:44 assume 3512:9 assuming 3470:6 3521:13,14,25 approximately 3454:9,10 3475:5 3570:12 3572:23 3570:12 3572:23 3649:22 3580:4 assumption 3454:9,10 3632:1, 3571:26 3590:4, 3571:26 3590:4, 3571:26 3590:4, 3609:10 3634:18, 3602:8 3603:23 3624:20 622:25 3614:12 3623:24 article 3526:22, 26 3527:1,11,15, assessed assumption 3449:3 3462:10, 14 3486:19 averaging 3561:14 AQ #1 3603:20 3624:20 632:25 3636:8,9 3644:16 assessed 3449:3 1362:10, 14 3486:19 averaging 3468:25 3469:12 3661:17 3506:13 3483:15 3490:11 3529:13,17,21, 22,23 3626:25 3633:8 3600:24 360:24 3636:23 3466:21 3651:7, 3597:14,18 3466:26:17 3597:14,18 3601:7 3609:8, 3449:3 3462:10, 14 3486:19 3483:15 3490:11 3529:13,17,21, 322,23 3626:25 3633:8<		3504:16 3505:23	3592:6 3611:2		
3597:13 3600:12, 23609:2 351111 352:11, 13,20,23,24 3501114 3643.14 assume 3459:21 author 3520:24 appropriately 3527:10 3525:11, 13,20,23,24 assume 3621:16 assume 3523:16 availability action 3527:23 approval 3545:3 3546:13 assume 3459:21 authors 3587:23 availability action 3523:16 assume 3523:16 approval 3545:3 3546:13 assume 3459:21 assume 3512:9 assume 3512:9 average 3459:7 3462:23 3552:6,13,20 Arruda 3464:21 assuming 3470:6 3522:4,19 3464:23 3568:4,22 3569:9 3603:17 3604:25 3471:24 3473:4 3527:12 3530:26 349:23 360:23 3577:26 3590:4, 3609:10 3634:18, 3478:17 3521:8, 3478:17 3521:8, 3546:23 3592:17 3588:12 3611:7 3618:12 3619:5 3620:6,21 3669:22, 3609:10 3634:18, 3478:17 3521:8, 3546:23 3592:17 3602:8 3603:23 3624:20 3625:25 article 3526:22, 3600:17 3609:8 3646:210, assumption 3529:13,17,21, 3602:8 3603:23 3624:22 3623:24 3661:1,23 3624:23 3605:25 3661:14 assumption 3529:13,17,21, 3599:16,18 <tr< td=""><td></td><td>3506:14 3516:14</td><td>3614:2 3617:4</td><td></td><td>3535:10 3626:5</td></tr<>		3506:14 3516:14	3614:2 3617:4		3535:10 3626:5
22 3609:2 3320:1033241 argment 3614:15 availability 3638:14 3608:14 3614:15 asumed 3523:16 3628:16 3635:13 3527:17 352:3 arrive 3595:18 arrive 3595:18 3614:15 asumed 3523:16 311:22 3550:13 3551:22 arrive 3595:18 arrive 3483:10 3628:16 3614:12 3628:16 3462:23 3552:6,13,20 Arruda 3464:21 assumed 3523:16 3521:4 3521:4,19 3462:23 3552:6,13,20 Arruda 3464:21 assuming 3470:6 3522:4,19 3522:4,19 3442:3 3606:23 3577:26 3590:4, 3609:10 3634:18, 23 3527:1,12 3570:2 3578:16 3526:22, 3478:17 3521:8, 3546:23 3592:21 3588:12 3611:7 3618:12 3619:17 3604:25 3588:16 350:11 3524:1,25 3588:12 3611:7 3618:12 3649:22 arsteeit 3572:14 3649:22 3546:23 3592:21 3602:8 3603:23 3624:20 3625:25 artificial 3509:23 artificial 3509:23 3449:3462:10, 3546:23 3592:21 3603:20 3626:4 363525 assessed 3597:19 3560:17 3594:25 3483:15 3490:11 3529:		3517:21 3519:15	3621:14 3643:14		author 3626:24
appropriately 3635:13 15,20,23,24 3608:14 3611:12 availability 3628:16 approval 3526:7,8,9,10,18 arise 3621:16 assumed 3523:16 3628:9 approval 3545:3 3546:13 arrive 3595:18 3611:2 3614:12, 16 3615:1 3628:16 approved 3552:6,13,20 Arruda 3464:21 assumes 3512:9 3461:18 3502:19 approximately 3568:4,22 3569:9 3603:17 3604:25 3587:16 3596:4 assumes 3512:9 3522:1,19 3454:9,10 3475:5 3577:26 3590:4 3609:10 3634:18, 3580:4 3538:10 3532:2, 3494:23 3606:23 3577:26 3590:4, 3609:10 3634:18, 3478:17 3521:8, 3546:23 3597:9, 3602:2 3603:23 3624:20 3625:25 article 3526:22, 26 3527:1,11,15, 3624:20 363:24 16 3602:2 3603:20 3624:20 3625:25 artificial 3509:23 14 3486:19 averaging 3602:2 3603:20 3664:16 aspect 3483:12 3447:13 3506:13 3496:11,23 3602:4 3635:25 3664:22 365:25 artificial 3509:23 3614:26 3630:15 3483:15 3490:11 3602:4 3635:24 <t< td=""><td>,</td><td>,</td><td>argument</td><td></td><td>authors 3587:23</td></t<>	,	,	argument		authors 3587:23
appropriately3526:7,8,9,10,18 3527:17 3532:3arise 3621:16 arrive 3595:18asumed 3523:16 3611:2 3614:12, 16 3615:13628:9approval3545:3 3546:13 3511:22arrive 3483:10 3552:6,13,20arrive 3483:10 3628:163611:2 3614:12, 16 3615:13628:16 3521:8,14,25approved3552:6,13,20 3552:6,13,20Arruda 3464:21 3603:17 3604:25assumes 3512:9 3603:17 3604:253628:16 3524:1,253461:18 3502:19 3522:4,19approximately3568:4,22 3569:9 3573:1 3576:23609:20 3609:10 3634:18, 3588:12arsenic 3572:14 3609:10 3634:18, 23assumption 3470:63524:1,25 3522:4,19AQ 3451:2 3602:8 3603:233611:7 3618:12 3624:20 3625:25artificial 3509:23 af64:16artificial 3509:23 aspect 3483:12assumption 3449:3 3462:10, 3588:2,4averaging 3597:19AQ1 3602:4 3609:4 3615:6,8 3606:23666:2 3666:23666:21 3466:6,10assessed 3466:1,263597:19 3509:17 3594:25 3614:26 3630:15 3616:13 3617:7averaging 3592:13,17,21, 3601:7 3609:8 3614:26 3630:15 3616:13 3617:26AQ1 3602:4 3609:4 3615:6,8 3616:13 3617:263467:21 3468:4, 3466:6,10assessed 3469:11,23 3509:11 3519:21 3529:20attempt 3571:9 3614:26 3630:15 3611:17 3618:1 3616:13 3617:26B8 3605:24 3602:3AQ1 3606:2 3606:23467:21 3468:4, 3466:6,103468:25 3469:2 3469:12 3509:11 3519:21 3529:203614:26 3630:15 3614:26 3630:15 3611:17 3618:1 3609:4 3615:6,8 3616:13 3617:26B8 3605:24 3606:23 3606:2 3633:8AQ1 3605:2 3606:23466:6,1			3608:14	3614:15	availability
3635:13 3527:17 3532:3 arrive 3595:18 3611:2 3614:12, average 3459:7 3511:22 3550:13 3551:22 3552:6,13,20 Arruda 3464:21 3628:16 3628:16 approved 3552:6,13,20 Arruda 3464:21 assuming 3470:6 3522:4,19 3522:4,19 3462:23 3553:2 3557:21 3538:16 3596:4 assuming 3470:6 3522:4,125 3571:1 3576:2 3580:4 3521:1,12,2 350:26 3521:1,12 350:22 3531:10 352:2, 3580:4 3521:1,2 350:26 3521:1,0 352:2, 3531:10 352:2, 3531:10 352:2, 358:12 354:1,2 359:7,2 1 350:26 358:12 3478:17 3521:8, 3546:23 359:21 3546:23 359:21 3531:10 3532:2, 3531:10 3532:2, 3531:10 3532:2, 3593:7,9,15,18, 3478:17 3521:8, 3546:23 359:21 3546:23 359:21 3546:23 359:21 3546:23 359:21 3546:23 359:21 3546:23 359:21 3546:23 359:21 3546:23 359:21 3561:14 avoid 3643:25 3478:17 3521:8, 3546:23 359:21 3561:14 avoid 3643:25 3449:3 3462:10, 14 3486:19 average 3459:15 3489:21 3506:13 3460:17 359:12 3595:16,18 3496:11,23 3601:7 359:12 3595:16,18 3496:11,23 3614:26 3630:15 3483:15 3490:1			arise 3621:16	assumed 3523:16	
approval3545:33546:13arrives3483:10163615:13461:183502:1935511:223550:133551:223551:22arrives3483:103628:163521:8,14,253522:4,193461:183553:23577:213538:163596:4assuming3470:63522:4,193522:4,193454:9,103475:53570:123577:223649:223603:173604:253471:243473:63527:123530:263494:233606:233577:263590:4,3609:103634:18,3478:173521:8,3527:123530:223588:123611:73618:12article3526:22,263527:1,11,15,3546:233593:7,9,15,18,3588:123611:73618:12article3526:22,263527:1,11,15,3624:223638:3,443593:7,9,15,18,3602:83603:203624:203625:25artificial3509:233449:33466:10,3448:213661:14avoid3643:25AQ#13602:43663:23664:16aspect3597:193560:173594:253483:153490:113602:43660:23466:1,263496:11,233601:73609:8361:163631:173631:17AQ#13602:43466:2,13530:113648:123661:133601:73609:8362:253633:83603:33606:23466:6,103641:12,13203614:263601:133602:153633:83616:133617:263466:2,13			arrive 3595.18	3611:2 3614:12,	
3511:22 3530:13 3531:22 Arruda 3464:21 3628:16 3521:8,14,25 approved 3552:6,13,20 3538:16 3596:4 assumes 3512:9 3522:4,19 approximately 3558:4,22 3557:21 3538:16 3596:4 assuming 3470:6 3524:1,25 approximations 3577:26 3590:4, 3609:10 3634:18, 23 3531:10 3532:2, approximations 3511:23 3620:6,21 3577:26 3590:4, 3609:10 3634:18, 23 3546:23 3592:21 3588:12 3611:7 3618:12 3619:5 3620:6,21 arcicle 3526:22, 26 3527:1,1,15, 3624:22 3633:3,4 19 3454:5 3521:18 3624:20 3625:25 artificial 3509:23 assumptions 3561:14 AQ 3451:2 3663:89 3644:16 aspect 3483:12 3449:3 3462:10, 3561:14 AQ1 3602:4 3648:14 aspect 3597:19 3560:17 3509:23 averaging aquatic 3448:22 areas 3459:15 3496:11,23 3601:7 3609:8 322:3 362:25 3603:3 3606:2 3466:6,10 3446:21,320 3611:17 3618:1 3592:13,17,21, 3603:3 3606:2 3467:21 3468:4, 348esesment 3631:17 B 3601:12 3617:26					
approved3552:0,13,203110ua 369.21assumes 3512:93522:4,193462:233553:2 3557:213538:16 3596:4assuming 3470:63524:1,253454:9,10 3475:53570:12 3572:233649:223471:24 3473:43527:12 350:263494:23 3606:233577:26 3590:4,3609:10 3634:18,3580:43531:10 3532:2,approximations8,10 3605:11233609:10 3634:18,3478:17 3521:8,3546:23 3592:213588:123611:7 3618:12article 3526:22,3624:22 3633:3,4193546:23 3593:7,9,15,18,3602:8 3603:233624:20 3625:25aspect 3483:123449:3 3462:10,3561:143602:8 3603:233626:4 3635:25aspect 3483:123449:3 3462:10,3561:14AQ 1 3602:43648:14aspect 3483:123487:21 3506:1334352:13,17,21,aquatic 3448:22areas 3459:15assessed3595:16,183529:13,17,21,3588:2,43460:1,263519:21 3529:203614:26 3630:153633:83603:3 3606:23463:22 3465:173591:13 1618:1atmosphere3609:4 3615:6,83467:21 3468:4,assessment3631:17B3619:24 3628:199,10 3469:9,133468:25 3469:23611:12,13,203631:173619:24 3628:199,10 3469:9,133468:25 3469:23611:12,13,203631:173619:24 3628:199,10 3469:9,133468:25 3469:23611:12,13,203631:173619:24 3628:199,10 3469:9,133468:25 3469:23611:12,13,203606:16 3615:3,3619:24 3628:199,10 3469:9,13<	3511:22			3628:16	
3462:23 3535:2357:21 3535:2357:21 3535:2357:21 3535:2357:21 3630:17 3604:25 3521:12 352:23 3521:12 350:26 3454:9,10 3475:5 3577:12 3572:23 3649:22 3580:4 3580:4 3521:10 3532:2, 3494:23 3606:23 3577:26 3590:4, 3609:10 3634:18, 3580:4 3580:4 3531:10 3532:2, 3588:12 351:17 3618:12 3611:7 3618:12 3609:10 3634:18, 23 3546:23 3592:21 3454:5 3521:18 3621:23 3623:24 3624:20 3625:25 3636:8,9 3644:16 3626:4 3635:25 3449:3 3462:10, 14 3486:19 averaging 3602:8 3603:20 3626:4 3635:25 aspect 3483:12 3487:21 3506:13 3463:19 avid 3643:25 AQ#2 3605:2 3636:8,9 3644:16 aspect 3483:12 3487:21 3506:13 3463:19 avid 3643:25 3609:13 3606:2 3464:10 3496:11,23 3601:7 369:8 322,23 3626:25 363:8 3609:4 3615:6,8 3466:6,10 3496:11,23 3611:26 3630:15 363:8 363:8 3619:24 3628:19 9,10 3469:9,13 3468:25 3469:2 34112,13,20 3611:17 3606:16 3615:3, 3619:24 3628:19 9,10 3469:	approved			assumes 3512:9	
approximately 3454:9,10 3475:5 3494:23 3606:233568:4,22 3569:9 3577:12 3572:23 3573:1 3576:2 3577:26 3590:4, 3588:123609:10 3634:18, 3609:10 3634:18, 233471:24 3473:4 3580:43527:12 3530:26 3580:4approximations 3588:128,10 3605:11 3611:7 3618:12 3602:8 3603:233601:7 3618:12 3624:20 3625:25 3624:20 3625:25arsenic 3572:14 3609:10 3634:18, 23assumption 3478:17 3521:8, 3449:3 3462:10, 14 3486:193527:12 3530:26 3580:4AQ 3451:2 3602:8 3603:233611:7 3618:12 3624:20 3625:25 AQ#2 3605:2artificial 3509:23 3626:4 3635:25 aspect 3483:12 aspect 3483:12 asp	3462:23			assuming 3470:6	
3454:9,10 3475:5 3570:12 3572:23 3649:22 3580:4 3590:10 3532:2, 3600:17 350:12 3560:17 3591:5 3560:17 3591:1,11,15,1 16 3560:17 3594:25 3560:17 3594:25 3483:15 3490:11 3483:15 3490:11 3483:15 3490:11 3560:17 3594:25 3483:15 3490:11 3580:4 3529:13,17,21,22,3560:13 3483:15 3490:11 3529:13,17,21,22,3560:13 3483:15 3490:11 3529:13,17,21,22,23 3626:25 3631:10 363:25 3631:10 363:25 3633:8 3631:10 363:26 3483:15 3490:11 3529:13,17,21,3529:20 3614:26 3630:15 3633:8 3633:8 3631:17 3601:1 26 3630:15 3631:17 3601:1 26 3630:15 3631:17 3601:17 3609:8 3631:10 3631:17	approximately			Ũ	· ·
3494:23 3606:23 3573:1 3576:2 arsenic 3572:14 assumption 8,26 3545:17 approximations 3577:26 3590:4, 3609:10 3634:18, 23 3478:17 3521:8, 3546:23 3592:21 AQ 3451:2 3611:7 3618:12 3619:5 3620:6,21 article 3526:22, 3624:22 3633:3,4 19 3454:5 3521:18 3621:23 3623:24 16 assumptions averaging 3602:8 3603:23 3624:20 3625:25 aftificial 3509:23 14 3486:19 avoid 3643:25 AQ#1 3603:20 3626:4 3635:25 aspect 3483:12 3487:21 3506:13 aware 3475:3 aquatic 3448:22 3646:1,26 3597:19 3560:17 3594:25 aware 3475:3 3597:14,18 3461:20,21 3519:21 3529:20 3614:26 3630:15 3633:8 3603:3 3606:2 3463:22 3465:17 3530:11 3618:1 atmosphere 3631:17 3619:24 3628:19 9,10 3469:9,13 3468:25 3469:2 attempt 3571:9 3606:16 3615:3, 3619:24 3628:19 9,10 3469:9,13 3468:25 3469:2 attempt 3571:9 3606:16 3615:3, 3629:9 3636:3 3470:22 3471:7 3490:11,12,14 3571:9 3606:16 3615:3, 3629:9 3636:3<				3580:4	
approximations3577.26 5390.4, 8,10 3605:113609:10 3634:18, 233478:17 3521:8, 3478:17 3521:8, 3478:17 3521:8, 3546:23 359:2213546:23 3592:21 3593:7,9,15,18, 3593:7,9,15,18,AQ3451:23611:7 3618:12 3619:5 3620:6,21 3602:8 3603:23article 3526:22, 26 3527:1,11,15, 163478:17 3521:8, 3624:22 3633:3,43546:23 3592:21 3593:7,9,15,18, 16AQ#13603:203626:4 3635:25 3626:4 3635:25artificial 3509:23 aspect 3483:12 aspect 3483:12assumptions 3449:3 3462:10, 14 3486:19avoid 3643:25 avoid 3643:25AQ#23605:23636:8,9 3644:16 3648:14aspects 3597:19 3598:2,43560:17 3594:25 3601:7 3609:8avoid 3643:25 3483:15 3460:1,26aquatic3448:22 3460:1,26assessed 3597:14,183460:1,26 3466:2,0213519:21 3529:20 3530:11 3618:1 3611:2,13,203611:7 3609:8 3614:26 3630:153483:15 3490:11 3631:17aftempt 3571:93468:22 3465:17 3619:24 3628:193468:2,14 3470:22 3471:7assessment 3499:31497:3,10 3507:15,16attempt 3571:9 3605:12Barea 3450:203470:22 3471:7 3490:25 3503:143469:23 3497:3,10 3507:15,16attention 3449:2 3594:3487:21 3524:15 3628:26Barea 3450:203474:17 3482:2,9 3490:25 3503:143507:15,16 3507:15,163524:15 3628:26 3458:143605:24 3524:15 3628:26	3494:23 3606:23			assumption	
3588:123,10 3003:112325 3608:8 3612:43593:7,9,15,18,AQ 3451:23611:7 3618:12article 3526:22,26 3527:1,11,15,3624:22 3633:3,4193454:5 3521:183621:23 3623:2416asumptions3449:3 3462:10,averaging3602:8 3603:233626:4 3635:25appents3597:14,183663:8,9 3644:16aspect 3483:12asweptionsAQ#1 3602:43648:14areas 3459:15aspect 3597:193560:17 3594:25aware 3475:3AQ1 3602:43648:14areas 3459:153496:11,233601:7 3609:83592:16,18aquatic 3448:223460:1,263496:11,233601:7 3609:83614:26 3630:153597:14,183461:20,213530:11 3618:13601:7 3609:83611:73603:3 3606:23466:6,103648:4,assessentattempt 3571:93619:24 3628:199,10 3469:9,133468:25 3469:2attempt 3571:93619:24 3628:199,10 3469:9,133468:25 3469:2attempt 3571:93619:24 3628:199,10 3469:9,133468:25 3469:2attempt 3571:93619:24 3628:199,10 3469:9,133468:25 3469:2attempt 3571:93619:24 3628:199,10 3469:9,133468:25 3469:234571:93629:9 3636:33470:22 3471:73490:11,12,143571:93629:9 3636:33470:22 3471:73495:3 3497:3,103458:243455:23,2616,22 3506:213597:14,183507:15,163456:2 3457:13,3507:15,163507:14 3509:2535399:15,163456:2 3457:13,3507:15,16<	approximations		,	-	
AQ3451:2 3619:5 3620:6,21 3602:8 3603:2336117 3618:12 3619:5 3620:6,21 3621:23 3623:24 3622:23 3623:24 16article 3526:22, 26 3527:1,11,15, 163624:22 3633:3,4 assumptions19AQ#13603:20 3626:4 3635:25 AQ#2 3605:23626:4 3635:25 3636:8,9 3644:16 3648:14artificial 3509:23 aspect 3483:12 aspect 3483:12 aspect 3483:12 aspect 3483:12 3595:16,18 3595:16,18 3601:7 3609:8 3616:13 3617:26areas 3459:15 3466:6,103601:7 3609:8 3463:22 3465:17 3530:11 3618:1 3616:13 3617:26areas 3459:15 3466:6,10assessed 3597:14,18 3468:22 3465:17 3619:24 3628:193601:7 3609:8 3466:6,103611:1,23 3601:1 3618:1 3619:24 3628:19B8 3605:24 3605:24area 3450:20 3455:23,26 3455:23,26347:17 3482:2,9 3490:25 3503:14, 3455:23,263467:21 3468:4, 3490:25 3503:14, 3507:15,16assessment 3507:15,16 3555:20 3565:13624:22 3633:3,4 3449:3 3462:10, 14 3486:19 3601:7 3594:25 3614:26 3630:1519BB8 3605:24 3606:16 3615:3, 14 3618:4B3605:24 3606:16 3615:3, 3459:13 3497:3,10 3458:14					
AQ#1 3603:233619:5 3620:6,2126 3527:1,11,15, 16assumptionsaveraging3602:8 3603:233621:23 3623:24163449:3 3462:10, 14 3486:19averagingAQ#1 3603:203626:4 3635:25artificial 3509:23aspect 3483:12aspect 3483:12AQ#2 3605:23636:8,9 3644:16aspect 3483:123487:21 3506:13averagingAQ1 3602:4areas 3459:15aspect 3597:193560:17 3594:25averagingaquatic 3448:223646:1,263496:11,233595:16,183483:15 3490:113588:2,43460:1,263496:11,233601:7 3609:83432:253603:3 3606:23463:22 3465:173530:11 3618:1atmosphere3616:13 3617:263467:21 3468:4,assessmentattempt 3571:93619:24 3628:199,10 3469:9,133468:25 3469:2attempt 3571:93629:9 3636:33474:17 3482:2,93495:3 3497:3,10attention 3449:23455:23,263490:25 3503:14,3507:15,163555:20 3565:13529:4 3487:213456:2 3457:13,3507:15,163507:15,163529:13,172,173456:2 3457:13,3507:15,163507:15,163529:3465:2	AO 3451·2				
3602:8 3603:233624:20 3625:25artificial 3509:233449:3 3462:10, 14 3486:193561:14AQ#1 3603:203626:4 3635:25aspect 3483:123487:21 3506:13AQ#2 3605:23636:8,9 3644:16aspect 3483:123487:21 3506:13AQ1 3602:43648:14aspect 3597:193560:17 3594:25aquatic 3448:22areas 3459:15assessed3595:16,183588:2,43460:1,263496:11,233601:7 3609:83597:14,183463:22 3465:173519:21 3529:203614:26 3630:153603:3 3606:23466:6,103641:12,13,203631:173609:4 3615:6,83466:6,103468:25 3469:23631:173619:24 3628:199,10 3469:9,133468:25 3469:2attempt 3571:93629:9 3636:33470:22 3471:73490:11,12,143571:93455:23,263474:17 3482:2,93495:3 3497:3,10attention 3449:23455:23,263490:25 3503:14,3507:15,163524:15 3628:263456:2 3457:13,16,22 3506:213555:20 3565:13524:15 3628:26	-		26 3527:1,11,15,		averaging
AQ#1 3603:203626:4 3635:25artificial 3509:2314 3486:19avoid 3643:25AQ#2 3605:23636:8,9 3644:16aspect 3483:123487:21 3506:13aware 3475:3AQ1 3602:4areas 3459:15aspects 3597:193560:17 3594:253483:15 3490:11aquatic 3448:22areas 3459:15assessed3595:16,183592:13,17,21,3588:2,43460:1,263496:11,233601:7 3609:83592:13,17,21,3597:14,183463:22 3465:173519:21 3529:203614:26 3630:153631:173609:4 3615:6,83466:6,103641:12,13,203631:17B3616:13 3617:263466:6,103468:25 3469:23631:173619:24 3628:199,10 3469:9,133468:25 3469:2attempt 3571:93629:9 3636:33470:22 3471:73490:11,12,143571:93455:23,263474:17 3482:2,93495:3 3497:3,10attention 3449:23455:23,263490:25 3503:14,3507:15,163524:15 3628:263456:2 3457:13,3507:18 3509:153569:11 3572:17			16	-	00
AQ#23605.1203620.4 905.125aspect 3483:123487:21 3506:13aware 3475:3AQ#23605:23636:8,9 3644:16aspects 3597:193560:17 3594:253483:15 3490:11aquatic 3448:22areas 3459:15asessed3595:16,183595:16,183588:2,43460:1,263496:11,233614:26 3630:153614:26 3630:153597:14,183461:20,213519:21 3529:203614:26 3630:153633:83603:3 3606:23466:6,103641:12,13,203631:173633:173609:4 3615:6,83466:6,103641:12,13,203631:17B3619:24 3628:199,10 3469:9,133468:25 3469:2attempt 3571:9B3629:9 3636:33470:22 3471:73490:11,12,143571:93606:16 3615:3,3455:23,263490:25 3503:14,3507:15,163459:4 3487:213606:16 3615:3,3455:23,2616,22 3506:213555:20 3565:13524:15 3628:263458:14			artificial 3509:23	,	
AQ#2 3603.0,9 3044.10 aspects 3597:19 3560:17 3594:25 3483:15 3490:11 aquatic 3448:22 areas 3459:15 aspects 3597:19 3560:17 3594:25 3483:15 3490:11 3588:2,4 3460:1,26 3460:1,26 3496:11,23 3601:7 3601:7 3609:8 3614:26 3630:15 3633:8 3603:3 3606:2 3466:6,10 3466:6,10 3641:12,13,20 3611:17 atmosphere 3631:17 B 3616:13 3617:26 3467:21 3468:4, assessment attempt 3571:9 B 3629:9 3636:3 3470:22 3471:7 3490:11,12,14 3571:9 B B 3455:23,26 3490:25 3503:14, 3507:15,16 3459:4 3459:2	-		aspect 3483:12		
AQ1 3602:4 35010:11 3433.15 3490.11 aquatic 3448:22 areas 3459:15 3460:1,26 3496:11,23 3601:7 3609:8 3529:13,17,21, 3588:2,4 3461:20,21 3519:21 3529:20 3614:26 3601:7 3609:8 3601:7 3603:15 3633:8 3603:3 3606:2 3463:22 3465:17 3530:11 3618:1 3631:17 3631:17 3631:17 3631:17 B 3616:13 3617:26 3467:21 3468:4, assessment attempt 3571:9 B 3629:9 3636:3 3470:22 3471:7 3490:11,12,14 3571:9 3606:16 3615:3, area 3450:20 3474:17 3490:11,12,14 3571:9 3606:16 3615:3, 3455:23,26 3470:22 3471:7 3490:11,12,14 3571:9 3606:16 3615:3, 3455:23,26 3470:25 3503:14, 3507:15,16 3459:4 3459:4 3459:4 3458:14 3507:18 3509:15 3569:11 3572:17 3524:15 3628:26 3458:14 <td>-</td> <td>· · ·</td> <td>aspects 3597:19</td> <td></td> <td></td>	-	· · ·	aspects 3597:19		
aquatic3448:22areas3439:15assessed3601:7 3609:83529:13,17,21,3588:2,43460:1,263496:11,233601:7 3609:83614:26 3630:153614:26 3630:153614:26 3630:153603:3 3606:23463:22 3465:173530:11 3618:13631:173631:173631:173609:4 3615:6,83466:6,103641:12,13,203631:173631:17B3619:24 3628:199,10 3469:9,133468:25 3469:2attempt 3571:9B3629:9 3636:33470:22 3471:73490:11,12,143571:93606:16 3615:3,3455:23,263474:17 3482:2,93495:3 3497:3,10attention 3449:23606:16 3615:3,3455:23,2616,22 3506:213555:20 3565:13524:15 3628:263458:14	e		-		
3588:2,4 3400:1,20 3519:21 3529:20 3614:26 3630:15 3633:8 3597:14,18 3461:20,21 3530:11 3618:1 3614:26 3630:15 3633:8 3603:3 3606:2 3463:22 3465:17 3530:11 3618:1 3631:17 3631:17 3609:4 3615:6,8 3467:21 3468:4, 35468:25 3469:2 3631:17 3609:15 3600:16 3615:3, 3619:24 3628:19 9,10 3469:9,13 3468:25 3469:2 3470:22 3471:7 3490:11,12,14 3571:9 3606:16 3615:3, 3455:23,26 3474:17 3482:2,9 3495:3 3497:3,10 3459:4 3487:21 3606:16 3615:3, 14 3618:4 3455:23,26 16,22 3506:21 3555:20 3565:1 3524:15 3628:26 3458:14	-			,	
3597:14,18 3461:20,21 3517.21 3527.13 3507.14 3527.13 35053.3 3603:3 3606:2 3463:22 3465:17 3530:11 3618:1 3631:17 atmosphere 3609:4 3615:6,8 3467:21 3468:4, 3641:12,13,20 3631:17 3631:17 3616:13 3617:26 3467:21 3468:4, assessment 3631:17 3631:17 3619:24 3628:19 9,10 3469:9,13 3468:25 3469:2 attempt 3571:9 3606:16 3615:3, 3629:9 3636:3 3470:22 3471:7 3490:11,12,14 3571:9 3606:16 3615:3, area 3450:20 3474:17 3482:2,9 3495:3 3497:3,10 3459:4 3487:21 3606:16 3615:3, 3455:23,26 16,22 3506:21 3555:20 3565:1 3459:4 3487:21 3458:14 3456:2 3457:13, 3507:18 3509:15 3569:11 3572:17 3492:15 3628:26 3458:14		· · ·			· · ·
3603:3 3606:2 3403:22 3403:17 3641:12,13,20 3631:17 3609:4 3615:6,8 3466:6,10 3641:12,13,20 3631:17 3616:13 3617:26 3467:21 3468:4, assessment attempt 3571:9 3619:24 3628:19 9,10 3469:9,13 3468:25 3469:2 attempted 3629:9 3636:3 3470:22 3471:7 3490:11,12,14 3571:9 B8 3605:24 3455:23,26 3474:17 3482:2,9 3495:3 3497:3,10 attention 3449:2 14 3618:4 3455:23,26 16,22 3506:21 3555:20 3565:1 3524:15 3628:26 3458:14					0.000
3609:4 3615:6,8 3400.0,10 assessment attempt 3571:9 3616:13 3617:26 3467:21 3468:4, assessment attempt 3571:9 3619:24 3629:9 3636:3 3470:22 3471:7 3490:11,12,14 3571:9 attempted 3606:16 3605:24 3629:9 3636:3 3474:17 3490:11,12,14 3571:9 3606:16 3615:3, area 3455:23,26 3490:25 3490:25 3503:14, 3507:15,16 3459:4 3487:21 3608:16 3618:4 3456:2 3457:13, 3507:18 3509:15 3569:11 3572:17 3459:2 3458:14				-	
3610.13 3017.209,10 3469:9,133468:25 3469:2attemptedB8 3605:243619:24 3628:193470:22 3471:73490:11,12,143571:93606:16 3615:3,3629:9 3636:33474:17 3482:2,93495:3 3497:3,103495:3 3497:3,103606:16 3615:3,area 3450:203490:25 3503:14,3507:15,163459:4 3487:213606:16 3615:3,3455:23,2616,22 3506:213555:20 3565:13524:15 3628:263458:143456:2 3457:13,3507:18 3509:153569:11 3572:173569:21 3568:263458:14				· ·	B
3619:24 3628:19 3470:22 3471:7 3490:11,12,14 3571:9 3606:16 3615:3, 3629:9 3636:3 3470:22 3471:7 3490:11,12,14 3571:9 3606:16 3615:3, area 3450:20 3490:25 3503:14, 3507:15,16 3459:4 3487:21 3459:4 3487:21 3459:4 3487:21 3456:2 3457:13, 3507:18 3509:15 3569:11 3572:17 3524:15 3628:26 3458:14				-	
3029.9 3030.3 3474:17 3482:2,9 3495:3 3497:3,10 attention 3449:2 14 3618:4 3455:23,26 3490:25 3503:14, 3507:15,16 3459:4 3487:21 bachelor 3456:2 3457:13, 3507:18 3509:15 3569:11 3572:17 3522:17 3498:20					
area 3450:20 3490:25 3503:14, 3507:15,16 3459:4 3457:21 3459:4 3487:21 3456:2 3457:13, 3507:18 3509:15 3569:11 3572:17 3524:15 3628:26 3458:14					
3455:23,26 16,22 3506:21 3555:20 3565:1 3459:4 3487.21 Dachelor 3456:2 3457:13, 16,22 3506:21 3555:20 3565:1 3524:15 3628:26 3458:14					
3456:2 3457:13, 3507:18 3509:15 3569:11 3572:17 3524:15 5028:20 3458:14					
16.19.26 3461:1 5557115 5557115 3633:26					3458:14
	16,19,26 3461:1			3033:20	

		6		
back 3449:1	banks 3496:15	3558:24 3562:2,7	Beautiful 3525:5	3611:10 3618:13
3450:22 3458:20	Barata 3539:15	3588:20 3589:7,	bed 3507:4,5,6,11	3620:7
3461:22 3467:6	Barbara 3540:14	25 3590:1	3553:15 3608:23	benign 3580:18
3468:12 3471:11,	barrier 3450:23	3592:11	3646:7,9	Berdina 3539:26
18,25 3481:19,25	3520:22 3559:20,	based 3449:23	bedding 3556:3	beryllium
3482:16,22	26	3462:25 3479:9,	bedrock 3503:3,	3628:11
3483:10 3488:24		11 3500:14,21	22,25 3504:5	
3494:5 3498:21	BARTLETT	3506:13 3511:1	3505:3,14,19	Bettles 3448:17
3500:12 3535:6	3448:16 3542:8 3607:17	3512:24 3514:1	3506:15,20	3490:10 3495:14,
3536:17 3541:22		3545:16,18,21	3509:3 3511:7	16 3542:9
3545:9 3546:16	basal 3571:25	3572:7 3584:17	3554:4 3556:2	3543:2,21 3544:10
3549:9 3554:21,	base 3461:9	3593:6 3601:6,10	3559:20 3573:18	
26 3556:11	3462:3,4,6,16	3607:7 3608:10	began 3490:24	Bewley 3448:18
3559:23 3560:7	3463:5,12,13,25	3609:8 3623:6	3491:2,9 3561:22	3489:25 3490:1,2
3571:21 3575:11	3464:2,6 3477:10	3624:18 3642:14	· · · · · · · · · · · · · · · · · · ·	3491:15 3498:19,
3577:23 3581:18	3481:3,8,20	3646:9 3649:3	begins 3624:3,14 3626:11	21 3499:14 3500:1 3501:4,
3596:16,22	3482:1,26	baseline 3497:9		· · · · · ·
3602:12 3606:21	3483:4,13	3511:2,3 3533:22	behaviour	17,18 3502:22 3542:10
3626:5 3627:17	3495:20 3496:17	3542:24 3545:12	3515:16	
3630:13 3640:16	3498:8,11,14,17	3558:4 3570:5	Bellevue 3616:26	big 3481:10
3642:8 3649:4,14	3501:15 3505:22	3617:22	Belt 3451:8	biochemical
backfill 3484:14	3506:3,17 3510:2	basic 3498:25	beneath 3506:9	3643:23
3485:22 3486:9,	3520:6 3523:1,4, 19,25 3524:4,13,	3535:13	3509:15 3511:7	biology 3597:18
11 3502:26	20 3529:16	basically	3516:25 3573:2	3616:13
3608:19,25	3530:10,16,20,21	3458:24,26	3586:17	biota 3588:3
3609:19 3644:10, 11	3533:8,16	3459:12 3465:4	Benga 3448:14,	bismuth 3628:11
	3535:14 3536:11	3470:23 3478:6	25 3467:14	bit 3467:25
backfilling	3545:13 3547:23	3499:11 3501:11	3468:16 3478:13	3496:13 3498:12
3565:17	3548:17 3585:3,	3503:14 3509:25	3527:3 3538:22	3503:17 3525:5
backfills 3633:12	23 3592:12	3520:17 3524:7	3542:13 3571:1	3544:11 3545:7
background	base-case	3543:21 3545:21	3572:22,26	3577:21,23
3614:2,12 3630:3	3524:1,18,23	3556:12,13	3573:9,17 3574:4	3598:21 3602:13
backup 3561:14	3525:7,23	3578:2,7 3637:1	3575:21 3578:17	3608:13,17
3608:21 3609:18	3526:13 3527:7,	basin 3626:1	3579:15,25	3623:14 3635:11
3648:2	22 3528:16	basis 3464:6	3583:7 3584:1	BL01 3464:1
bad 3459:18	3594:5,18	3527:17 3561:19	3586:22 3610:9	BL02 3464:1
3527:3	base-flow	3562:24 3608:9	3613:3 3614:18	3600:7
balance 3590:7	3461:26 3462:21	3642:24	3618:1 3632:4,5	black 3465:26
3591:23 3592:15,	3463:1,9,17	BC 3463:26	3634:17 3635:1	3500:10 3639:26
26 3593:4 3598:7	3464:9,11	3600:7 3617:13	3641:12,13	3640:1
3622:4 3626:22	3478:12 3489:15	BC03 3464:1	3643:17 3644:16	Blair 3600:21
3632:23 3645:11	3496:1,21	BC07 3463:26	3645:20 3647:16	
balances 3612:19	3523:21 3528:24	3601:15	3649:1,4,9 3650:2	Blairmore
Band 3539:4	3529:19 3533:21	bear 3578:3		3452:23 3459:5
bank 3498:12	3536:1,4 3542:24		Benga's 3469:10	3463:11,13,25 3464:2,3 3468:22
54111 5770.12	3545:11 3546:12	beauties 3542:5	3491:17 3496:11	3404.2,5 3408.22
			3511:2 3564:15	5477.11 5400.0

3483:8,26 3559:15 3580:22 3526:13 3527:22 3627:9 36 3484:15 3485:25 3628:7 3639:20 C 3558:7 3559:3,9 3630:9,18 3491:16 3523:22 3644:7 3561:23 3588:6, cases 351	529.26
	8,20
5501.25 5500.0, Cases 351	2:21
3524:5 3529:20 bottoms 3492:5, C-20 3528:11,14, 8,11 3520:8 35	
3530:23 3575:24 15 3567:8 21,26 3529:11 call 3484:12 3623:8 36	533:7,8
3579:18 3580:2 bound 3557:17 3530:1 3536:17 3600:22 3610:5 3634:9	·
3584:21,25 boundary 3545:22 3546:16 3613:19 3647:1 cataclasti	c
3585:18 3586:9 3515:23 3516:18 3547:2 3648:10 3450:24	-
5591:263592:7, $3550:123568:1$ C10 $3543:17$ called $3598:12$ catastron	hic
12 3597:12 CA 3512.2 Camera 3448.2 3483.2	me
3598:13 3600:4, 500 1 5552.10	ht.
11 5001.17 Doyce 5540.21 2626.0 2629.10 2520.17 2541.1 2450.5 20	
brauly 5541.7 brauly 5541.7 22.24.3639.1.2.4 Comp d ₂ 24.97.16 21.3530.7	-
break 3493:11,21 colorate 2466.4 2499.6 2520.9 3532.9 20	
BLO2 3599:17 3494:9,20 3597:8 3540:26 3541:1 3621:23	<i>.</i>
BLO3 3463:26 3533:18 3537:2 35577.6 5576.20 3541.1	S
block 3522:2 5590.10,15 2462 12 16	5
3554:13 3591:8 3015:10 3100112,10 30591:20 3540.20 Coudron	2157.2
blow 3637.6 Dreaks 5015.10	
blue 3463-11 briefly 3534-8,11 2522-2 12 2550-5	
3465.8 18 3466.1 bring 3460.10 2560.0 2601.6 Capacities	
3470:2 3490:26 3515:25 coloulating 3611:17 caused 3	
3491:4 3534:3 Brinker 3538:23 2548.25 Capacity 5011.5, Cutofing 5	
3615:9 broadcast calculation 6,9 3646:18 caution 3	
board 3530:19 3448:5 carcination 3532:24 3552:13 capitals 3641:15 caveat 35	588:17
3536:14 3581:12 brown 3452:25 coloulations capture 3481:9 CCME 3	617:11
Bolton 3538:5 3615:7 3499:22 3501:12, cell 3631:	5,18
bookmarked build 3504.10 3549.21 3551.17 13 3045.12,13 cells 3513	3:9,12
3598:10 buildup 3601.8 3588:21 captured 3448:3 3516:15,	19
borderline 3645:25 Calgary 3490:4 3491:8 3501:2 3517:5,6	3631:13
3634:9 built 3462:11 3651:8 capturing 3481:3 century 3	3623:1
borehole 3509:20 calibrate 3533:6 3482:1 3500:26 CERTIF	ICATE
3573:10 3575:20 bullet 3449:3,10 calibrated Carbonate 3651:1	
boreholes 3486:12,13,20 3462:3,5 3479:12 3451:5 certify 36	551:3
3583:23 3487:21 3499:1 3523:19 3524:1 care 3479:13 Chair 34	
bottom 3450:8 3512:1 3555:24, 3533:7 3545:24 3490:16 3650:3 3453:18 3	
3452:22 3453:23 25,26 3557:19 3546:2 3548:23 carry 3607:12 15,17,19,	
3452:22 3455:7 3610:25 5356:2 5356:2,3 10,11,13 3454:8 3455:7 3610:25 53558:6,21,26 case 3469:1 3457:2,9	
3461:14 3470:23 Bulletin 3451:10 3559:18 3562:4 3478:6 3515:8 3479:15 3	
3473:2 3479:22 BURGE 3448:18 3563:23 3589:14 3524:20 3530:21 3489:18	
3487:9 3498:17 3542:10 calibration 3553:17 3562:5 10,12,14,	
3516:9 3520:2 business 3650:3 3462:13 3522:26 3592:18,20 3494:10,3	13,14
	3511:3,
3528:12 3536:18 burges 2575-22 3523:20,26 3593:6,10,20 3496:12 3	2526.5
3528:12 3536:18 business 3030.3 3523:20,26 3593:6,10,20 3496:12 3 3546:18 3547:2 2570,17 2580,1 3524:18,19,23,24 3606:14,19 12 3521:23	
3528:12 3536:18 bypass 3575:23 3523:20,26 3593:6,10,20 3496:12 3	
3528:12 3536:18 business 3500.3 3523:20,26 3593:6,10,20 3496:12.3 3546:18 3547:2 3579:17 3580:1 3523:20,26 3606:14,19 12 3521:2	

7

8

committed 3601:12 3609:10, 14,18 3634:11 3635:2,7 3646:5 common 3610:6 3629:20,25 3644:4
commonly 3454:16,18 communicate 3595:8 company 3635:6 3638:16 3642:13
compare 3471:7 3594:20 3643:9 compared 3552:23 comparing 3471:2 3548:24
3581:8 competent 3452:15 3453:4, 14 compiled 3602:25
complete 3643:16 3651:4 completed 3491:21 3545:25, 26 3555:15 3556:18 3563:3 3565:16 3571:4,
18 3573:15,23 3591:13 3602:25 completely 3542:22 3555:9 3556:9 3631:3 3647:13
completing 3589:11 complex 3589:5 3648:14 complications 3645:14

compliment 3490:8 component 3614:10 components 3614:11 comprises 3517:20 3525:11 computations 3597:1,5 concentrated 3468:13 concentrating 3641:14 concentration 3600:11 3601:15 3606:8 3616:19 3623:19 3628:16 3631:7.21 concentrations 3572:10 3587:13 3613:4,5,14,20, 21 3614:8,12 3622:14 3623:22 3635:4 3646:2 conceptual 3597:4 3647:7 concern 3569:19 3588:26 3609:11 3610:3 3636:15 concerned 3581:23 **concerns** 3448:6, 8,9 3522:7,13,21 3527:19 3549:19 3568:7.11 3569:7.15 3572:18 3603:14 3604:22,23 conclusion 3549:18 conclusions 3589:21 3608:9 condition 3477:22 3489:14

conditions 3479:11 3480:17 3486:18 3488:2 3490:18 3499:7 3501:13 3503:9 3513:20 3515:24 3516:18 3523:23 3524:6,7,8,10,11 3558:4 3569:5 3570:5,7 3592:22 3593:8,10,11,16, 19,20,21 3594:9 3631:6,20,25 3632:3,6,8 3634:16,25 3643:19 3645:15 conducive 3643:20 **conduct** 3555:19 3570:22 conducted 3491:5 3563:1 3570:20 3635:25 conducting 3488:8 conductive 3557:13 conductivities 3477:23 3517:26 3518:12 3553:4.6 3556:2 3558:8.20 3570:24 3574:1.3 conductivity 3477:6,14,17 3478:19 3513:1, 8,17,18 3515:14, 15 3517:4 3518:5,7,20,25 3519:22 3520:4,7 3529:2.5.9 3550:3 3554:19 3555:1.21.22 3557:17 3558:6, 17.26 3560:5.18. 26 3561:4 3563:3,9,24

9

3564:8,10 3570:9,17 3571:14,19 3625:9 conductivityversus-depth 3562:24 **conduit** 3449:8 3520:22 **cones** 3552:24 **confer** 3593:22 conferring 3602:4 confess 3637:4 confidence 3511:10 3588:17 3589:1,11 confident 3504:22 3558:13 configuration 3449:17 3516:14, 23 3549:20 configured 3449:22 **confirm** 3467:9 3471:25 3472:1. 12 3475:10.14 3578:11 3603:6 3605:16 3622:9 3623:2 confirmation 3649:1 confirmed 3471:21 3494:19 3617:26 confirming 3602:2 3607:6 confused 3598:21 3625:2 confusion 3627:3 connecting 3616:2 connection 3493:8.22.24

connectivity 3573:19 consequences 3580:13 Conservation 3540:5 conservative 3601:7 3606:18 3609:8 3611:15. 26 3612:4 3613:22 3614:14 3616:11 3623:13 3629:22 3633:4, 20 3634:8 3636:17 3647:21 considerable 3463:15 3586:8, 21 considerably 3522:10 3523:10 considered 3480:6 3497:20, 23 3514:9 3519:20 3520:19 3575:15 3588:11 3593:10,20 3616:19 3628:18 **consist** 3557:20 3583:22 consistent 3464:13 3523:3 3524:4 3528:4 3549:24 3560:21 3564:12 3589:23 3614:25 consistently 3463:24 conspicuous 3454:19 constant 3516:5 3556:6 constituents 3572:14 3597:12 3629:19 3635:5.9

		10		
constrain 3555:2 3571:2 constrained 3624:25 constraints 3633:13 construct 3582:2	3644:14 3647:16 contaminated 3506:25 contamination 3569:20 3579:1 3621:15,26 3626:8 3627:6	conversation 3624:24 conveyed 3630:7 Cooke 3540:5 Cooley 3451:8,26 copper 3618:7 3634:19	3562:9,10,15 3563:2,14 3565:19,25 3566:1,4 3567:6, 22,23 3568:14 3569:24 3570:2 3571:1 3572:24, 25 3578:9	<pre>count 3633:20 couple 3466:18 3493:22 3641:22 court 3541:19 3590:9 3651:15 cover 3568:15 covered 3465:25</pre>
constructed 3456:1 3457:24 3458:6 3478:17 constructing 3563:6 construction 3511:15,22 construe 3495:22 consult 3471:16 3526:5 Consultant 3452:18 3460:9 2495.1 2510:17	3644:17 context 3474:1 3490:9 3491:9 3501:18,21 3592:23 contiguous 3482:17 contingency 3648:9 contingent 3643:13 continue 3448:13 3459:22 3479:19	core 3556:19 3571:5 corner 3486:23 3487:5 3516:10, 13 3578:8 corners 3631:2 correct 3450:15, 16 3452:4 3453:7,17 3457:13,26 3458:1,11,19 3464:4 3465:8,9 3469:20,21	3584:22 3592:9 3598:3 3600:13, 14,18 3602:20 3603:9,10 3604:17,19 3606:4 3613:5 3615:15 3618:3, 10 3619:5,6 3620:12 3622:1, 6,7,12,17 3623:4 3624:7,9 3632:3 3633:25 3638:11, 23 3639:5,11,17,	3525:24 3574:21 covering 3476:14 3503:14 CR 3449:11 3450:5 3459:3 3463:8 3465:1 3469:18 3476:7 3486:13,21 3490:21 3498:22 3499:2 3512:2 3515:22 3517:14 3523:12 3524:16 3528:11 3533:19
3495:1 3519:17 3534:23 3553:19, 24 3625:13,19 contact 3448:6 3483:21 3509:14 3510:20,23 3577:9 3580:17 3582:5 contained 3469:16 containment 2495.4	3482:5 3591:16 3596:1 3632:8 3645:3 continued 3583:8 continues 3511:19 continuing 3622:15 contours 3625:23	3470:15,16 3471:3 3472:5 3476:9,11 3477:2,3 3485:3 3487:7,8,12,13 3493:6 3498:5 3499:17,18,26 3503:3 3504:13 3507:4 3510:9, 16,19 3512:8,12, 17,22 3513:25	25 3640:7 3642:26 corrected 3489:23 3616:14 correctly 3468:16 3489:9 3611:12 correlation 3460:17 3563:26 corresponds 3562:22	3534:8 3542:16 3554:17 3555:24 3558:1 3564:13 3565:21 3571:21 3588:5 3605:25 3615:4 3625:13 create 3473:17 3479:15 3484:25 3508:16 3555:16 3627:5 3635:19, 22 3636:7,8
3485:4 contaminant 3574:6 3584:2 3587:12 3607:24 3609:1 3647:13 contaminant- movement 3582:13 contaminants 3486:7 3568:8 3569:8 3575:23 3579:17 3580:1,5 3585:3,22 3586:6,11 3613:4 3620:20 3636:15	source contrast 353:4 contributing 3496:7 contribution 3496:6,21 3591:25 3496:9 control 3583:25	3515:11,24,25 3516:6,17,20,21 3517:11,12,15, 17,22,23 3523:8 3524:25 3526:17 3527:11 3528:17 3530:4 3532:2,3, 7 3534:5,14,15 3535:5,11,16,17, 21,22,26 3536:1 3545:14,15,22 3547:3 3548:12, 22 3550:2 3555:4 3557:2 3558:9,10 3560:1,9,10	Cory 3448:17 3542:9 3543:2 cost-wise 3644:19 Cote 3539:4 could've 3492:26 3648:15 coulee 3451:3 Council 3541:16 counsel 3448:7 3538:9,10,13 3540:14,16 3541:3,5,7,9,11, 14	created 3479:9 3586:3 3632:7 creating 3457:4 3468:11 3479:10 3508:17 3509:17, 22 3613:11 creek 3451:12,18, 19 3452:3,23 3454:15 3455:10, 11,23 3457:12, 15,16,17,19 3459:6,13 3462:1,22 3463:2,12,13,14, 25 3464:2,3

		12		
define 3608:4 defined 3468:7 3584:8 defining 3610:1 definition 3516:3 3565:14 DEFOREST 3448:17 3542:9 degrees 3458:11 delay 3471:23 delayed 3612:25 delaying 3514:16 demonstrate 3488:26 3581:16 demonstrated 3632:9 3645:5 demonstrates 3581:2 depend 3580:12 3582:9 dependent 3631:25 depending 3502:15 3563:15 3590:14 3611:21 depends 3504:7 depict 3466:2 3469:25 deployed 3645:22 deployed 3645:22 deposited 3644:9	derived 3608:10 3617:12 Des 3541:3,9 describe 3558:15 describes 3520:3 3559:9 describing 3496:19 description 3460:16 3518:18 3576:6 3581:5 3592:17 3595:4 design 3479:15 3499:8 3504:11, 18,24 3505:1 3506:6 3507:5,6 3511:15,21,24 3608:9 3646:10, 13 3648:3 designed 3507:9 3614:17 3647:9 designing 3504:8 designs 3647:8 destroyed 3482:9 detail 3576:6 detailed 3500:17, 19,21,22 3501:1 3503:8 3504:18 3505:1 3511:20 3583:19 3647:8 detect 3582:15,21 detected 3511:3 3584:2 3644:15	3583:7 3584:14 3603:7 3642:5 determined 3460:12 3469:2 3485:23 3560:10 3624:17,18 develop 3512:26 3575:3 3610:20 3636:17 developed 3545:24 3564:24 3593:1 3647:9 developing 3645:24 development 3497:23 3531:6, 14,22 3533:3,13 3575:10 3588:21 3644:15 3647:18 devices 3644:11 diagrams 3518:2 diameter 3583:23 differ 3643:4 difference 3463:16 3481:8 3511:13 3520:8 3528:15 3530:6 3548:25 3560:3, 24 3594:7,14 3597:10 differences 3463:18 3625:9	3502:11 3551:6 directed 3483:25 3484:13 direction 3449:15 3477:7, 19,20,23,25 3478:8,14,15,19 3479:2 3504:12 3520:18 3560:4,6 3624:19 3625:10, 11,14,24 3626:2 directions 3477:1 3583:26 3625:1 directly 3455:23 3472:7,8 3490:20 3495:26 3547:26 3554:3 3564:3,5 3578:5 3580:14 3630:6 disagree 3452:17 3453:5,15 3477:21 3522:17 disappear 3481:17 3482:24 3483:10 discharge 3485:7 3492:3,13 3494:2 3502:17 3565:23 3613:23 3627:21 disconnected 3543:14 discontinuous 3454:18	$\begin{array}{c} 3517:2,11,12\\ 3520:20\ 3574:14\\ 3584:6,12\\ 3643:21\\ \hline {\bf discussing}\\ 3479:8\ 3481:13\\ 3644:21\\ \hline {\bf discussion}\\ 3449:1\ 3466:12\\ 3493:2\ 3494:18\\ 3495:2\ 3545:18\\ 3568:17\ 3648:24\\ \hline {\bf dish\ }3552:15\\ \hline {\bf displaced}\\ 3554:13\\ \hline {\bf displacement}\\ 3451:20,23\\ 3452:9,13\ 3554:9\\ 3555:17\\ \hline {\bf disposal\ }3569:13,\\ 16,22\ 3574:18\\ 3576:2\ 3586:18\\ 3610:11\ 3611:2\\ 3643:14\\ \hline {\bf disposed\ }3610:9\\ \hline {\bf disposing}\\ 3610:9,20\\ \hline {\bf disposing}\\ 3610:9,20\\ \hline {\bf disposing}\\ 3610:3,7\ 3613:3,\\ 14,20\ 3614:1,7,9,\\ 10,11\ 3615:3,14\\ \hline {\bf distance\ }3552:3\\ 3553:16,22\\ \end{array}$
	detected 3511:3		discontinuous	distance 3552:3

		13		
distributions	downgradient	drawings	3633:22 3645:26	3458:1 3477:6,24
3523:24 3524:17	3576:1,9,21	3511:21	3646:1	3478:8,15,19
disturbance	3577:3,15	drawn 3449:2	duration	3479:2 3520:18
3493:20 3501:26	3579:22 3580:24	drew 3459:4	3479:24 3572:1	3560:4 3625:10,
3502:10 3504:20	3584:5	3487:21 3524:14	3646:3	15
disturbances	downslope	dried 3466:11,16		Eco-elders
3502:6	3586:5	3542:22 3543:23	E	3540:23
divert 3486:10	downstream	3605:12		ecosystem
	3599:8	dries 3480:20	E.6.3.1.3.2	3588:4
diverting 3468:12	downward		3587:22	edge 3473:14,18,
	3585:3,23	drill 3619:5	e.g. 3629:21	23 3474:5,9
Dixon 3451:9	DP 3598:14	drilled 3619:10	3645:14	3477:4
document		drilling 3503:21		effect 3449:17
3454:3 3460:20	drain 3612:13,16	drinking 3615:7,	earlier 3466:21	3478:9 3508:4
3469:1 3471:11	drainage	10 3617:25	3483:19 3485:14	3513:14 3514:26
3599:25 3600:1,3	3449:24 3450:1	driven 3594:10	3497:11 3517:11, 12 3524:15	3515:9 3519:26
3604:15 3605:26	3454:23 3496:1	drives 3528:22	3527:10 3535:21	3520:5,6,23
3606:5,15,21	drains 3624:1	3594:7	3542:21 3556:11	3528:3 3530:9,
3607:18 3615:14	dramatic 3579:9	driving 3518:14	3589:19 3612:1	13,19 3546:8
3617:3 3637:8,13	draping 3518:15	3528:20 3529:11	3648:24	3548:26 3586:4,
3638:3 3639:9,21	draw 3481:11	3585:2,21	early 3486:16	25 3594:24
documented	drawback		3487:26 3499:5	3599:7 3612:24
3495:21 3521:11	3474:20	drought 3480:16	3502:6 3601:7	effective 3550:7
3522:2 3543:6,13	drawdown	Drummond	3609:11	3607:25 3615:2
3544:20	3449:18 3459:1,	3539:8		effectively
documents	26 3469:20,24	dry 3467:21	earth 3458:12,15	3459:25 3614:16
3492:24 3501:24	3470:2,7,12,16,	3468:15 3480:14,	easier 3531:19	effectiveness
3595:5	18,19,26 3471:9	20,26 3491:6	3630:15	3582:14,19,20
dogs 3541:24	3472:26 3473:17	3535:20 3542:26	east 3449:18	3583:4,9
3542:1	3474:13,16	3546:21 3619:11	3451:19,21	effects 3473:14,
domain 3458:25	3475:15 3476:9,	drying 3482:3,7	3452:26 3453:11	19,24 3474:5,9
3459:1,25 3524:2	13,26 3477:10,	due 3512:6	3455:25 3457:23	3506:4 3527:23
3566:21 3567:3	15,20 3478:14	3574:9 3588:14	3458:4 3465:5	3549:13 3559:21,
dominant	3501:15 3509:12	3589:20 3621:16	3472:4 3473:9 3474:24 3475:6	26 3570:15
3529:10 3572:22	3514:5 3515:1,17	3623:23 3628:9	34/4:24 34/5:6 3484:4 3485:1,17	3588:2 3589:17
3583:25	3516:23 3531:5,	dug 3505:8	3496:8 3503:12	3603:3
Donkersgoed	14,21 3533:2,12	dump 3510:24,25	3504:3,5,6,16	efficacy 3595:9
3540:1	3549:13 3550:9,	3512:15 3583:20	3554:16 3567:17	•
Donkersgoeds	12 3552:13,15,	3612:22	3577:15,22	efficiency
3567:20	20,24,26 3553:8,	dumps 3483:23	3625:1,3,4	3645:12,13
dose 3628:23	12 3564:24	3502:26 3511:7	east-west	efficient 3590:23
dotted 3463:12	3570:15	3571:26 3574:20	3449:14 3452:1,	3591:16
doubt 3471:8	drawdowns	3575:4 3579:11	20 3453:8	effluent 3613:23
	3470:1 3481:14	3581:26 3582:4	3454:10 3455:23,	3645:7
dousing 3634:14	drawing 3475:20	3583:13 3584:20	24 3456:2	effort 3581:25
		3585:17 3620:23	3457:12,18,21,25	
			, , , , -	
	I	I	I	I

efforts 3578:25	emulate 3550:8	entered 3474:10	3461:13,14	estimated 3459:5
3615:26	encompass	3558:20	3561:1 3647:22	3530:24,25
EIA 3499:17	3568:13 3647:23	enters 3495:20	equations	3592:13
Elaine 3603:17	encounter	entire 3459:5	3460:14 3550:13	estimates
elected 3611:24	3594:12	3465:12,25	equilibrium	3521:12 3522:3
	encountered	3466:1 3488:12	3476:22,24	3523:21 3550:11
elements 3505:2, 13 3509:2	3574:5	3517:7 3525:20	equivalent	estimating
3510:17,20,24	encounters	3530:23 3532:3,	3524:2	3590:24
3511:1,4 3617:24	3553:9	20	erosion 3454:20	evaluate 3511:24
3618:22 3619:17,	end 3459:14	entirety 3578:23	3613:15	3614:21 3633:13
21 3628:18	3465:13 3469:20	entitled 3451:3	err 3647:22	evaluated
3631:7,21	3476:13,15,16,18	3456:6,25		3496:20 3520:22
3634:1,5,18,22	3482:22 3483:26	3469:19 3476:8	errata 3549:5,16	3642:10
3635:22 3636:1	3485:22 3491:2	entry 3638:9,22	escalated 3502:7	evaluation
3642:6	3494:3 3511:18,	3640:10	ESP 3465:6	3569:11
elevated 3483:22	23 3591:3	envelope	3471:25 3506:22	evaporating
3484:10 3485:21,	3605:15 3619:10	3647:24	3507:12,19	3621:8
26 3486:5,6	3622:25,26		3508:19 3509:23	
3572:10 3623:22	3623:1 3625:26	environment 3484:21 3485:24	3511:8 3567:18	evapotranspirati
elevation	3635:10 3637:2	3484:21 3485:24 3507:15 3553:23	3568:23 3576:8,	on 3461:3
3460:15,17,18	3645:2	3587:5,8,14	9,16,21 3579:22	3526:11
3461:8 3523:18	end-pit 3465:4	3601:26 3606:12	3580:25	evening 3650:15
3585:1,21 3624:2	3468:20 3503:2	3636:19 3640:21,	ESPS 3568:13	event 3542:14
eliminate 3456:1	3621:20,24	24 3641:11,18	ESRD 3606:2	3581:9 3627:10
Elk 3635:26	3622:14,23,25	environmental	essentially	events 3479:26
3636:21 3638:13	3623:6,17 3624:9	3602:5,9,18	3455:25 3461:18	3621:17 3627:4,5
3646:21	3625:4,17,25	3603:24 3604:14	3465:20 3472:19	eventually
	3626:3,6,11	3629:1 3649:2	3474:21,23	3483:26 3484:15
Elmeligi 3540:18	3627:5,8,15		3476:21 3490:23	3485:21 3586:8
emanating	3630:10 3644:2	ENVIRONMEN	3491:1,4 3502:7	3641:8
3572:8 3636:15	ends 3484:15	TALQUALITY	3513:9 3517:25	everybody's
Emard 3540:3	engineering	SURFACEWAT	3535:14 3542:22	3493:9 3494:16
3579:24	3503:8 3647:8	ERS 3603:21	3552:14,18	Everything's
Emard's 3578:9	enhanced	3605:3	3557:5,14	3577:1
emerge 3612:1,	3641:16	environments	3560:16 3578:4,5	evidence 3449:22
21		3606:10 3641:5	3598:10 3600:21	3453:8,24
emerges 3613:15	enjoying 3576:13	3647:17	3615:5,11	3455:22,24
empirical	ensure 3468:14	EOM 3469:20	establish	3457:11,12
3549:20	3504:10 3575:21	EP 3621:24	3504:15	3458:2,7 3480:23
	3579:15,25	ephemeral	established	3488:17 3514:6,
employ 3629:25 3648:6	3581:26 3583:8	3496:5	3476:4 3503:3,13	19,26 3515:3
	3584:2 3632:4	EPL 3503:2	3574:21 3584:20	3542:15 3546:18
employed 3550:6	3636:18 3647:16	3511:9	3585:17 3617:24	3549:10 3550:20
empty 3473:4,15	ensured 3641:10	equally 3597:2	3643:11	3551:7 3573:18
3475:19,20,26	enter 3588:3		estimate 3588:9	3585:12
		equation		

		15		
evident 3627:16	exhaustive	expertise	extremely	11
Evolution 3451:7	3503:5	3473:13 3509:10	3480:14 3499:23,	fan 3542:6
ex-pit 3483:23	exhibit 3476:8	explain 3448:8	25	Farms 3539:26
3575:3 3579:10	3499:16 3542:16	3449:21 3461:16	eye 3634:26	fashion 3560:14
3583:13,20	3588:13 3603:13,	3463:15 3467:25		3636:17
3645:26	20 3604:21	3502:8 3510:15	F	fate 3572:6
exact 3476:16	3605:2 3606:1	3519:14 3528:25		3596:25
exaggeration	exist 3492:3,12	3550:14 3566:5	faced 3629:17,19	fault 3449:7,13
3554:2	3494:1 3631:6,20	3626:14 3634:2	3646:20	3450:1,26
examination	existing 3577:25	explained	facilitate 3582:3	3451:13,18
3594:24	3620:14	3482:4,6 3483:6	facilities	3454:18,23
examined 3497:7	exists 3450:19	explicitly	3644:25,26	3455:10,11
3551:2	expand 3456:23	3562:19 3589:13	facility 3646:12	3457:15,20
	3491:12 3525:5	explore 3479:19		3484:24 3554:5,
examples	expansion	3620:20	fact 3452:3 3453:6,16 3458:3	7,12,13,24
3543:20	3632:16	exponential	3453:0,10 3458:5	3575:7 3582:11
excavated	expect 3511:19,	3461:10,14	3474:17 3481:10	fault-dominated
3632:17	20 3552:12	3523:25 3524:22	3488:20 3489:11	3519:10,15
excavation	3570:6 3579:9	3558:9	3498:11 3501:2	faulting 3454:12
3516:16	3580:19 3586:2	expose 3513:2	3510:12 3512:25	faults 3449:23
exceed 3581:10	3587:10,18	exposed 3631:17	3518:19,24	3450:17,20,21,25
3600:26 3601:2	3611:17,18	3644:2	3519:1 3523:6	3452:1,8 3454:26
3602:15 3615:10	3618:21 3630:21	extend 3553:1	3532:5,6 3570:6	3455:12,18,23,24
3623:8	3633:6,16	extending	3577:15,25	3456:2 3457:12,
exceedance	3644:8,24	3548:14 3648:12	3614:22,25	18,22,25 3458:2
3618:25	3645:1,3,23	extends 3552:20	3630:12 3635:10	3478:7 3479:2
exceedances	expectancy	3553:12,15	factor 3461:2	3519:10,13,19
3619:8,19	3565:25 3566:6,	extensive	3483:14 3514:9	3520:17 3553:21
exceeded 3649:2	15	3453:20 3624:23	3526:9 3529:12	3554:23,24
exceeding	expectation		3589:12	3559:21,26
3597:13 3609:2,	3632:7 3634:21	extensively 3483:9	factors 3645:9	3572:23 3573:5
12 3615:6	expected 3550:2		failed 3501:13	3574:4,8,22
exceeds 3572:2	3551:24 3580:13	extent 3456:22 3458:26 3459:26	fair 3489:16	3575:21,26
3615:8	3594:19 3609:21	3514:5 3515:2	3526:26 3632:14	3578:17 3579:4,
excess 3523:6	3632:14 3636:6	3531:6,14,21	3634:4,13	15,26 3580:12
3531:4,7,9,12,20,	3645:14	3533:2,12	fairly 3580:18	3581:19,23 3582:6,18,24
24 3533:1,5	expecting	3549:14 3550:11	faith 3586:21	3583:2,25
3566:20 3567:2	3511:24 3644:22	extra 3495:23	3645:8	3583.2,25
exchange	experience	extracted 3630:6	falling 3508:1	feature 3554:5
3474:18	3552:22 3601:10		falls 3508:7	
excuse 3461:19	experienced	extraction	familiar 3452:12	features 3452:13, 14 3453:9
3552:9	3595:21	3582:3 3648:3	3472:9 3473:21,	3454:20 3458:7
excusing 3630:20	expert 3509:11	extreme 3593:10,	23 3474:24	3471:5 3495:26
exercise 3479:17	3547:6	20 3621:16	3498:23 3516:3	3496:19 3498:10
		3627:4,9	3527:14 3598:9,	3503:4,7,19

		16		
3519:25 3526:20	figures 3464:14	flip 3471:18	flows 3449:14	formed 3455:16
3573:1,21	3607:19	flood 3621:16	3461:9 3467:15	3626:1
3575:13	fill 3465:7,18,24	3624:2 3627:4,5,	3468:5 3474:21,	forms 3492:4,13
Feeder 3540:1	3466:2 3565:17	10	25 3488:13,14,18	3494:2
feet 3454:10	3624:3,14	flooding 3468:3	3490:15 3499:12,	formula 3549:21
	3626:11	3469:6	23,25 3500:20,23	
Fennell 3521:7	filled 3507:8		3501:19 3523:2	formulating
3546:25 3548:6	final 3562:4	flow 3449:6 3450:23 3462:3,	Fluid 3451:7	3490:10
3549:7 3550:11, 18,23	3583:16 3601:5	4,6,16 3463:5,12,	fluids 3452:10	forty 3615:5
	3630:25	13,25 3464:3,6	focus 3516:11	forward 3646:24
Fennell's 3519:4		3466:7 3467:20	3571:24 3613:20	found 3544:23
3521:24 3549:5	find 3474:18	3468:17,24	3621:19	3619:9 3642:14,
3550:20 3551:5,	3477:26 3517:26	3469:1,12	focused 3466:6	15
17,23 3552:2	3519:16 3534:20 3543:25 3560:13	3477:10 3481:3,	3555:2,5,11	fracture 3454:16
Fernie 3450:9,13	3579:9 3610:16,	8,9,20 3482:1,14,		3550:8 3573:9
3505:4	22	26 3483:4,13	Fold 3451:8	3575:19 3582:11
field 3491:21		3484:24 3485:11	folds 3454:14	3585:5
3495:19 3497:8	findings 3551:5	3487:5,10,14,17	follow 3482:17	fractured
3541:14 3611:4,	finds 3645:20	3488:3,7 3489:1,	3495:18 3523:17	3505:25 3506:16,
9,17	fine 3457:1	4,12 3490:10,12,	3554:8,10	21 3559:19
fields 3500:4	3467:2 3537:3	14 3491:3,5,16	3645:16	fractures 3452:9
figure 3451:13,	3596:13 3637:14	3492:4,14	footnotes	3453:3,13
15,26 3454:16,21	3638:8	3495:20,26	3521:17	3455:15 3553:21
3455:10,11,13	fines 3574:10	3496:17 3498:8,	footprint	3572:24 3574:16
3461:23 3463:9,	finite 3505:22	11,14,17,20	3503:25 3555:7	3575:21,26
11 3464:17,19,24	fish 3448:23	3499:11 3501:12,	3556:13 3567:18	3578:18 3579:4,
3469:19 3470:14,	3480:22 3481:4	14,15 3513:19	3574:20	16,26 3580:12,20
21 3471:19,26	3482:11,17	3516:19 3518:14	force 3493:21	3581:20,23
3474:7,13	3483:1,2 3490:17	3520:6,18 3523:4	foregoing 3651:3	3582:7,18,24
3476:8,13,17,25	3501:16 3577:5	3524:4,13	Foreland 3451:7	3583:1,25
3477:3 3486:22, 23 3498:19	fisheries 3469:16	3529:7,16	forested 3502:6	3584:9,15
3499:9,10,15	fishies 3599:8	3530:10,16,20	forestry 3502:1	3585:24
3515:21,23	fit 3463:22	3533:8,16 3535:15,26	· ·	fracturing
3516:1,8,13	Fitch 3540:8	3536:11 3545:13,	forget 3635:15	3454:11
3517:13,16,25	fits 3562:6	21 3547:1,23	form 3450:26	fragments
3519:17 3524:1,		3548:11,17	3454:19	3574:10
14,15,17 3525:4,	fix 3482:14	3566:11 3572:23	formally 3616:19	frame 3455:19
6 3531:1 3532:4	3594:21	3574:6 3578:22	formation	3476:12 3646:16
3534:9,12,20,24	fixate 3594:15	3579:6 3582:8	3454:26 3455:15,	Fran 3472:8
3549:15 3551:1	flanks 3492:5,14	3583:26 3584:7	17 3517:21	3474:22 3475:3
3554:2,21	flat-line 3552:14	3586:13 3592:12	3549:26 3557:22	3504:6 3505:5
3559:17 3560:14	flat-lying 3518:6	3624:20,25,26	3563:13,17	3567:18,19
3568:20 3569:23	flatter 3552:21,	3625:3,12,14,22,	formations	3578:5
3577:24 3627:13	25	23 3626:2	3453:22 3512:20	Frank 3486:24
3636:26	flexible 3591:15	flowing 3468:6	3555:6 3556:12	3487:1,16
		3482:3 3571:5	3636:7	3488:5,10
	I	I	I	1

3499:12 3500:11 3541:16 **Fred** 3541:7 freely 3612:16 freeze-thaw 3512:26 frequency 3479:25 frequently 3555:12 3572:19 freshwater 3597:14 3615:6,8 3617:25 3629:9 3636:3 fringes 3469:25 3470:8.9 **front** 3467:18 3492:21 3501:19 3511:13 3522:2 3636:13 front-block 3521:12 **full** 3519:3 3521:6 3562:23, 26 **fully** 3468:25 3543:14 3546:3 3644:24 **function** 3510:22 3589:3 functions 3461:10 fundamentally 3453:10 3572:16 **FW** 3600:22 **FWAL** 3600:15, 16,22 3603:8 3605:17 3606:2, 3,17,22,24 3616:6 3617:2 3619:8,24 3622:10.16 3623:2

G **G-** 3545:22 Gail 3541:9 gain 3512:14 **Gary** 3448:16 3542:8 3615:21 gather 3503:8 3504:9,26 **Gauging** 3487:16 3488:6 gave 3485:14 3571:5 3648:21 **GC** 3535:2 3543:24 3599:18 GC02 3535:8 3545:2,3,10,21 3546:19.26 3547:1,24 3548:8.11.23 3605:8 3606:21 GC04 3530:8 GC09 3530:8 3534:16,18,25,26 3545:7.8 GC10 3468:19 3534:13 3599:19 3624:5.16 3626:13 3630:11 GC13 3464:11 3468:19 3530:7 3534:13 3535:24 3536:24 GC2 3534:13 3544:14 **GC4** 3534:13 GC9 3543:16 GCT10 3543:15 general 3488:15 3504:23 3571:6 3572:16,21 3579:14 3624:19 3643:2

generally 3522:10,18 3524:4 3556:8 3560:2 3574:1 3586:10 3629:23 generated 3462:9 3535:14 3599:4 3609:26 generating 3588:18 generous 3590:15 3648:12 geochemist 3509:8 3577:6 geochemistry 3451:4 3590:8 3613:1 geological 3504:24 3518:9, 18,21 3520:2 geologist 3456:11 3458:18 geology 3453:10 3506:14 3522:11 3552:26 geometric 3521:15 3522:5, 20 3549:24 geophysical 3574:14 geotechnical 3503:6,17 3506:5 3507:18 3645:14 **Gilmar** 3472:10 3567:18,19 3576:13 3579:23 3644:19 **Gilmar's** 3452:4 3472:8 3474:22 3475:3 3504:6 3505:5 3577:4 3578:5 3580:14 **give** 3482:17 3493:3 3555:20 3557:16 3569:2

3573:12 3589:10 3590:9.21 3595:26 3607:12 3633:17 **giving** 3480:23 3551:6 3587:19 go-ahead 3504:25 goal 3591:16 **Gold** 3451:19 3452:23 3459:6, 13 3462:1,21 3463:2,14 3466:10,16 3467:20 3468:17, 21 3469:3,12 3474:14,15,21 3475:13 3476:3,5 3477:11 3480:8. 17,19,26 3481:4, 25 3482:2,5,22 3483:2,3,8,17,20 3484:5,19 3485:7,15,17 3486:5,24,26 3487:15 3488:5, 9,14,16,19 3489:1 3490:24 3491:17 3494:21 3495:19,20 3496:5,9,15,21 3498:8 3499:11 3500:14,24 3501:25 3502:5,9 3507:21 3509:4 3523:21 3524:5 3525:2,12,22 3526:1,14 3527:24 3529:20 3530:4,24 3531:2,5,9,13,20 3532:5,9,22 3533:1.8.12.17 3534:13,24 3535:8.15.20 3536:11 3542:21 3543:15 3545:13

3546:21 3548:21. 22 3568:8 3569:8 3575:24 3576:14 3579:18 3580:2 3584:21,25 3585:19 3586:9 3592:1,7,12 3597:12 3598:17 3599:22 3605:11 3607:2,8 3623:26 3624:4,15 3625:17 3626:12 3627:15 3630:11 **Goldsim** 3510:16 3593:1,2 3595:2, 3,11,14 3597:3,9, 11 3600:10,20 3602:20 3605:6 3608:26 3616:22 good 3447:22 3448:15 3463:20 3467:23 3493:14 3537:2 3590:11 3593:24 3619:8 3650:11.15 gouge 3450:26 Gourlay**vallance** 3540:23 government 3539:8 3604:14 governs 3511:15 Grainger 3448:20.26 3450:15,16 3451:12 3452:6 3453:19.25 3454:1,22,25 3455:22 3456:4, 23,25 3457:7,10, 14 3459:24 3461:24 3463:15 3465:3,9 3469:21,25 3471:10,14,20 3472:1 3473:11, 18,20 3474:3,6

		19		
3496:13 3514:7	highlighted	15 3472:12,15	Howard 3538:26	
3535:18,20	3490:25	3475:10 3479:5,	humans 3628:19	I
hearing 3448:2,	highlights	19 3480:23	humidity 3628:2	
13 3538:6,7	3548:15	3481:26 3482:26	3631:5,13,18	i.e. 3477:18
3542:5 3643:22	highly 3506:16	3483:19 3489:17	hundred 3475:12	3521:13 3522:3
hearings 3648:16	highs 3565:10	3492:16,19	3584:25	3549:26 3587:5
heavily 3488:22	hinge 3454:13	3494:14 3496:12	Hurly 3541:17	3621:14
3502:5 3517:22	0	3497:26 3498:2		IAAC 3538:15
helpful 3452:18,	historic 3495:8	3499:18 3500:8	hydraulic	ID 3563:12
21 3492:1,6,10	3543:5,7	3501:6 3502:24	3450:23 3462:16	idea 3493:14
3500:5	historical 3468:2	3503:4 3514:7,	3477:17 3520:5,7	3570:10 3590:11
helps 3500:15	3487:17 3488:6	11,13 3515:6,19	3546:11 3550:3 3554:19 3555:1	identification
3546:5	3491:24 3572:9	3519:6 3526:4	3556:2,7	3574:8
	3618:19	3534:17 3535:18	3558:22,26	
heterogeneities	historically	3542:8,20	3559:20,25	identified
3588:14,24	3482:16	3543:22 3547:4,	3561:25 3562:7	3491:23 3495:6,
hide 3464:14	Hog's 3450:22	12,15,16,17	3563:23 3570:9	13 3497:15 3522:9 3530:6
hides 3464:11	hold 3485:5	3550:17 3551:9 3568:16 3573:12	3573:19 3586:3	
high 3459:16	Holden 3538:10	3574:23 3575:2	3625:9	3544:21 3572:18
3461:24 3462:19,	hole 3571:5	3576:15 3578:11,		3575:22 3579:16, 26 3581:1,15
26 3463:7 3491:7		16 3579:7	hydro 3554:18	3591:26 3592:7
3496:14 3499:23	holes 3556:19	3581:18,24	hydrocarbon	3605:12 3606:1
3506:26 3521:11	hope 3594:23	3583:10 3584:12,	3635:16	3621:20,25
3522:1 3526:8	3630:19	23 3585:9,25	hydrogeological	3626:7 3634:6
3546:25 3577:10	hoped 3607:26	3586:26 3598:20	3474:1 3578:23	3636:1 3648:5
3606:10 3633:8	hoping 3590:20	3600:24 3602:11	hydrogeologist	identifies
3641:23 3645:10	horizontal	3604:3,8 3606:25	3473:26 3551:9	3522:22 3597:12
high-density	3517:21,24	3608:16 3610:13	hydrogeology	
3609:23 3610:4	3518:10,26	3615:20,22	3458:16 3491:20	identify 3497:12
high-flow	3555:21 3624:1	3618:3 3619:23	3495:3 3497:5,9	3527:15 3529:14
3500:25	hose 3468:20	3620:3 3622:22	3590:5	3574:15 3575:19
high-risk	host 3450:5	3623:5 3624:6	hydrological	3619:16 3621:13 3636:14
3606:10 3616:11	3451:1 3454:2	3627:2 3631:4,8,	3488:8,11	
higher 3461:21	3471:17 3511:26	10 3632:26	3509:26 3592:22	identifying
3477:24 3491:3	3513:18 3515:15	3634:3 3635:14	3593:8,9,15,18,	3474:16
3513:16 3526:15,	3520:13,26	3636:25 3637:4,	19 3594:11	IDF 3479:25
18,21 3527:14	3542:18 3556:9,	11,17 3638:12,18	hydrologist	3480:5
3553:6 3557:16	24 3557:20	3639:19 3640:17,	3487:4	Ignasiak
3560:5,21	3558:16 3600:3	25 3641:26	hydrology	3456:17,19
3570:20 3585:1,	hour 3590:16,21	3642:20 3645:19	3497:5 3521:20	3538:22 3541:24
21 3607:24	hours 3484:21	3647:11 3648:18,	3534:8 3594:21	3551:20 3603:14,
3612:17 3632:15,	Houston 3448:16	24 3649:5,11,12,	3611:1	15 3604:22,23
21		13,19	hydrometric	igneous 3522:12
highest 3534:1,4	3453:18 3456:3,	Houston's	3491:1 3500:11,	ignores 3457:5
highlight 3534:1	4,22,26 3457:2 3465:10,15	3542:15 3638:2	13	ignoring 3635:8
3548:1 3619:20	3466:9 3471:13,			
55-10,1 5017,20	5400.7 54/1.13,			

		20		
illustrate 3554:4 illustrated 3452:23 3554:5 illustrates 3577:14 image 3549:15 images 3448:3 imaging 3574:14 immediately 3451:19 3457:12 3476:15 3513:4, 13 3576:1 3611:8 impact 3477:14 3497:18 3507:2 3516:23 3519:24 3549:21 3550:23 3552:3 3553:2 3581:3,16 3629:22,26 impacted 3510:17 impacts 3479:1 3480:6 3586:23 3595:4 impassable 3480:22 impede 3449:14	3522:25 3545:23 3570:15,17 3573:1 3587:6 3595:7 3601:5,8 3641:20 importantly 3623:12 impound 3508:22 impractical 3570:26 3575:25 improve 3469:14 in-pit 3565:17 3607:1 inaccurate 3528:23 3616:6 inactive 3516:15, 19 3517:6 inappropriate 3456:21 incapable 3456:8 include 3458:1 3464:13 3557:8 3597:15 3608:12 included 3478:18 3498:8,14 3513:25 3514:8	increase 3512:10,20,21 3513:4 3516:25 3526:19 3528:5 3529:7 3550:2 3611:13,20 3631:7,21 3633:17 increased 3460:26 3461:2 3526:9 3529:2 3530:18 3533:14 3612:6,9 increases 3460:18 3512:6 3513:1 increasing 3519:22 3520:3,6 3581:10 indepth 3586:1 Indian 3539:4 indicating 3549:21 indication 3569:2 3591:25 3592:5 3620:15 3631:14,16	information 3451:22 3457:5 3460:5,19 3464:14 3467:7 3487:17 3488:7, 21,23,24 3491:26 3495:4 3497:8,21 3500:14,19,21,22 3501:1 3503:9,23 3504:4,7,10,13, 18,19,26 3507:18 3511:6 3530:13 3558:15 3564:2 3571:5 3572:11 3574:12,13 3576:3 3583:18 3607:7,18 3624:7 3626:6 informative 3589:10 informed 3518:20 initial 3550:26 3551:1 3552:2 3561:19 3648:15 initially 3559:7 injection 3644:26	instability 3474:4 install 3507:3 3608:22 3609:13 3641:8 3646:11 installation 3575:19 installed 3583:9, 23 3584:10 installing 3634:11 instance 3463:26 3464:1 3467:16 3468:19,22 3505:4 3530:7 3534:6 3535:7 3557:1 3581:13 3617:3 instances 3584:5 instantaneous 3555:16 instream 3468:24 3469:1 3490:10,11,14 3491:5 3498:20 integrated 3500:5
3552:3 3553:2 3581:3,16 3629:22,26 impacted 3510:17 impacts 3479:1 3480:6 3586:23 3595:4 impassable	inactive 3516:15, 19 3517:6 inappropriate 3456:21 incapable 3456:8 include 3458:1 3464:13 3557:8 3597:15 3608:12 included 3478:18	increasing 3519:22 3520:3,6 3581:10 indepth 3586:1 Indian 3539:4 indicating 3549:21 indication 3569:2 3591:25 3592:5 3620:15	3626:6 informative 3589:10 informed 3518:20 initial 3550:26 3551:1 3552:2 3561:19 3648:15 initially 3559:7	3557:1 3581:13 3617:3 instances 3584:5 instantaneous 3555:16 instream 3468:24 3469:1 3490:10,11,14 3491:5 3498:20 integrated

		21		
interested	IRS 3646:11	joints 3512:26	key 3490:12	3540:8
3516:8 3564:23	iso 3469:24	JRP 3511:18,24	kilometre 3543:9	landscape
3565:6 3599:12	3470:4,5,11	3558:13	3545:1	3504:21
3612:11	isolated 3647:16	Judd 3540:12	kind 3459:19	large 3452:9
interesting	issue 3521:23	July 3535:10	3468:8 3491:8	3531:26 3570:6
3621:9	3533:4 3550:26		3493:20 3494:3	3588:13
interface	3580:19 3587:12	jump 3515:20 3549:9 3583:11	3502:3 3543:6,7	larger 3466:7
3505:21 3595:12	3609:14 3618:26	3618:17 3620:2	3546:3 3552:15	3532:13 3550:13
interjection	3632:1 3647:4,10		3593:13 3610:15	3552:12,24
3514:22	issues 3634:8,10	jumped 3468:1	3613:10 3646:11	3556:18 3557:6,
interjections	3642:11 3647:13	June 3535:9	knowledge	10 3588:12,15
3514:15	Item 3592:18	justification	3573:15	late 3455:16
internally 3523:3	iterations 3559:8	3561:5 3572:5,7	Kootenay	3486:16 3487:26
interpret		3611:10 3632:20	3450:14	3591:18
3551:23	iterative 3562:3		KR 3528:25	lateral 3586:14,
interpretation		K	Ktunaxa	20
3564:7 3571:19	J		3538:25	laterally 3553:13
	T 2405.25	K' 3478:5 3588:9	Kuo 3479:26	3586:7
interpretations 3552:12	January 3486:25	K-AND-R	Kurtis 3451:9	layer 3480:22
	Janusz 3540:14	3529:1		3556:7 3559:1,24
interrupt 3595:24	Jensen 3448:17	k-value 3477:18	Kyser 3451:9	3560:21 3561:3,
	3473:23,25	3549:24		4,6,16 3562:9,16,
interval 3556:20	3487:3,8 3489:19	k-values 3512:19	L	22 3563:10,11,24
3557:4 3563:20	3491:15 3496:22,	3513:22,23		3587:15,17
intervals	25 3499:9	3514:19 3516:25	labelled 3484:8	layered 3587:1
3556:19 3557:6	3529:17 3542:9	3555:1 3556:6	3517:18	layers 3452:15
3558:19 3562:14	3592:24 3593:9, 24,26 3595:7	3557:25 3558:11	Lacasse 3538:9	3453:5,14
introduction	3596:23,26	3559:18 3560:8	lack 3503:23	3477:18 3517:20,
3608:2	3597:26 3599:6	3564:16 3570:14,	3504:3,13	23 3518:11,15,26
invest 3580:11,19	3601:20 3602:21	20 3571:2	lag 3645:19	3557:26 3558:12
investigate	3608:1 3609:25	K/r 3528:25	lake 3465:4	3561:20
3581:25 3584:14	3610:14 3611:11	K1 3559:2,22,25	3468:21 3503:2	LC_WLC
investigation	3614:3 3624:18,	3560:3,19,24	3565:18 3607:2	3636:26 3637:10,
3491:21 3503:6,	23 3626:16	3561:6,20	3621:20,22,25	15 3638:10,22
17 3575:6	3629:18,23	K2 3559:2,21,24	3622:5,6,14,23,	3639:13 3640:6,
3583:12,19	3633:2 3634:21	3560:4,19,23,24	25 3623:6,17,22,	11,19
invitation	3645:24	3561:20	23 3624:3,9,15	leach 3507:20
3515:20	Jensen's 3632:26	K3 3559:2	3625:4,17,25	3509:25 3620:15
IR 3474:18	Jim 3540:16	3560:21,22	3626:3,7,11 3627:5,8,15	leaching 3483:24
3575:17	3650:5	3561:20	3630:10 3644:2	3508:4 3510:6,13
irrelevant	job 3591:4	Kapel 3538:10	Lambrecht	lead 3568:7
3631:3	John 3451:9	keeping 3483:13	3538:12	3569:7 3634:19
Irrespective	Joint 3511:9,14	3634:26 3643:13	landfill 3465:13	leading 3477:20
3597:8	3538:12 3588:17	Ken 3541:11		leakage 3571:25
	3617:17		Landowners	3624:2,3,14,15

		22		
3626:9,12	3622:16,25	linearly 3568:5	3626:22 3645:11	3486:18 3488:2
learning	3641:23 3643:13	lined 3585:7,11	load-modelling	3499:7 3502:9,12
3646:24,25	3644:5 3645:15	liner 3506:3,19	3593:4	3528:15,16
leave 3577:3	3648:26 3649:2	3507:4	loadings 3630:24	3535:17 3545:12
3637:14 3644:25	life 3566:6,15	liners 3507:4,7	loads 3577:10	3565:15 3569:5,
3645:1	3597:14 3606:2	lines 3469:24	local 3516:25	20,22,23 3570:1,
leaves 3555:6	3609:4 3615:6,9	3470:4 3493:25	3558:15 3573:20	4,7 3625:23,24
3623:24 3641:6,7	3617:26 3619:24		3578:21 3579:6	3643:12
left 3459:20	3622:26 3628:19	lining 3506:11	3582:7 3588:13	Longacre
3486:23 3516:13	3629:9 3636:3	liquid 3573:2	3641:18	3541:19 3651:3,
3525:4,7 3549:15	3644:23	liquids 3573:20	localized	14
3590:16 3591:2	Lifetime 3565:25	list 3502:21	3588:14,24	longer 3467:21
3637:1,7,9	light 3470:1	3628:25 3650:1	3626:3	3491:9 3548:3
3644:10	light-blue	listed 3526:22		3558:19 3566:14
left-hand	3470:12	3548:22 3567:21	locate 3583:20	3569:4 3570:19
3460:22,25	lightly 3631:1	3568:6 3569:6	located 3451:21	3612:20 3617:15
3463:10 3473:2	likelihood	3594:2 3615:13	3457:15,17,22	3646:15
3487:5 3516:10	3607:23	3621:18 3629:8,	3490:3 3534:16	longest 3556:20
3554:10,14,15	Lille 3543:5,19	14 3640:20	3542:26 3545:6 3567:19,20	3565:8
legacy 3644:17	3544:15,17	listen 3596:17	3568:23 3569:17	looked 3453:7,16
legend 3463:10,		literally 3480:19,	3584:5,6,23	3462:7 3470:21
14 3465:4,7	limbs 3454:13 3455:12	26	3621:22 3637:1	3474:19 3477:22
3469:22,23		literature	location 3471:22	3484:26 3488:9
3565:24	lime 3566:2	3522:18	3501:22 3534:1	3526:22 3530:23
LEIF 3448:18	3609:23 3610:4	lithium 3628:12	3543:13 3544:20	3531:1 3550:25
3542:10	limit 3477:6	lithostatic	3545:13563:15	3562:23 3569:12
length 3502:21	limited 3448:25	3512:7,10	3564:5 3566:9,10	3570:3 3572:17
U	3452:11 3476:26	litre 3600:13	3569:1 3581:4,13	3573:4 3589:19 3609:26 3619:21
lengths 3636:14	3492:8 3495:12	3601:16,18,24	3583:15,16	3624:20 3625:20,
lengthy 3562:3	3497:14 3538:22	3605:17,19,20	3589:8 3618:24,	21 3634:17
lens 3594:18	3540:2 3542:13	3606:7,9 3607:9	25	3641:19 3642:18
3619:19,23	3549:13 3555:9	3616:10,15	locations	lost 3493:8,21,24
less-conservative	3561:8 3571:13 3586:4 3628:9	3628:17	3462:17 3534:20	3595:25
3614:19	3586:4 3628:9 3630:4 3635:26	litres 3502:18	3543:4 3548:25	
lethal 3588:2		live 3447:23,25	3576:4 3577:14	lot 3491:4 3498:9 3501:26 3507:13
level 3483:22	limits 3623:20 3629:21 3630:22	3579:24	3583:7 3584:14,	3510:8 3563:19
3498:25 3555:17,	3629:21 3630:22 3648:16		17,20,24 3585:18	3570:23 3580:19
18 3601:17,23		lives 3472:10	3589:2 3616:25	3594:13 3638:12
3606:22 3618:21	lineament	Livingstone	3618:19 3621:13	3645:8 3648:4
3622:5,9 3635:20	3573:9	3451:5 3453:11	log 3596:16	Loud 3490:3
3643:25 3645:6	linear 3461:10,	3455:3 3457:22 3458:4 3540:8	long 3484:17	low 3450:26
levels 3484:10	11,13 3523:24		3493:23 3644:13,	10W 3450:26 3467:15 3491:7
3485:21 3486:7	3524:20,21 3525:10 3558:3	load 3506:26	16 3646:3	3407:15 3491:7
3530:17 3600:21	3525:10 5558:5	3592:15 3598:7 3613:16 3614:1,	long-term	3501:14,15,19
3605:14 3607:24	5502.5	15 3622:3	3476:9,22	3520:6 3535:26
3609:1 3617:24		15 5022.5		

		23		
3570:25 3574:1	3594:14	3521:10,26	matched 3523:20	measure 3555:17
3581:2,14	main 3465:21	3523:7,18	matches 3463:4	measured 3462:8
3632:1,3 3633:5	3468:12 3557:22	3524:3,25	3558:22	3488:13,14,17
3643:13 3644:5		3530:23 3531:4,		3489:1,5 3554:3
low-flow 3467:16	maintain 3529:7	12 3532:6,9	matching 3461:9	3564:4 3616:25
3489:14 3500:26	maintained	3533:11 3543:25	material 3512:19	3641:10
	3590:1	3544:3,4,6,13	3557:10,17	
lower 3455:14	major 3449:7,8	3545:17 3553:16	3611:22,23	measurements
3461:3,20	3496:9	3568:26 3570:4	material's	3489:4 3546:12
3477:18 3488:15	make 3458:22	3572:26 3574:15	3582:1	3558:24 3561:25
3513:18 3515:15	3494:16 3531:21	3575:7 3576:11	materials	3562:8,21
3516:13 3522:10	3533:12 3559:14	3577:13 3592:10	3505:4,15	3640:26
3526:10 3527:13,	3583:3 3597:10	3625:18,21,22,25	3571:14,20	measures 3610:1
23 3532:20	3599:2 3641:8	3627:18	3631:15,23	3615:1 3623:15
3553:7,10	makes 3529:6	MAPA 3459:14	3641:16,17	3633:13 3647:2
3557:14,17	3613:16,18		math 3597:1	measuring
3560:4,23 3561:3	3630:19	mapped 3492:7,9	matrix 3583:1	3500:14 3555:21
3571:7 3574:2		3519:19 3520:17		mechanics
3637:1,7,9	making 3447:24	3573:5	matter 3468:11	3597:4,5
lowest 3534:3	manage 3510:7	mapping 3573:9	3562:20 3595:16	mechanism
lows 3565:12	3635:12	maps 3461:4	3630:23	3485:6 3644:4
LTC 3476:9	managed 3619:5	3471:2,4 3501:24	matters 3448:11	
3533:22 3542:24	management	3625:12	Matthews	meets 3641:11
3565:4,13,23	3448:21,22	MAR28 3605:3	3538:7 3595:25	melt 3523:15
lunch 3533:19	3464:18,19	March 3603:25	3596:2,5,7,9,10,	memory 3449:2
3537:2 3545:18	3503:1 3504:15		12,13,17,22	3458:23 3498:23
LW 3638:10	3505:5,15	margin 3515:12	maximum	mentioned
	3506:10 3511:8,	marginally	3470:19 3476:16	3467:14 3473:10
LW_WLC	25 3565:18	3600:26	3527:16,18	3480:12 3542:20
3637:25	3573:3 3574:20	mark 3603:12	3601:23	3573:22 3609:4
	3582:16,22	3604:20	MCCOY	mentioning
Μ	3609:1 3613:24	marked 3454:19	3448:16 3542:8	3466:9
	3614:6 3618:14	3499:24,25		mercury 3572:14
M-HM 3487:23	3620:8 3645:4	3604:17 3629:10,	Mcgillivray	3597:16 3618:7
MA 3502:14	3647:12 3648:9	15	3539:18	3622:5,8,10
MAD 3502:12,16	managing	Martin 3448:18	Mchugh 3539:9	3634:19 3639:10,
made 3475:3	3623:16 3633:14	3542:10 3597:21,	Mcintyre 3541:5	13
3485:5 3564:7	manganese	24 3622:11	MD 3539:14	
3617:14 3621:24	3634:22	3628:21	means 3488:17	Mesh 3517:14
	manner 3517:21,	mass 3612:12	3497:21 3502:5,	meshing 3517:17
magically	24 3562:17	master 3525:4	18 3509:11,14	met 3608:10
3455:26 3457:4	3564:6 3589:16	3534:8 3577:19	3527:13 3611:26	metal 3601:11
magnitude	3629:22	3602:4 3619:2	3616:12 3633:9,	3605:24 3609:11
3459:26 3461:26		3636:20 3639:23	12,18 3635:8	metallurgical
3462:21 3463:1	map 3459:4,14		meant 3566:5	3642:26
3477:24 3519:23	3461:11 3467:18	match 3462:14	measurable	metals 3486:1,5,7
3552:11 3560:3,	3475:2 3492:6	3463:19,20	3478:9 3630:25	3506:25 3507:20
20,23,24 3570:21	3502:10 3519:18		JUJU.2 JUJU.2J	

		24		
3509:4 3572:19 3600:25 3601:1	mid-morning 3493:11	3511:7,17 3513:10,13,20	minute 3466:25 3469:23 3471:16	3585:3,22 3618:13 3620:7,
3603:8 3606:16	middle 3525:2,26	3515:13 3516:14,	3489:18 3526:4	20 3635:5,9,12
3610:3,7,19	3526:14 3531:2	26 3523:7	3554:22 3568:17	3643:18 3644:14
3615:3,13,14	3532:5 3533:11	3531:6,14,22	3573:12 3576:11	mobilizes
3623:10 3628:25	migrate 3566:10	3533:2,13	3585:9 3596:3	3620:24
3634:11,23	3586:7,11,12	3549:14 3550:9	3602:2 3609:24	model 3449:3,21
3641:7 3642:5	migrating	3555:7 3556:13	3614:4 3615:23,	3450:11 3455:26
3644:23 3648:1	3579:1	3567:17 3569:9	24	3457:4,24
methanol 3632:7	Mike 3448:16	3573:2 3574:8,	minutes 3493:15	3458:1,6,25
3635:17,18	3451:26 3540:12	17,20 3575:9	misinterpretatio	3459:1,8,12,15,
3645:1	3542:8 3607:16	3587:25 3588:21 3590:7 3591:22	n 3626:20	17,25 3460:13
method 3519:2	Millennium	3601:10 3611:18	missed 3512:3	3461:5,13
3609:22	3571:9 3606:15	3612:19 3613:23	3586:23	3462:2,4,8,11,25
method-	Millennium's	3617:1 3620:14,	Mississippian	3463:21,22,24
detection	3566:7	21 3632:22	3455:16	3464:2,7 3473:3,
3629:21		3642:11 3643:16	misspoke 3467:9	6,7,26 3474:4,10
metre 3454:9	Milligan 3540:20	3644:14,24	3501:6 3619:26	3475:25 3476:23,
3469:24 3487:6	milligram	3647:2,18,21	Mist 3549:25	25 3477:8,18
metres 3469:25	3605:17,18	mine-related	3557:22 3563:13,	3478:16,20
3470:3,7,18,19,	milligrams	3582:15,21	17	3479:1,9,11,20
26 3474:14	3600:13 3601:16,			3481:2 3483:1
3475:5,6,8,12	18,24 3605:19	minerals	mistaken 3467:12	3486:19 3487:21
3477:1 3487:10	3607:9 3628:17	3613:12		3488:4 3489:15
3489:12 3494:19,	millilitres	mines 3552:23,	misunderstandi	3497:1,19,21,24
20,21,22,23	3526:16	25,26 3638:13	ng 3626:23	3498:24 3499:3,8 3510:16 3512:1,9
3503:19 3512:13	millimetres	3642:8	misunderstood	3513:8,15,23,25
3549:14,22,23	3459:6 3460:13	mini 3625:26	3489:23 3579:13	3513.8,13,23,23
3550:4,9,14,15,	3525:13 3526:2	minimize 3506:3	mitigated	3514.2,3,4,20,23
22,24 3551:2	3530:24,25	minimum	3586:24	3516:13,22,23
3552:4,7 3556:20	millions 3505:24	3645:25	mitigation	3517:4,7,14,19
3562:9 3563:14,	mind 3471:8,16	mining 3448:25	3574:7 3607:25	3518:10,11,14,
18 3584:25	3481:15 3487:19	3462:22 3470:17	3608:5 3610:1	15,16,18,21,23,25
3586:1	3574:26 3590:19	3476:16 3480:10	3615:1 3623:15	3519:2,11,21,26
Michael 3451:8	mine 3449:19	3481:2,26	3633:13,19	3520:9,18
micro 3607:8	3452:6 3453:23	3491:24 3495:8	3636:18	3521:11 3522:1,
microgram	3459:19 3464:18	3535:15 3538:22	mitigation's	24 3523:3,10
3606:8,9 3616:10	3465:12 3469:20	3542:13 3572:9	3614:21	3524:2,8,12,18,
micrograms	3470:14 3474:10,	3618:13,19	mixed 3614:9	19,20,23,24
3605:19 3606:7	20 3476:14,15	3620:7 3626:1	mixing 3644:3,6	3525:13,23
3607:9 3616:15	3477:1,4,9	3642:25,26	mobility 3634:18	3526:13 3527:7,
microphone	3480:13 3481:10,	3643:2 3645:2	•	22 3528:1,17
3448:3	11,12,16	minor 3454:12	mobilize 3634:24	3529:14,15,18
mid-1970s	3482:19,25	3483:7 3643:25	mobilized	3530:26 3531:10,
3491:10	3483:20 3484:26	minus 3556:5	3505:3,14 3509:2	26 3532:1,3,5
3491.10	3503:15,25		3572:15 3577:2	3533:6,7,15

		26		
neighbourhood	note 3455:8	18,24 3604:24	observed 3461:9	operate 3614:17
3611:21	3470:22 3486:22	3605:25 3606:16,	3462:4,6,17	3645:3
NESP 3465:5	3487:4 3522:8,11	18 3611:14,16	3463:5,11,17	operating
3470:25 3506:22	3559:19 3618:9	3612:9 3615:4,19	3464:3,5 3523:2,	3475:24 3609:20
3507:12,19	noted 3495:20	3616:9,15	18 3524:4	operation
3508:19 3509:23	3527:19	3622:20 3624:13	3533:8,17	3480:10 3535:15
3511:8 3567:18	notes 3516:7	3625:13,19	3546:12	3609:11 3614:23
3568:13 3624:10	3651:6	3632:15,21	obtained	3637:2,3
net 3513:14	nothing's 3577:1	3633:18 3636:21	3450:12 3570:20	3641:12,14
3553:7	notice 3470:23	3638:13 3645:2	occasional	3646:22
nicely 3500:18		3646:26 3649:17,	3636:4	operations
nickel 3618:8	noticed 3466:9	21,23	occur 3452:26	3481:2,26
3634:20 3636:2	noting 3527:10	numbers 3487:2	3455:4 3458:4,5	3587:25 3620:14
	November	3526:21 3536:4,	3479:10 3568:8	3646:21
Nijjer 3539:16	3451:10 3480:24	15,22,23,24	3569:8 3587:18	opinion 3532:17
nitrates 3635:21	3481:1 3538:3	3546:9 3559:1	3623:23 3627:8	opportunity
3644:23	3650:21 3651:9	3560:12 3561:16,	3634:15	3467:25 3580:16
nitrogen 3609:19	number 3449:11	17 3563:12,21,23	occurred	3595:26
Niven 3539:14	3450:5 3451:2,10	3599:4 3607:22,	3452:13 3467:16	
Node 3624:4,16	3452:19 3454:1,5	23 3617:2	3468:3 3513:17	opposed 3477:19
3626:13	3459:3,7,11	3622:23 3623:6	3626:2	3522:13 3583:1 3594:5
NORM 3641:15	3460:9 3463:8	3640:8	occurring 3458:7	
3642:19	3464:22 3465:1	numerical	3470:17 3582:11	opposite 3514:8
north 3455:23	3469:18 3476:7	3474:3 3497:24	3592:11 3613:15	3644:22
3457:13 3465:23	3477:26 3480:18	3513:7 3517:19	3641:15,17	option 3632:1
3466:8 3472:8,18	3483:5 3486:13,	3522:24 3549:12	occurs 3483:23	options 3623:9,
3505:6 3578:7	14 3488:21,23	3570:18 3571:3	3501:15 3587:7	11
3579:23 3625:26	3492:8 3495:1,6,	numerous	3601:8	orange 3617:5
north-south	12 3496:16	3492:2,12	October 3535:19	order 3462:6,14
3449:13 3454:12	3497:14 3499:2	3493:26	offer 3496:6	3466:4 3477:24
3477:19,20,23	3500:4 3512:2 3513:9 3515:22			3522:26 3529:7
3478:14 3520:17	3517:6,14	0	Official 3541:19	3533:15 3548:26
3554:25 3560:5	3521:18 3523:12		3651:15	3552:11 3560:3,
3624:25 3625:10,	3524:16 3526:25	O'GORMAN	offsetting	17,20,24 3561:24
15	3527:1 3528:11	3493:22 3538:6	3469:17	3570:21 3573:8
northeast 3465:5	3533:20 3534:23	oath 3462:18	offtrack 3646:6	3575:19 3581:15
3470:24 3471:10,	3544:8 3546:24	object 3457:3	Okoye 3539:25	3594:14
21,22 3473:8	3548:18 3549:5,6	objective	older 3455:20	orders 3519:23
3474:22 3475:13	3553:18,20,24	3479:16	Oldman 3541:16	3560:22
3484:3,18	3554:8,10 3558:2	obscured	ongoing 3511:14,	organic 3582:1
3485:1,16	3561:9,13	3575:13	19	3634:14
3503:11 3505:6	3565:22 3568:3	obscuring	open 3448:10	orientated
3578:7 3623:25	3571:21 3576:3	3574:9,22	3483:14 3565:16	3517:23 3518:7,
northwest	3579:20 3582:3	observations		13
3472:7 3578:8	3592:16 3600:25	3462:14 3558:22	open-pit 3565:17	orientation
	3602:8 3603:16,	3562:2 3572:7		3518:10,20,23,24
		5502.2 5512.1		

		27		
3573:10	OVERLAPPIN	3457:21 3521:17,	pathway 3481:23	3607:18 3610:24
orientations	G 3510:11	19,21,22 3522:7,	3482:6 3582:25	3615:5 3619:1
3518:4 3574:16	overlay 3471:4	10,14,22 3527:20	pathways	3621:10 3622:4,
oriented 3517:20		paragraph	3566:11 3572:22	13,24 3623:18
	overlooked	3519:3 3521:7	3574:5 3584:7	3625:19 3626:8
original 3515:14	3634:1	3565:1,2 3567:6	3623:25	3627:17 3628:4
originated	overly 3606:18	3588:7	patience 3489:20	3632:12 3636:23
3498:5	overlying	parallel 3449:6	-	3637:19 3639:7
outcome	3512:11,18	3450:22 3556:3	pattern 3449:24	3640:9,20
3478:18,20	3550:4	3608:24 3646:7	3450:1 3452:26	peak 3600:11
3479:15 3630:17,	overpredict		3470:12	3601:23
26 3631:3	3463:25	parameter 3548:16 3570:17	patterns 3578:22	peaks 3464:8
outcomes	oversimplificatio		3579:6 3582:8,14	-
3518:11,16	n 3643:1	parameters	PDF 3449:10	penetrate 3644:7
3594:17	overview	3475:25 3545:26	3450:6 3451:13,	percent 3459:8,
outcrops	3456:22 3464:17	3546:6,13 3549:1	16,25,26 3453:26	11,13,16
3452:15 3453:4,	overwintering	3561:24 3572:18	3454:7 3455:7	3461:17,18
7,13,17	3483:13,16	3602:16 3628:10,	3458:10 3459:2	3481:3 3482:1
outermost		14 3647:22	3460:9,20 3463:8	3520:8 3521:9,
3470:6	oxic 3631:6,19	Parks 3539:20	3464:17 3469:18	13,14,15,16,26
outflow 3607:2	3632:3	part 3449:11	3471:26 3476:7	3522:4,5,6,19,20,
	oxygen 3635:20	3455:14 3470:20	3478:5,22	22 3523:7 3524:3,25
outline 3452:22	3644:3,5,7	3483:17 3495:3	3479:22 3480:1	3525:15 3526:2,
3470:13 3614:5	oxygenated	3496:5,20	3486:13,21	15,16,25 3527:4,
outlined 3560:25	3643:19	3497:4,8,9	3490:22 3495:1	5,8,12,16
outperforms		3499:2 3504:11	3499:1 3512:1,3	3529:18,26
3647:24	Р	3507:5,8 3512:5	3515:22,26	3530:1,2,3,6,8,
output 3462:9		3522:26 3525:24	3517:13 3518:1	16,26 3531:3,11,
3546:7 3548:24	package 3583:17	3555:10 3556:14	3519:3,17 3520:13 3523:11	12 3532:2,6,8,13,
outputs 3479:17	3593:2 3595:2,3	3563:4 3565:6	3520:15 3523:11	26 3533:10
3528:24 3529:15	3621:11	3569:11 3575:9,	3533:19 3534:8,	3535:8,25,26
3612:19	packer 3556:17,	14 3578:19,20	23 3535:6	3536:3,5,7,9,10,
outstanding	18,26 3560:11	3593:14,16	3536:18 3542:16	11,13,15,22,24,25
3576:24	pages 3451:11	3601:12 3631:19	3544:9 3546:17	3545:12,17,19,21
outward 3449:18	3492:24 3598:18	participate	3549:10 3553:25	3546:23,24,26
outwards	3615:11 3639:8	3448:8	3554:17,26	3547:22,23
3552:15	3640:5,9 3651:4	particles 3572:20	3555:23 3557:19	3548:10,11,25
overarching	Paleozoic 3451:5	parts 3459:19,25	3558:1 3559:9,23	3550:8 3566:24,
3647:12	panel 3448:14	pass 3539:12	3560:8,14	25 3589:25
overflow	3456:10,19	3628:1	3564:13 3565:21	3590:1 3611:5,9,
	3511:9,14	passage 3492:17	3571:21 3577:12	13,19,21,25
3623:25 3624:8, 10	3538:12 3542:14	3571:22	3587:21 3588:5	3612:7,10,13,17
	3588:18 3617:18	past 3466:11,13	3592:14,16	3629:21 3630:13
overhead	3637:1,7,10	3645:18	3594:26 3598:13,	3632:10,16,21
3574:14	paper 3451:3,26	path 3482:17	18 3599:16,17	3633:3,15,23
overland	3452:12,24	3586:13 3630:11	3600:4 3601:14	3637:22 3638:4,
3485:11			3605:6,23	6,8 3645:10
L				

		28		
percentage 3528:6,15 3629:20 percentage-wise 3528:4 percolation 3646:1 perfect 3557:9 3566:26 3629:6 perfectly 3485:20 perform 3583:19 3631:14 performed 3563:6 period 3464:4 3476:14 3480:15 3484:22 3490:19 3499:23 3501:23 3502:3,9 3534:1 periods 3487:12 3491:7 permanently 3480:9 permeability 3450:26 3553:10 3557:14 3571:8 permeable 3506:17 3555:13 permeable 3506:17 3555:13 permeable 3506:17 3555:13 personally 3450:24 person 3599:3,5 personally 3452:7 perspective 3516:19 3592:9	phone 3596:5,18 phosphorous 3628:12 photograph 3466:15 3638:3 photographs 3466:19 3469:14 3546:22 photos 3467:11 3544:25 physical 3462:12 3479:11 3503:24 3504:4,14,17 3526:20 3562:21 physically 3465:22 3466:7 3468:1 pick 3509:3,4 3561:16 picked 3510:24 3501:17 3577:20 picking 3507:20 picture 3499:15 3619:9 3627:17 3638:2 3639:24 piece 3588:25 piezometers 3558:24 3561:26 pile 3505:24 3543:7 3611:3,4 3621:14 piles 3572:9 Pincher 3539:18 pipes 3481:24 3583:23 pit 3449:19 3452:22 3470:20 3477:1,5 3482:19 3503:15 3511:7 3513:11,13 2515:12 2516:14	3565:16 3581:21 3620:24 3622:5,6 3623:22,23 3624:3,14 3626:11 place 3480:14 3505:5,16 3507:20 3509:22 3510:9 3511:11 3583:7 3642:16 3645:2 placement 3575:12,16 places 3480:18 3496:16 plainly 3508:3 plan 3464:18,19 3469:17 3484:26 3581:6,11 3608:18 3610:9, 20 planned 3577:15 3585:7 3621:13 3645:21 3648:1 planning 3624:8 3633:19 3646:13 3645:21 3648:1 plans 3506:9 3576:7 3608:21 3609:18 plant 3601:11 3608:23 3609:13 3610:19,22 3634:11 3641:7 3646:7,17 3646:7,17 3646:7,17 3648:1,2 plants 3610:16 Platform 3592:25 plot 3490:23 plots 3462:8	point 3449:3,10 3468:18 3485:18 3486:12,13,20 3487:22 3496:8 3498:6 3499:1 3503:20 3504:21 3506:20 3510:23 3512:1 3535:25 3544:6 3546:2 3547:12 3549:6 3600:12,16 3624:13 3639:10 3647:14 pointed 3453:21 3467:22 3475:24 3569:3 3575:6 3587:2 3616:9 Poitras 3539:1 policy 3551:10 polluters 3578:26 pond 3465:5,6 3470:25 3471:10, 22 3472:4,15,24 3473:5,8,9,16 3474:24 3475:6, 9,13,15,18,20 3484:3,4,5,12,13, 18 3485:1,2,17 3486:8 3503:11, 12 3504:3,6,8 3505:7,22,26 3506:3,18 3510:2,21,22 3576:16 3577:8, 16,22 3580:15, 17,22 3623:26 ponds 3473:4,15 3475:26 3476:2,4 3481:18,24 3482:21 3484:9, 12 3486:2,3 2404:18 2502:1	3509:5,15,23,26 3510:2,9,17,18 3511:8,16 3567:17 3568:10, 12 3569:19 3574:20 3581:14 3584:19 3585:8, 10,14,15,16,26 3586:3 3614:24 pooled 3564:3,7 pools 3466:8 3483:13,16 porosity 3550:7, 8 3632:10 portion 3470:9 3489:4 3495:9,11 3497:9 3525:20 3570:6 portions 3459:1 3557:8,10 position 3459:1 3557:8,10 position 3467:15 3514:1 position 3467:15 3514:1 positive 3460:16 positive 3460:16 positively 3489:1 positively 3489:1 positively 3489:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:1 possibility 3607:2 3589:16 3589:16 3589:163594:16
-	pit 3449:19	-	ponds 3473:4,15	
personally	-	Platform	· · ·	
3452:7		3592:25	,	
perspective				3603:3 3621:15,
		-		21,25,26 3623:23
		-		
Peterson	3515:13 3516:14,	3464:5	3494:18 3503:1	3636:14 3641:14
3540:26	26 3549:14	plumes 3584:2	3504:15 3505:5,	3642:18
ph 3645:15	3550:10,12	-	8,15 3506:7,10,	
P- 0010110	3564:21,24	PM 3537:4,8	15,23 3507:26	potentially
		3541:21		3486:1 3583:6
	1			1

28

		29		
3589:9 3642:6	3609:7 3647:23,	primary 3608:6,	3583:5 3587:1,2	propagate
practical 3574:2	25	20	progress 3458:22	3449:18
3647:2	predicts 3542:23	prior 3511:22	progresses	propagated
practically	prefer 3633:20	3586:24	3587:25	3564:25
3648:6	preferential	proactive	project 3450:20	propagates
practice 3456:6,8	3449:6 3584:7	3647:15 3648:8	3451:21 3453:2	3552:15
prairie 3552:23,	preliminary	proactively	3455:24,25,26	properly 3548:5
25	3448:11 3506:13	3581:15	3456:2 3457:13,	3610:20
pre-mining	3507:16 3646:10	problem 3467:13	16,19,23,26	properties
3486:17 3488:1	3648:3	3482:8 3486:2	3462:22 3465:26	3503:13 3512:1
3499:6 3530:16	preparation	3509:16 3636:7,9	3467:18 3475:25	3555:24 3570:11
	3496:11	3644:18	3476:24 3478:13	3579:2
preceding 3572:12		problems	3479:4 3483:18	property 3452:4
	prepare 3506:9 3595:20	3635:22	3488:9 3491:23	3460:12 3472:9
precipitate		proceed 3596:15,	3492:1,8 3495:3,	3474:22 3475:3
3634:16	presence 3456:1	20	7,11,13 3496:15	3504:6 3505:6
precipitation	3516:16 3617:23		3497:13,15	3571:15 3576:13
3460:12,15,17,18	3618:12 3620:6	proceeding	3504:16,26	3578:6,8,9
3461:2 3479:13,	3636:1	3447:26	3519:19 3522:8	3580:14
25 3521:10,26	present 3450:23	proceedings	3528:3,7 3530:20	proportionally
3522:8 3523:15	3541:12 3559:17	3447:21 3537:8	3546:13 3552:19	3529:3
3525:15 3526:3,	3574:5,22	3538:1 3541:21	3557:21 3572:23	proposal
17 3527:9 3536:8	3618:22 3619:18	3650:21 3651:5	3573:5 3589:22	3469:10
3611:8	3634:5	process 3448:10	3593:1 3597:19	
precisely 3498:6	presented	3462:13 3511:15	3601:4 3618:12	proposed 3573:1 3578:1 3587:1
3569:1 3575:7	3530:22	3522:26 3559:3,9	3619:5 3620:6,21	3601:3 3609:22
predict 3595:3	press 3502:22	3561:23 3562:3	3623:24 3636:6,	3610:7,14
predicted	pressure 3512:11	3590:24 3610:14,	13,16 3641:3,5, 21 3642:23	
3469:19 3470:2,7	presumes	15 3635:23	21 3642:23 3643:9 3647:6,	proposing
3476:8,13	3570:22	3643:23	21,24 3648:7	3584:1
3565:4,22	pretty 3514:18	processes		proposition
3589:7,26	3547:5 3628:23	3613:11 3618:14	projected	3458:24 3479:4,6
predicting	prevent 3579:1	3620:8	3550:15,22	protected
3523:4 3529:18	previous 3470:21	produce 3533:8	3552:7 3553:22	3636:19
3600:10	3471:11 3485:19	produced 3528:7	projecting	protection
prediction	3606:21	3570:4 3602:17	3600:20	3597:14 3609:3
3534:12 3613:20		3617:11 3618:4	projection	3617:25 3629:9
3624:4,16	previously 3448:18,20	producing	3605:13	3636:3
3626:12	3527:19 3542:10,	3461:8 3474:4	projections	protective
predictions	12 3567:6	professional	3598:13,17	3507:14
3478:12 3515:4,	3569:14 3573:22	3458:17	3599:13 3605:6	provide 3453:25
17 3519:26	3605:11 3625:22	profound	3608:11 3622:20	3460:5,8 3494:15
3520:9 3546:8	Price 3451:9	3449:17	projects 3476:26	3495:23 3500:5
3589:10,18		program	3549:12	3511:9 3574:13
3592:20 3593:6,	primarily	3458:13 3491:22	promote 3634:15	3584:21 3585:18
17 3602:15	3483:23 3501:20	3581:5 3582:19		3588:17 3625:7,

Dicta Court Reporting Inc. 403-531-0590

		30		
12 3649:5	purpose 3503:26	quantification	3640:15 3645:19	3633:5 3643:14,
provided 3494:6	3506:18 3528:26	3635:11	3647:11 3649:8	20
3516:1 3544:19	3529:4 3548:15	quantified	3650:7	ranges 3527:15
3576:5 3577:13	3563:6 3573:24	3591:26 3592:7	question's	3564:11
3581:4 3608:18,	3579:24 3580:25		3456:20 3502:25	
21 3646:10,13	3608:3,6 3614:20	quantity 3448:22		rates 3489:1
	push 3488:24	3483:5,7 3510:12	questioning	3523:19
providing 3456:22 3582:24	3584:9 3585:2,22	quarter 3472:7	3459:23 3590:4	ratio 3528:25
	,	3474:23 3649:25	3635:25	3529:1 3632:10
Province 3651:8	pushing 3586:4	question	questions	3633:21
proximity	put 3467:20	3453:12,15	3456:12 3458:21	rationale 3561:8,
3545:2	3471:18 3477:8	3456:4,7,9,26	3465:12 3480:24	13
public 3448:1,10	3478:26 3479:20	3457:7 3462:19	3502:21 3514:2	Raymond 3451:8
publicly 3448:5	3481:19,22	3466:3 3467:23	3590:5,6,18	reach 3535:11
published 3451:9	3486:9 3509:15,	3473:12 3475:17	3591:2,21 3613:2	3575:23 3579:18
3491:25 3497:8	22 3512:8	3487:4,20 3488:3	3620:3 3621:7	3580:2 3586:8
	3525:14 3579:22,	3489:7,23	3628:1 3630:1	3592:13 3600:5
pull 3451:1	24 3580:7,8,24	3490:20 3491:11	3640:16 3650:2	3601:16
3460:21 3474:15 3492:6 3498:19	3592:23 3602:22	3492:11,19,26	quick 3650:7	reached 3611:5,7
	3632:17,19	3493:4,25	quickly 3471:2	reaches 3525:2
3499:1,10	3637:21 3646:14	3494:6,15	3633:23	
3521:1,18 3534:7 3542:16 3576:11	puts 3491:8	3496:3,26 3500:3	quote 3522:15	3526:1,14
	3643:15	3501:23 3504:1,	quoted 3569:15	3529:20 3530:4, 11 3531:2 3532:5
3599:25 3600:1 3603:23 3636:20	putting 3479:3	12 3507:13	quoteu 5569.15	
	3482:15 3510:8	3509:1,6 3513:21		3533:11 3535:19, 24 3542:21,25
pulled 3466:15	3536:6 3578:24	3514:1,21 3517:9	R	3543:22 3601:17,
3499:15 3544:2	PVC 3583:23	3520:10 3524:9		23
3627:13		3526:12 3527:11	radioactive	
pulling 3564:14		3531:16,19	3641:16,17	reaching
pulls 3518:3	Q	3532:14,21	raindrop 3508:7	3586:19 3624:1
pump 3481:16	QC 3538:12	3543:3 3547:11,	ramifications	3645:6
3482:18,19	3539:14 3540:8	20 3550:21,25	3588:20	reactivation
3571:10		3551:21 3559:11	ran 3599:5	3455:18
pumped 3484:23	quality 3448:22	3564:15,18	Ranchland	reactive 3647:15,
3485:15	3534:12 3568:12 3581:3,8,17	3568:19 3576:22	3539:14	19
pumping	3581:3,8,17 3587:23 3588:1	3578:14,19,23	range 3451:5,21	reactor 3507:5,7
3468:18,21	3592:19,26	3579:13,14,25	3452:26 3453:11	3608:23 3646:7,9
3481:10 3482:21	3594:4,5,6,7,9,	3582:12 3584:4	3455:3 3457:22	reactors 3507:4,
3485:6,16	16,17 3595:4	3585:16 3592:3	3458:4 3460:13	11
3570:19,23,25	3596:24 3598:13,	3593:13,23,26	3463:5 3469:26	read 3449:5,12
3570:19,23,25	17 3599:13	3594:23 3597:17	3500:23 3501:1,2	3450:11,18
3573:17,23	3602:5,9,15,18	3598:22,25	3521:13 3522:3,	3454:8 3455:9
3574:1	3603:24 3604:14	3599:1,10 3600:9	22,23 3523:1	3479:23 3480:2
pumps 3481:23	3623:8 3628:7	3602:1,12	3525:17 3526:15	3486:14 3487:24
pumps 3481:23 3644:25	3629:1 3630:3,10	3604:5,6,10,13,	3527:4,9 3533:16	3499:3 3512:5
	3636:22 3645:4	17 3618:15	3556:3 3567:26	3516:4 3521:7,24
purple 3452:21	3649:2	3620:8 3625:6	3568:4 3594:8,9	3523:14 3549:8,
	5077.2	3627:3 3631:5		

relevance	r
3630:17	
relevant 3522:21	re
3564:16 3607:18	
3625:18	re
rely 3488:22	
remain 3486:8	
3515:14 3605:15	r
3622:21 3632:4	-
remaining	
3631:26	
remains 3607:8	
remark 3556:12	
remedy 3467:15	
remember	
3552:17 3587:7	
3601:6	
remind 3525:17	
reminder	r
3447:23,25	-
reminding	
3602:21	
Remote 3538:1	
removal 3484:15	r
3512:18 3550:3	re
removed	
3512:14 3517:1	re
3643:22	
removes 3478:7	re
3516:21	
removing 3479:1	
3564:15 3610:6	
renders 3548:2	
Rennie 3540:16	r
3650:1,5,7,11,12	
reoxygenate	
3644:12	4
repeat 3568:18	
repeated 3494:7	
repeating	r
3487:19	
rephrase 3457:7	
3592:3	

ephrased 3551:21	
eplacement 3608:25	
eplicate 3561:24 3562:1 3595:23	
eport 3452:18 3460:9 3463:21 3491:21 3495:1,4 3519:4,17 3524:26 3534:23 3546:1 3549:8 3550:26 3551:1 3552:2 3553:20, 24 3559:4 3570:4 3597:11 3615:1 3625:13,19 3636:22 3637:20	
eported 3461:26 3462:21 3463:2 3468:25 3522:17 3549:25 3607:24	
eporter 3541:19 3590:9 3651:15 eporting	
3600:25 reports 3624:4,	
15 3626:12	
appresent 3461:3,18 3462:11 3518:22 3546:3,11 3567:12 3589:4	
epresentative 3463:23 3486:17 3487:15 3488:1, 4,18 3499:6 3500:23 3518:8 3576:3 3589:6 epresented 3476:13 3566:21 3567:3,10 3612:24	
	Ĺ

representing 3464:8 3470:16 3565:16 represents 3476:21.23 3544:25 3566:8 reproduce 3462:6 3523:1 3533:15 reproduced 3519:1 **request** 3574:12 3607:8,19 3626:6 requested 3460:5 3488:22 requesting 3460:19 requests 3488:21,24 **require** 3506:19 3553:18 3582:26 required 3504:21 3507:14, 17 3581:25 3583:14 3587:20 3601:13 3608:4 3609:5,6 3614:22 3635:10 3648:7 requirements 3609:12 3641:11 reserve 3532:17 reservoir 3630:8 **reside** 3571:26 residence 3466:5 3565:3,9 3566:15 3570:16 3572:2 3625:16 3633:10 residents 3644:17 **residual** 3503:14 3574:10 resolved 3648:25 resources 3448:23 3635:26

3646:21 **respect** 3462:15 3473:22 3517:7 3519:13 3527:25 3529:15 3568:11 3569:18,19 3580:14 3614:5 respective 3629:20 **respond** 3456:26 3543:3 3557:15 3593:23 3595:10 3615:24 3622:11 3628:21 3649:9, 12,18 responded 3616:8 responds 3555:18 3611:7 response 3457:1 3475:18 3494:6 3495:15.18 3527:10 3557:13 3574:12 3581:6, 11 3583:11 3604:4 3621:11, 18 3626:5,24 3649:5 responses 3474:19 3575:17 3591:1 rest 3620:2 **restate** 3477:12 result 3461:15 3462:22 3470:17 3474:9,12 3480:18 3482:2, 24 3512:10 3535:15 3536:10 3548:10,17 3553:7,12 3578:21 3579:5 3582:7 3583:5 3585:2,21 3609:23 3615:18 3618:13 3620:7

resulted 3479:17 resulting 3564:9 3589:22 results 3462:26 3513:15 3514:4 3515:1 3516:24 3520:3 3536:14 3547:23 3549:20 3558:18 3564:10 3565:1 3588:19 3595:18,23 3602:26 3605:24 3606:16 3608:10 3609:26 3615:4, 14 3616:22 3618:11 3620:5, 26 3634:9 **resume** 3493:15 3537:4 3541:23 **retained** 3612:12 retention 3645:9 3646:3 return 3448:12 3484:21 3485:24 3486:5 3556:16 3641:11 returning 3482:20 **review** 3451:22 3452:11 3491:20 3495:2 3511:9, 14.21 3538:12 3564:10 3588:18 3595:9 3617:18 reviewed 3457:14 3491:24 3497:7,11 3507:17 3520:21, 23 3521:21,22 3522:9 3523:9 **reviews** 3495:4 revised 3515:26 reworked 3622:21

		33		
RGSC-004	4,5,6,9 3644:9	salmon 3615:8	scheduled	3471:17,20,24
3557:1	3645:26 3646:1	salt 3628:2	3448:7	3472:13 3473:3,
rid 3542:1 3638:1	rocks 3450:14	sample 3643:5	science 3458:12,	10 3474:8
Ridge 3450:22	3451:5 3452:24	samples 3615:26	14	3475:11,17
right-hand	3455:19,20	3616:1,3 3618:1,	sciences 3458:15	3478:21,24
3461:4 3517:16	3458:5 3512:25	10,18,23 3619:13	scientific	3479:6 3481:13
3554:16 3639:21	3515:12,15	3643:6	3479:16	3482:4 3483:21
rigour 3580:10	3522:13 3554:14,	sampling	screen 3498:26	3484:7 3487:19
e	15 3555:3,5	3491:22 3618:24	3599:26 3619:17	3489:19 3490:1
rim 3513:16 3515:12	3558:14,16		3639:24	3491:19 3492:10,
	3570:24 3571:8	sandstone 3452:15 3453:4,	screened	16 3493:10,13,
risk 3448:24	3574:2 3643:8	14 3506:21	3562:14	17,19 3494:8,11,
3574:5 3581:2,14	Rocky 3636:10	3557:23		17,24 3495:16 3496:3,19,25
3586:8 3606:11	room 3448:2		scroll 3450:7	
3610:10 3616:12	3598:6	saturated	3454:7 3544:11	3497:6 3498:6 3499:20 3500:2,9
3618:12 3620:6 3641:12,13	rotate 3525:4	3465:7,18 3466:2 3484:14 3485:22	3549:6 3556:23 3564:26 3577:21	3501:17 3504:8
	3554:1	3484:14 3485:22 3486:9,11	3578:15 3605:9	3505:17 3506:24
risks 3641:20	roughly 3473:5	3502:26 3565:17	3615:4 3637:21	3507:13,22
river 3542:25	rounds 3488:21,	3608:19,25	seal 3574:7	3510:3,15
road 3644:18	24	3609:18 3633:12	3581:23	3511:26 3512:3,4
rock 3465:24	row 3561:7	3644:9,11		3514:7 3517:2
3466:7 3502:26	RPR 3651:14	save 3469:11	sealed 3584:16	3519:7,12
3505:23,25		Sawyer 3540:11	sealing 3578:17	3520:10,12,15,26
3509:15 3510:13,	Rule 3456:7	· ·	3579:4 3580:11,	3521:4,6 3525:3,
14,24,25 3511:7	rules 3456:6,8	SBZ 3465:13,20	20 3581:19	6 3526:6
3512:11,15,25	ruling 3456:15,	3466:5 3483:25	3582:6,17,23	3528:10,14
3513:2,18	18 3547:10	3635:19 3641:6 3643:24 3646:2,	3584:9	3534:7,10,19
3515:13 3556:9	run 3468:19,20	3,8	seam 3518:22,24	3536:12 3537:1,5
3557:20 3565:17	3476:23 3481:1		3554:8,10 3557:7	3539:24 3541:23
3569:13,16	3524:8,12	SBZS 3502:26	seams 3555:11	3542:1,4,13,14,
3570:11 3571:26 3572:9,24 3573:8	3535:20 3546:21	3631:24 3632:4, 13 3634:14	3556:8 3557:11	18,20 3543:2,18
3574:10,17,20	3561:21 3592:20	3643:12 3645:8,	3558:19	3547:4,9,14,21,
3575:4 3576:2	3593:17 3608:24	20	seasonally	25 3549:4,7
3579:11 3581:21,	3611:18		3524:13	3551:25,26
26 3582:4	running 3486:24	scale 3464:10,13 3557:15 3587:9	seasons 3468:15	3552:1 3556:23,
3583:1,13,20	3487:1	3588:12,14	Secord 3448:13,	26 3559:13,16 3564:19 3566:23
3584:20 3585:4,	runoff 3611:1,7	3592:25 3637:5	15,25,26 3450:4,	3567:1 3568:18
17,24 3586:18	runs 3452:4	scales 3635:3	10 3452:11,25	3573:14 3574:11,
3611:1,2,3,6,17,	3525:23 3559:8		3453:22 3454:2,5	24 3576:15
19,26 3612:12,		scenario 3477:16	3455:2 3456:3,	3578:12 3579:8
15,21 3613:9,14	S	3562:6 3565:4	13,14,16,18,25	3583:17 3585:6,
3620:23 3621:14		3569:21,23	3457:6,9,10	13,25 3586:11,26
3628:2 3632:17	safe 3504:10	3594:4,6	3460:4 3464:15,	3587:15 3588:23
3633:6,21	3645:6	scenarios 3524:3	16,21,23 3465:3,	3590:3,12,17,20,
3642:3,5,20,21,	sales 3450:12	3592:18 3594:2	20 3466:13,25	26 3591:6,10,11,
23,25,26 3643:3,		3599:5	3467:11,23	14,19,21 3592:2,
				•

		34		
16 3593:12,25	sedimentation	3605:14,16	sequestering	share 3544:4
3596:20,21,23	3470:25 3471:10	3606:3,11,22	3643:12	shared 3543:20
3597:17 3598:1,	3472:4 3473:8,9	3608:20 3609:20	series 3460:14	sheet 3549:5
20 3599:16	3474:24 3475:6	3616:9,10,12	3461:6 3462:10	shell 3513:10
3600:2,8 3602:2,	3481:18,24	3617:4 3618:6	3486:24,26	3515:13
3,7,11,21	3482:21 3484:3,	3622:14,15	3501:18 3553:25	
3603:11,12,23,26	4,9,18 3485:1,2,	3623:10 3631:6,	3559:8 3607:19	shelved 3607:3
3604:3,20	16,17 3486:2	20,22,25 3633:26	3646:8	shift 3479:24
3605:5,10,23	3494:18 3503:1,	3634:17 3635:20	serve 3529:4	3480:4 3483:7
3606:25 3607:13	11,12 3504:6	3640:6 3643:12,	serves 3528:26	3643:19
3608:1,17	3505:7 3506:18,	18,22 3644:9,23		shifting 3468:22
3611:12 3613:8	23 3507:26	3645:9 3646:2	services 3454:18	short 3484:22
3615:25 3618:9	3510:18 3568:9,	3647:4,10 3648:2	SESP 3465:6	3495:5 3566:13
3619:1,3,12,26	12 3569:18	sense 3529:6	3506:22 3507:12,	3569:3,9
3622:23 3623:5	3576:16 3577:8	3530:17 3572:21	19 3511:8	shortest 3565:11
3625:5,8 3627:2	3580:15,16	3608:14 3630:19	3567:19 3568:23	shorthand
3628:4,8 3630:1	3581:13 3584:19	3631:2	SESPS 3568:14	3651:5,6
3633:1 3634:4	3585:15,26	sensitive 3528:2	Session 3538:3	should've
3635:15 3636:11,	3614:17,23 3623:26	3636:9	set 3524:7	3606:19 3611:13
20,24 3637:5,6,9,		sensitivity	3560:17 3561:18	show 3461:4
13,15,19,23,26	seep 3611:3	3477:21,25	3562:23,26	3462:8 3463:20
3638:5,17 3639:18,20	3630:10	3519:20 3520:2,	3591:21 3595:5,8	3402.8 3403.20
3640:15,23	seepage 3516:7	23 3527:25	3617:15	3518:2 3534:20
3641:3,19	3568:7 3569:8	3528:1,10,16	setback 3584:21	3544:5 3554:20
3642:3,24	3580:18 3587:11	3529:14,24	3585:18	3557:4 3569:1
3646:23 3648:11,	3611:26 3612:20	3530:1 3545:19,	setting 3504:24	3625:13 3646:5
21,22 3649:8,10	3627:7	22,24,25 3546:5	3552:21	showed 3579:19
3650:14,17	seeps 3507:1	3548:20 3589:15	settle 3484:11	3616:23 3617:8
Secretariat	3582:4	sentence 3455:8	3486:3	
3538:12	select 3584:17	3549:9 3565:7	settlement	showing 3473:8,
	selected 3461:8	3571:24 3572:13	3576:16	10 3479:1 3511:1
section 3450:8,17	3477:17 3559:1	3621:19 3623:20		3531:11 3569:26
3464:17,20,24	3561:13 3611:9,	separate	settling 3504:3,5	3601:15 3608:26
3472:4 3475:1	15 3612:18	3519:20,24	setup 3499:3	3641:23
3497:10 3499:16	3633:21	September	sewage 3610:16	shown 3451:13,
3502:6 3540:20	selecting 3561:6	3467:11,17	shaded 3465:18,	15 3452:20,25
3569:14 3587:21 3595:1	3611:10	3486:25 3535:11,	25 3466:1 3569:9	3465:8 3470:1
	selection 3632:21	19,23 3542:22	3617:4,5	3499:13 3500:24
sections 3467:26		3544:25 3545:10,	shading 3532:25	3501:24 3518:5
sediment 3465:5	selenium	11 3548:11	3533:25,26	3523:26 3553:19
3471:22 3484:11,	3448:22 3464:18	3605:12	shale 3506:21	3554:8 3566:9,10
20 3486:2,3	3465:13 3483:22, 24 3484:10,15	sequence	3557:24	3631:22
3506:26 3577:10,	3485:21 3486:1,	3555:13 3557:23	shallower	shows 3452:1,21
16,22 3585:10,16	4,6 3510:25	sequester	3512:25 3563:18	3460:22,25
3587:26	3572:3,11	3631:24 3634:16		3461:11 3465:4
sedimentary	3597:15 3601:1	5051.24 5054.10	shallowing 3513:3	3470:2,14
3522:13	5571.15 5001.1		3313.3	3486:23 3492:7

		35		
3500:18,22	signs 3646:5	3519:20 3522:8	smaller 3455:12	sources 3569:12
3516:14 3517:17	siltstone 3557:23	3523:8 3527:12,	3531:22 3533:13	3584:6 3621:15,
3519:18 3530:13	similar 3463:14	20 3552:19	3552:20	16
3531:1 3534:13,	3464:7 3478:20	3559:17 3560:10	snapshot	south 3465:24
24 3545:12	3523:17 3530:13	3569:9 3570:24	3476:15	3466:8 3472:17,
3546:22 3554:1	3559:22,25	3571:20 3572:8	snow 3523:15	20,21,23 3503:11
3601:21 3605:14	3610:21	3573:5 3574:16	3539:6	3567:19 3637:2
3622:5,8	similarity 3636:6	3602:24	Society 3539:21	southeast 3465:6
3625:22,25	· ·	sites 3469:4	3540:6,12,19,21	3472:15,22,24
3627:18	similarly 3521:8,	3503:6 3522:9		3475:9 3484:4,13
Shukalkina	25 3574:19	3572:11	software 3593:1	Southern 3451:7
3538:20	simple 3492:25	sitting 3506:15	3595:2,3	3539:21
Shuswap 3539:4	3552:13	3568:22	soil 3505:3,14,19	
sic 3464:24	simplification	situ 3611:19	3509:2 3511:7	southwest 3472:9 3517:22
3491:15 3521:19	3589:4	situated 3585:1,	3570:11 3574:21	3472:9 3517:22
3526:16 3569:10	simplified	21	soils 3503:14	
3599:8 3600:21	3611:1		solid 3573:2	spaced 3454:9
3637:25	simplistic	situation	3580:22	spacing 3584:1,4
side 3460:22,25	3461:17 3518:26	3636:12 3642:9	solids 3573:20	span 3549:23
3461:4 3463:10	3552:16	situations 3630:5	3614:15	spatial 3459:26
3473:2 3496:4,18	simply 3571:7	size 3583:24	soluble 3613:11	spatially 3490:18
3498:18 3504:16	3644:5	skill 3651:7	solution 3613:12	speak 3496:23
3517:16 3554:11,	simulated	Skype 3596:6	3647:13	3497:16 3548:6
14,15,16 3567:17	3459:26	slack 3646:8	solutions 3648:6	3550:20 3588:23
3639:21 3647:22	simulation	slice 3523:16		3607:19 3613:25
sides 3554:13	3513:24 3514:3,		Soren 3448:17	3614:2 3617:21
	20,25 3516:24	slightly 3502:8	3542:9 3593:26	3631:12 3636:11,
sign 3648:13,23	3530:22	slopes 3454:20	3613:25	12 3642:7,9
significance	SIMULTANEO	slow 3557:15	sort 3452:25	3646:9
3451:6 3533:24		3583:3,6 3587:7,	3472:16,25	SPEAKERS
3582:10	US 3632:24	11,12 3645:24	3473:26 3594:11,	3510:11
significant	sink 3470:14	3646:4	14 3608:1	speaking
3449:8 3451:19	sir 3448:15	slowly 3509:24,	3611:25 3614:21	3550:18 3586:10
3453:2 3514:9	3493:17 3542:2	25 3553:11	3615:8 3624:19	3625:9
3515:4,10	3590:22 3591:11,	3583:2 3587:18	3625:26 3626:20	
3519:25 3527:26	20 3603:15	sludge 3609:23	sounds 3598:3	speaks 3455:18
3528:8,24	3650:14	3610:4,8,10,12,	3629:12	specialization
3529:15 3530:12	site 3452:6	21	source 3592:21	3458:16
3546:6 3548:16	3453:2 3457:23	slug 3555:14,15	3593:7,18	species 3448:24
3557:8 3573:4 3582:25 3584:14	3459:19 3461:9,	3560:11	3594:10,14,18,	specific 3463:21
3582:25 5584:14 3618:26	19 3462:12,15,17	small 3492:2,12	19,20,24 3613:19	3469:9 3492:17
	3463:5 3465:13	3493:26 3495:5	3621:13,21,25	3507:9 3510:22
significantly	3476:24 3479:11,	3513:9,16	3626:7,21,22,25,	3514:21 3573:7
3478:18 3480:9	12,14 3483:20	3515:12 3517:6	26 3627:6,11	3588:25 3589:2,8
3530:17 3588:19	3491:23 3492:1	3553:16 3570:12	3628:15 3630:12,	3592:10
3589:15	3497:13,15,22	3583:22	16,24	specifically
	3503:5 3513:20			

		36		
3462:15 3474:19	3552:7 3558:12	13 3621:24	stream 3490:15	subdrains
3477:22 3490:15	3561:16 3563:6	3626:8 3634:4	3501:3	3582:2
3520:21 3527:24	3564:1 3571:2,16	states 3449:11	streamflow	subject 3501:26
3569:12,15	3588:18 3598:4,	3450:11 3454:8	3490:12	3600:15 3629:4,7
3572:17,19	5,6,7 3599:11	3523:13 3547:2	streamflows	3636:25
3574:17 3589:19	3602:20 3614:18	3610:25 3623:20	3591:26 3592:6	subjected
3594:3 3627:9	3620:19 3629:25	stating 3530:14		3512:26
3644:19	SRK's 3473:24	e	streams 3447:25	
specifics 3618:24	3489:15	station 3487:16 3488:6,10,15,18	3496:2 3498:5	submissions 3520:14
speed 3587:7	Stable-isotope	3489:2,5 3499:12	stress 3512:7,10	
3621:7 3640:18	3451:4	3500:11 3545:14	stretch 3542:26	submit 3511:20
spillway 3485:8	staff 3493:23	3636:26 3640:19	3546:20 3605:11	submitted
- •	3538:15,16,17,		strictly 3546:9	3571:12
spirit 3610:1	18,19,20 3649:21	stations 3488:10,	strike 3449:7	suboxic 3632:2,5,
3648:9		16 3500:15 3534:13,24	3450:21 3554:24	6 3643:14 3644:4
spoil 3505:24	stage 3647:7	3534:13,24 3542:26 3543:24	striking 3454:10,	subsequent
spoke 3526:6	stance 3647:15	3548:21 3641:24	13	3571:17
spreads 3468:5	3648:8	3644:15,26	strip 3575:4	subsequently
spreadsheet	stand 3502:16	statistical 3463:4	stripped 3582:1	3623:26
3595:12,13,15	3594:19 3617:23	3523:1		substantial
3596:24 3597:3,9	standard 3610:5,		strontium 3628:13	3451:23
spring 3493:5	15	statistics 3522:15		substantially
3498:5	stands 3628:24	steady 3524:8	structure	3455:20 3522:11
springs 3491:16,	3637:11	steady-state	3504:10 3507:9	3557:9 3572:1
20,22,25 3492:1,	start 3468:21	3476:23 3486:18	3508:17,24	substantive
2,12 3494:1	3493:20 3579:7	3488:2 3499:6	3518:8,17 3519:1	3571:15
3495:2,5,6,12	3590:15 3612:21	3523:23 3524:6,7	3520:2 3552:14,	substrate
3496:10,14,23	3618:16 3645:26	steeper 3454:20	17,25 3553:13 3586:17	3634:14
3497:4,7,11,15,	3646:5 3647:6	step 3470:23		
20 3498:4,10	starting 3553:25	Stephen 3448:20	structures	subsurface
3576:14	3605:14 3616:26	3542:12 3613:6	3485:3,5 3506:11	3469:7 3482:7,10
SRK 3450:11	3622:15 3650:8,9	steps 3472:3	3508:26 3509:20	3500:20 3503:9
3458:24 3459:7,	starts 3493:5	stones 3454:13	3511:17,25 3520:4 3568:15	3543:11 3620:21
22 3474:3,13	3565:2 3612:13,		3575:8 3582:16,	success 3631:24
3477:18 3479:2	16 3613:10	Stoney 3539:6	22 3583:24	3643:11
3481:2 3488:4	state 3524:9	storage 3611:6	3584:24 3585:4,	successful
3496:24 3498:24	3608:2,7	3633:11,18	6,23 3587:3	3578:21 3579:5
3499:8 3501:11	stated 3459:10	storativity	3609:2 3613:24	3582:6
3513:23 3514:2,	3524:26 3536:15	3588:9	3614:6,8,17	successors
20 3515:1,23	3555:4 3566:20	stored 3573:20	3631:26	3644:20
3516:18 3517:19	3567:2 3595:17,	3621:21	Student-at-law	sufficient 3469:3
3518:10 3520:18	19 3611:13	straight 3586:15	3539:16	3587:19
3523:6 3527:7,21	3614:26	strange 3598:10	studies 3629:1	suggest 3456:24
3529:17 3532:1	statement	strategies		3590:12
3536:7 3545:16	3450:15 3477:21	3587:20	study 3476:25 3488:12 3563:4	suggested 3552:5
3546:23 3549:12	3521:24 3572:5,		3400.12 3303:4	
3550:6,15,22				

suggesting 3532:12 suggests 3550:23 suitable 3485:24 3584:21 3585:18 3645:21 suited 3623:16 **sum** 3496:12 summarized 3572:12 summary 3560:12 3561:10 3562:12 3563:1 **sump** 3481:10 **Sun** 3540:2 **super** 3643:1 superimposed 3518:17 superseded 3465:19 3604:1, 16 supplement 3457:1 3547:19 **support** 3593:5 supported 3599:6 **suppose** 3578:22 supposed 3456:10 surface 3448:21 3455:1,3,6 3464:18 3468:9, 10,14 3481:1 3482:11 3492:4, 13 3494:2 3535:20 3563:14 3565:18 3602:5, 9,18 3603:24 3604:15 3610:11 3630:7 3644:3 3647:17 3649:3 surficial 3480:21 3562:18,19

surge 3465:6 3472:15,24 3475:9,13 3484:5.12.13 3503:1 3510:21, 22 3584:19 3585:7,14,16,26 **surprise** 3642:2 surrounded 3513:18 surroundings 3448:4 surveillance 3575:23 3579:17 3580:2 Survey 3487:16 3488:5 surveys 3495:19 3497:8 3573:11 suspended 3613:16 sustained 3550:9 3632:9 swim 3482:11 Sworn 3448:20 3542:12 synonymous 3625:11 Syntectonic 3451:4 system 3450:2 3508:3 3546:3 3565:18 3572:1 3575:23 3579:17 3580:2 3589:5 3645:1,4,5,23 3646:4 systematic 3559:4 3561:22 systemically 3488:14,15 systems 3449:13 3585:5,24 3648:4

Т table 3473:17 3481:12 3482:19 3520:3 3528:11, 14,17,21,26 3529:8,11,22 3530:1.6 3533:18,19,25 3535:7,12 3536:2,16,17 3543:24 3545:9, 22 3546:16.22 3547:2 3548:8, 18.19 3549:2 3554:17 3556:6, 15,17 3558:25 3559:17,23 3560:7 3562:12, 26 3563:22,23 3565:22 3586:12, 13,19 3594:2 3605:24 3606:3, 16 3615:3,14,17, 18 3616:24 3617:13.19 3618:4 3640:20 tables 3478:4 3547:8 takes 3530:2 taking 3468:21 3507:21 3514:16 3541:24 3562:20 talk 3497:19 3548:4 3562:17 3577:5 3594:1,3 talked 3461:1 3483:9 3560:19 3568:10 3573:6, 26 3575:16 3589:14 3608:19 3616:9 3645:24 talking 3453:23 3466:10 3469:15 3495:9 3499:26

3505:26 3509:12 3510:21 3532:22 3554:19 3567:24 3568:9 3579:10 3580:15 3583:13 3585:14 3587:8 3599:3 3601:1 3616:21 3619:7 3627:4 talks 3460:16 3555:26 3560:25 target 3575:20 targeted 3556:8 targeting 3584:7 team 3452:7 3453:19 **tear** 3451:13.18 3455:10.11 3457:15,19,21 technically 3546:2 3641:16 techniques 3574:14,15 3607:25 3636:18 technologies 3647:1 technology 3593:2 3642:12 **Teck** 3635:25,26 3636:12 3637:2, 20 3642:7,9,25 3643:9 3646:21, 24 Teck's 3643:4.5, 8 televiewer 3573:10 telling 3485:15 temporally 3490:19 ten 3529:20 3530:11 3565:5 3567:22 3568:2, 6.21.24 3569:7 3627:14

tend 3557:16 3634:24 tendency 3450:25 **TENORM** 3641:16 3642:19 tensors 3518:5. 20,25 **term** 3473:21,23 3491:9 3570:19 3594:25 3613:19 3628:15 3630:12 terminate 3455:13 terminates 3554:12 terminology 3566:6,7,16 terms 3490:16 3513:7 3523:4 3528:24 3529:15 3530:9 3548:7 3565:13 3578:23 3589:7.18 3592:21 3593:7, 18 3594:10,15, 18,19,20 3598:22 3608:5 3616:6,12 3619:7 3624:13 3630:16,25 3633:17,19 3635:4 terrain 3504:23 territory 3568:15 test 3492:23 3529:6 3555:14, 15 3557:5,16 3558:17 3571:4 3573:23 3628:2 3635:2 **tested** 3460:14 3461:7 3477:25 3484:1.20 3485:23 3557:10,

		38		
13,18	threatened	3633:10 3644:13	total 3481:9	18
testify 3551:24	3481:6	3645:5,18,19,25	3613:4,18,21	treat 3507:9
testing 3450:12,	threshold	3646:16,19	3614:12	3647:3
19 3555:5 3556:7	3601:25	3647:14 3648:12	totals 3614:1,10	treated 3484:1,
3558:18,20	thresholds	3650:8	touch 3534:11	14 3485:23
3570:10 3642:5	3581:9,11	timelines 3647:8	town 3539:18	3486:9 3634:6
tests 3556:17,18,	thrust 3449:13	times 3475:26	3543:5,19	3641:6
26 3557:12	3450:17,19	3496:6 3535:26	toxic 3628:18,24	treating 3484:9
3560:11,13	3451:8 3478:7	3549:26 3550:5		3609:19 3610:6
3561:9,10,11	3519:18 3559:21,	3556:3,4 3567:21	toxicity 3597:19	3626:25
3562:13 3563:1,	26 3573:4	3568:6,21 3569:6	trace 3505:2,13	treatment
3,5 3570:19,23,	tighter 3553:1	3570:1,16	3509:1 3510:17,	3601:11 3608:20,
25 3571:1,7,10,	0	3571:22 3594:13	20,24 3511:1,4	23 3609:5,13
13 3573:17	till 3460:23	3643:21	3617:24 3631:7,	3610:4,8,14,16,
3574:1 3631:5,18	3518:2 3577:12	tin 3628:13	20	19,22 3623:10
text 3572:12	3590:13	titanium 3628:13	track 3649:17	3634:11 3635:6
thallium 3628:13	tilt 3553:2	title 3528:17.19	transcribed	3641:7 3644:25
3629:7,14	tilted 3517:22	,	3651:6	3645:21 3646:7,
	3552:18 3553:14,	today 3508:2,5,8	transcript	12,17,18 3648:1,
Thermal 3451:6	17,22	3509:13,16,19	3478:22 3479:21	2
thicker 3640:1	Timberwolf	3510:4,13	3651:1,4	treed 3468:5
thing 3473:26	3540:11 3650:2	3511:14 3535:21	transect 3454:12	
3493:23 3583:17	time 3448:7	3591:17 3649:26	transient	trees 3575:5
3647:26 3648:23	3452:11 3455:19	3650:4	3513:22 3514:19	trellis-style
3649:14,15	3466:5,14,19	toe 3612:21	3523:22 3514.19	3449:23 3450:1
things 3482:13	3476:12 3479:9	tomorrow	11	3454:22
3506:4 3507:13	3484:22 3486:24,	3510:14 3650:8,		trending 3502:8
3582:3 3602:14	26 3487:11,12	10,18	transit 3567:21	trends 3486:18
3609:19 3617:23	3488:23 3499:23	tonnes 3505:25	transmissive	3488:2 3499:7
3635:2 3638:13	3501:1 3502:7	top 3461:11	3558:14 3570:11	3581:10
3640:18 3648:5	3504:2,22	3479:22 3486:23	transmit 3553:8	tributaries
thinking 3480:15	3507:23 3514:16	3487:5 3503:3	transmits	3496:4
3503:10 3576:13	3535:17 3536:1	3508:17,19	3553:10	tributary 3493:5
3644:19 3647:5	3537:2 3544:2	3523:16 3535:1	transparent	3496:1 3543:8,15
third-last	3549:23 3561:24	3545:20 3553:5	3448:10	tricky 3578:18
3529:26	3565:3,9,23	3557:5 3577:24	transport	3579:5
thought 3483:19	3566:8,12,14,15,	3615:13 3637:26	3572:6,20	trout 3469:11
3492:26 3519:10,	18,20 3567:2,13	3644:6	transverse	3480:7,16 3481:5
15 3542:6 3552:3	3568:24 3569:2,	Topics 3602:10	3452:1 3455:12	3495:24 3540:26
3581:19 3585:14	9,17 3572:2	3603:22 3605:4	travel 3565:3,23	3495.24 3540.20 3596:25
3619:25 3624:23	3573:16 3580:20	topographic	3566:8,12,14,17,	
3648:4	3587:19 3590:14,	3565:10,12	19 3567:2,13	Trust 3492:21
thousand 3501:8	17,24 3591:4	topography	3568:6,21,24	turn 3449:4
3606:23	3592:25 3602:13	3511:5 3516:20	3569:2,6,9,17,26	3450:5 3451:25
thousands	3610:2 3612:26	topsoil 3575:4	3570:16 3571:22	3453:26 3458:10
3505:25	3621:8 3625:16,		3625:17 3627:14,	3459:4 3463:8
5505.25	17 3627:14,19		5025.17 5027.14,	3464:16 3469:18

		39		
3476:7 3478:21	3513:19 3515:16	3620:24 3623:9	3617:17	vanadium
3486:12,21	unable 3456:26	3631:15		3628:13
3490:21 3494:26			updates 3607:20	
3512:1 3515:21	unassessed	understanding	upper 3495:9,11	variability
3517:13 3519:3	3555:8,9 3556:14	3474:8 3504:22	upper-limit	3463:9,17
3520:12 3523:11	uncertainties	3513:26 3531:15	3592:21 3593:7,	3464:11 3487:17
3528:10 3529:21	3588:13 3589:2	3533:26 3536:12	11,18,21	3488:7 3499:22
3533:18,19	unchanged	3571:14 3572:25	upslope 3584:20	3501:2,12,22
3548:8 3549:4	3570:7	3582:23 3588:26	3585:17	3594:11
3554:17 3558:1	unclear 3531:7,	3589:6,9 3592:3	upstream	variables 3588:1
3564:13 3565:21	23 3586:6 3610:8	3616:5	3488:16 3543:8,	variation
		understated	10 3545:2,3,6,8	3524:13
3587:21 3588:5	underestimates	3552:8,10	3576:4	variations
3592:14 3594:26	3459:18	understood	· · ·	3560:18 3589:8
3599:14 3601:14	underlie 3450:13	3589:18 3590:25	uptake 3616:12	3643:25
3602:4 3605:6	underlying	3647:14	upward 3455:13	varies 3470:10
3610:24 3615:3	3505:3,14,19	undertaken	upwards 3502:8	varies 3470:10 3523:9 3563:15
3620:4 3621:10	3509:2,26	3571:12,17	3554:15	3523:9 3563:15
3622:3,13	3512:19 3573:8	3581:12	uranium 3636:4	
3623:18 3628:4	3585:4,24		3640:11 3641:23	variety 3618:18
3632:11 3636:22,	underneath	undertaking	user 3595:12	vary 3560:19
23 3640:21	3453:2 3482:11	3604:4,11		varying 3561:23
turned 3448:3	3486:25 3575:8	3649:6,7,17,20,	utilized 3463:4	veins 3451:3,4
Turner 3538:18	3581:26 3583:20	22	3518:19	verb 3635:15
turquoise	understand	undetected	Utting 3538:15	
3499:25 3566:22	3455:2,21	3586:9		Vern 3540:3 3578:8
3567:4	3457:11 3462:2	unit 3553:9,10,13	V	
twenty 3521:9	3465:16 3466:3	3557:13,22		version 3515:26
two-and-a-half	3468:16 3474:12	units 3518:6,9	valley 3492:5,15	3593:2
3519:23	3481:8 3484:2	3552:18 3553:5	3531:5,10,13,21	versus 3463:16
	3488:26 3496:18	3554:3,4	3532:22 3533:1,	3625:10
two-year	3497:22 3499:21	3555:10,13	12 3567:7	vertical 3517:17
3646:16	3500:2,9,16	3557:8,14 3558:8	3635:26 3636:21	3554:2
type 3454:23	3503:21 3506:13	3564:22	3638:13 3646:21	vibrating
3555:14 3597:1	3508:6 3511:12	University	valleys 3495:11	3558:23 3561:26
3610:23 3611:16	3532:1,7 3545:23	3458:12,14	3641:22	vicinity 3454:14
3642:20,25	3546:5,7 3548:26	unknown 3555:7	values 3461:25	3472:25 3473:16
typed 3464:26	3550:19 3551:7	3556:14	3462:20 3463:1	3476:2 3481:12
typical 3450:2	3561:7,15		3477:17 3513:17	3515:13 3543:6
3507:6	3563:21 3565:13	Unlimited	3515:14 3522:17	3545:7
typically 3522:12	3570:2 3572:26	3540:26	3554:19 3558:6	
3560:22 3583:22	3576:18,26	unlined 3509:5	3559:5,6,19	video 3447:23,25,
3611:16 3612:10	3580:21 3581:21	unload 3513:2	3561:19 3562:4	26 3448:5 3538:1
5011.10 5012.10	3580.21 3581.21	unsaturated	3563:24 3567:7	3596:6,16
	3596:24 3600:9,	3586:16,17	3568:26 3581:10	view 3514:4
U	19 3602:14	unusual 3511:4	3588:10 3599:4,	3517:10 3553:16
	3609:7 3613:9	updated 3606:26	24 3601:5,6	virtual 3448:2
ultimately	3617:1 3618:24	3607:22 3615:18	3615:6,9	
	5017.1 5010.24	5007.22 5015.18	5015.0,7	

		40		
virtue 3505:8	3474:15 3481:9,	3623:8,17,22,24	3581:7 3582:15,	wondering
visible 3455:1,2,5	11,16,21 3482:4,	3626:22 3630:3,	21 3583:8,16,21,	3551:2 3561:12
3496:17	8,16,20,23	7,10 3632:22	22 3584:1,4,10,	3563:25 3576:19
visual 3574:8	3483:5,8,9,19,21,	3633:14 3634:6	18 3587:3,4,10	3616:2
	22,24 3484:2,3,4,	3636:21 3641:6	3616:3 3619:4,	word 3452:5
void 3632:10	9,13,17,18	3643:23 3644:6,	10,14	3472:11 3578:10
3633:21	3485:5,7,14,16,	25 3645:4,6,10,	west 3449:18	words 3462:23
volcanic 3522:12	20,22,25,26	21,25 3646:1,2,6,	3472:17 3483:3	
volume 3451:10	3486:4,8,10	17,18,20 3647:3,	3496:4 3567:20	work 3453:20 3461:25 3462:20
3478:22 3632:16	3487:16 3488:5	17 3649:3	3625:1,2 3635:26	3461:23 3462:20
3633:14,17,18	3503:1 3504:14	water's 3482:10	3637:11 3640:21	3491:5 3506:6
3646:19	3505:5,15,22	3484:1 3500:16	west-east	3550:18 3551:22
volumes 3465:21	3506:9,24,26	3510:4	3449:23 3477:19	3552:6 3571:17
3466:4 3633:11	3507:10,20,26	Water-level	west-to-east	3572:26 3573:7
	3508:1,10,22	3486:15 3487:25	3554:23	3575:9 3583:14,
W	3509:4,14,18,19,	3499:4	westslope	19 3593:4 3598:5
	21,24 3510:4,8,	Waterloo	3469:11 3480:7,	3610:19 3615:19
wait 3460:23	16,19,20,23	3458:12,15	16 3481:5	3635:2 3646:14
3518:2 3577:12	3511:8,25	waters 3602:9	3495:24 3596:25	worked 3602:23
waiting 3478:24	3534:12 3555:17,	3604:15 3616:12	wet 3492:4,14	workflow
3520:15	18 3565:18	3618:12 3620:6,	3494:2 3510:13,	3602:23
walls 3620:24	3566:9 3568:11	13 3643:19	14 3611:4	
wanted 3460:8	3572:8 3573:21 3574:20 3576:14	watershed		working 3490:9
3494:9 3543:21	3577:9 3580:16,	3541:16 3636:9	wetlands 3492:7, 9	3552:22 3645:21
3625:7	17,18 3582:4,5	watersheds	-	workings 3574:8
wanting 3516:10	3585:2,22	3480:8	whatever's	works 3590:18
-	3586:12,13,19		3488:17	3618:20
Warden 3538:25	3587:14,16,23	waving 3467:8	Wheaton	worries 3542:3
Warren 3454:15	3588:1 3590:6,7	ways 3520:20	3538:19	worst 3592:18,20
waste 3510:23,25	3591:22,23	weathered	wholistically	3593:6,10,20
3512:15 3543:7	3592:15,18,26	3631:23	3584:13	worst-case
3571:25 3573:3,	3593:4 3594:3,5,	weathering	Wilderness	3593:17 3594:3,
20 3582:16,22	6,7,9,16 3595:3	3631:15	3539:21,25	20
3584:19 3585:17	3596:24 3598:7,	weathers	3540:11,21	would've
3588:20 3611:1,	13,17 3599:13	3613:10	wildlife 3540:19	3478:20 3492:26
2,3,6,16,26	3602:5,10,15,19	website 3448:1	3619:14,18,23,25	3496:20 3513:8
3612:12,15,21	3603:22,25	weight 3512:11,	Wilson 3521:17,	3558:20 3559:5
3613:13 3618:14 3620:8,23 3628:2	3605:4 3608:22	19,24 3516:26	19 3527:14	3561:17,18,21,22
3620:8,23 3628:2 3633:6,21	3609:1,5,13	well-controlled	wire 3558:23	3613:22 3617:14
3643:14 3644:9	3610:11,14	3635:18	3561:26	3632:14,15
water 3448:21	3612:12,15,19	wells 3558:23	witnesses	wrap 3591:17
3464:18 3465:22	3613:13,23	3560:9 3561:26	3648:18	write 3587:23
3466:6 3467:19	3614:6 3615:7,	3570:10 3573:18	WLC 3637:15	writes 3521:7
3468:5,9,11,12,	10,26 3616:3	3577:14,26	wonderful	3549:11
	3617:25 3618:18,	3578:4 3579:20,		
14 18 21 22	02 2610 10	33/0.433/9.20	1 17////	\mathbf{W} rong $\mathbf{A}/(\mathbf{X})$
14,18,21,22	23 3619:18		3577:1	wrong 3481:2 3483:1 3585:10
14,18,21,22 3469:3,5,6,12	23 3619:18 3621:21 3622:3	21 3580:5,24	3577:1	wrong 3481:2 3483:1 3585:10

3617:2,4 wrote 3499:8 3549:8	Yewchuk 3539:20 3590:22 Yewchuk's 3465:11
X	YOUL 3448:16 3542:8
XY 3478:8	Youtube 3448:1, 5
Y	
year 3466:19,21, 22 3476:16 3487:11 3491:3, 6,7 3500:25,26 3502:19 3544:23 3545:5 3565:25 3567:25 3646:12, 14 years 3487:6 3489:11 3501:14, 16 3550:14 3565:5,9,11 3566:21 3567:3, 7,22,24,25 3568:2,7,21,24 3569:7 3571:23 3587:9 3601:9 3609:11 3627:15 3642:8 3644:13 yellow 3490:26	Z zinc 3601:2 3618:8 3622:25 3634:7 3636:2 3640:12 zirconium 3628:14 zone 3465:24 3466:2 3484:14 3485:22 3486:9, 11 3510:3 3568:1 3586:16,17 3609:19 3644:10, 11 zones 3454:11,16 3465:7,18,21,23 3502:26 3519:23 3575:19 Zoom 3450:5
3491:1 3499:24 3525:19,25 3566:3 3567:11, 12,14 3568:1 yesterday 3449:1,16,20,25 3450:3 3458:21 3459:20 3460:6, 19 3461:1,17 3462:8 3465:10 3466:9 3507:3 3526:7 3535:21 3590:23 yesterday's 3590:15	3451:1 3454:2 3471:17 3493:8, 21 3511:26 3520:13,26 3525:4 3534:8 3542:5,18 3556:24 3577:19 3599:26 3600:3 3602:4 3619:2 3636:20 3639:23