APPENDIX 9.4-A Roberts Bank Terminal 2 Light Assessment Study This page is intentionally left blank

ROBERTS BANK TERMINAL 2 TECHNICAL REPORT Light Assessment

Prepared for: **Port Metro Vancouver** 100 The Pointe, 999 Canada Place Vancouver, BC V6C 3T4

Prepared by: Golder Associates 420 West Hastings Street Vancouver, BC V6B 1L1

December 2014

TECHNICAL REPORT/TECHNICAL DATA REPORT DISCLAIMER

The Canadian Environmental Assessment Agency determined the scope of the Project and the scope of the assessment in the <u>Final Environmental Impact Statement Guidelines</u> (EISG) issued January 7, 2014. The scope of the Project includes the project components and physical activities to be considered in the environmental assessment. The scope of the assessment includes the factors to be considered and the scope of those factors. The Environmental Impact Statement (EIS) has been prepared in accordance with the scope of the Project and the scope of the assessment specified in the EISG. For each component of the natural or human environment considered in the EIS, the geographic scope of the assessment depends on the extent of potential effects.

At the time supporting technical studies were initiated in 2011, with the objective of ensuring adequate information would be available to inform the environmental assessment of the Project, neither the scope of the Project nor the scope of the assessment had been determined.

Therefore, the scope of supporting studies may include physical activities that are not included in the scope of the Project as determined by the Agency. Similarly, the scope of supporting studies may also include spatial areas that are not expected to be affected by the Project.

This out-of-scope information is included in the Technical Report (TR)/Technical Data Report (TDR) for each study, but may not be considered in the assessment of potential effects of the Project unless relevant for understanding the context of those effects or to assessing potential cumulative effects.

EXECUTIVE SUMMARY

The Roberts Bank Terminal 2 Project (RBT2 or Project) is a proposed new three-berth marine terminal at Roberts Bank in Delta, B.C. that could provide 2.4 million TEUs (twenty-foot equivalent units) of additional container capacity annually. The Project is part of Port Metro Vancouver's Container Capacity Improvement Program, a long-term strategy to deliver projects to meet anticipated growth in demand for container capacity to 2030.

Port Metro Vancouver has retained Golder Associates Ltd. (Golder) to assess the potential changes in environmental light levels attributable to the proposed Project light emissions. The potential light emissions from RBT2 were assessed in accordance with the Commission Internationale de l'Eclairage (CIE)¹ guidelines and the limits previously used in literature (Narisada and Schreuder 2004).

The CIE guidelines are addressed in this report for RBT2, and specifically those relating to the potential changes attributable to the Project on light trespass and sky glow at the surrounding receptor sites. Light trespass and sky glow are the parameters used to assess the potential changes in light levels attributable to the Project.

Golder measured the existing light trespass and sky quality levels at 12 Point(s) of Reception (POR[s]) in the area surrounding the Roberts Bank terminals during site visits between March 27 and April 2, 2014 and on August 27, 2014. Using the existing light levels and light fixture photometric data from manufacturers, light trespass and sky glow levels associated with the Project operation were predicted at the PORs. The predictive analysis indicates that Project-related light emissions are expected to change the current CIE light trespass environmental light classifications at one of the PORs, and also change the current CIE sky glow zone classification at one of the 12 PORs.

¹ Translation: International Commission on Illumination

TABLE OF CONTENTS

EXECL	CUTIVE SUMMARYI				
1.0	INTRO	DUCTIO	DN1		
	1.1	PROJEC	T BACKGROUND		
	1.2	LIGHT A	ASSESSMENT OVERVIEW		
	1.3	Review	OF AVAILABLE LITERATURE AND DATA		
2.0	METHO	DDS			
	2.1	STUDY	AREA		
	2.2	Темроя	RAL SCOPE		
	2.3	STUDY	METHODS		
		2.3.1	Light Trespass6		
		2.3.2	Sky Glow		
	2.4	D ΑΤΑ Α	NALYSIS7		
		2.4.1	Light Trespass Predictive Modelling7		
		2.4.2	Sky Glow Predictive Modelling		
		2.4.3	Light Trespass Assessment Criteria9		
		2.4.4	Sky Glow Assessment Criteria10		
3.0	RESUL	.TS			
	3.1	FIELD S	TUDY INCIDENTAL OBSERVATIONS		
	3.2	MEASU	REMENTS OF EXISTING LIGHT TRESPASS		
	3.3	MEASU	REMENTS OF EXISTING SKY GLOW		
	3.4	Modeli	LING RESULTS		
		3.4.1	Light Trespass14		
		3.4.2	Sky Glow		
	3.5	Discus	SION OF KEY FINDINGS		
		3.5.1	Light Trespass		
		3.5.2	Sky Glow Assessment		
	3.6	Data G	APS AND LIMITATIONS		
4.0	CLOSU	JRE			
5.0	REFERENCES				

List of Tables

Table 1	Points of Reception4
Table 2	Light Fixture Summary7
Table 3	Summary of Illumination Levels Associated with Common Sources10
Table 4	Environmental Light Classification10
Table 5	Summary of Commonly Seen Sky Glow in Percent above Natural Dark Sky Background
Table 6	CIE Zone Classifications for Sky Glow11
Table 7	Existing Illuminance Levels at the Identified Measurement Locations and the
	Corresponding Light Classification13
Table 8	Existing Sky Quality Levels at the Identified Measurement Locations14
Table 9	Summary of Predicted Results for Light Trespass14
Table 10	Summary of Predicted Results for Sky Glow15
Table 11	Predicted Changes in Light Trespass Levels16
Table 12	Predicted Changes in Sky Glow17
List of Figur	es (within text)
Figure 1	Points of Reception
Figure 2	Sky Glow Model8
Figure 3	Photo of the Existing Sky at POR218
Figure 4	Photo of the Predicted Sky at POR218
List of Appe	ndices
Appendix A	Calibration Certificates
Appendix B	Lighting Layout

Appendix C Photometric Data

LIST OF ACRONYMS AND ABBREVIATIONS

Abbreviation	Term
CIE	Commission Internationale de l'Eclairage
IESNA	Illuminating Engineering Society of North America
PORs	Point(s) of Reception
UTM	Universal Transverse Mercator

GLOSSARY OF TERMS

Term	Description
Astronomical twilight	The time when the centre of the sun is between 12° and 18° below the horizon. From the end of astronomical twilight in the evening to the beginning of astronomical twilight in the morning, the sky (away from urban light pollution) is dark enough for all astronomical observations
Candela	The luminous intensity of a lighting source and is measured in candelas (cd = lm/steradian)
Illuminance / illumination level	The total luminous flux incident on a surface, per unit area (i.e. lumens per m ²). It is a measure of the intensity of the incident light, wavelength-weighted by the luminosity function to correlate with human brightness perception and is the standard metric for lighting levels, measured in Lux
Indicators	Specific characteristics of the environment that can be measured, qualified or determined in some way
Magnitude per square arc second	A relative measure of the brightness of the sky. The natural background is 21.6, and the smaller the number the brighter the sky or celestial object. One magnitude level of difference corresponds to a factor of 2.5 change in brightness
Limiting magnitude	The brightness in mag/arcsec ² of the weakest star visible as seen with some viewing device, such as a telescope, binoculars, or the naked eye. Here wherever the term is used, it refers to the naked eye limiting magnitude. This value depends on many factors, including the viewer's age and observation experience
Lumen	The unit of luminous flux produced by a source
Luminaire	A lighting fixture
Luminance	The perceived brightness of an object which has been illuminated by a source. The luminance of an object depends on its material characteristics and reflectance and is measured in cd/m ²
Point of reception	A location where measurements or predictions of light levels are made
Zenith	An imaginary point directly "above" a particular location, on the imaginary celestial sphere. "above" means in the vertical direction opposite to the apparent gravitational force at that location

LIST OF UNITS

Abbreviation	Term
%	Percent
cm	Centimetre
km	Kilometre
lux	lux (measured in lumens per metre squared)
m	Metre
mag/arcsec ²	Magnitude per square arc second
mlux	millilux (measured in one thousandth of a lumen per metre squared)
mm	Millimetre

1.0 INTRODUCTION

This section provides Project background information, an overview of the Light Assessment, and a review of available literature and data.

1.1 **PROJECT BACKGROUND**

The Roberts Bank Terminal 2 Project (RBT2 or Project) is a proposed new three-berth marine terminal at Roberts Bank in Delta, B.C. that could provide 2.4 million TEUs (twenty-foot equivalent units) of additional container capacity annually. The Project is part of Port Metro Vancouver's Container Capacity Improvement Program, a long-term strategy to deliver projects to meet anticipated growth in demand for container capacity to 2030.

Port Metro Vancouver has retained Golder Associates Ltd. (Golder) to assess the potential changes in environmental light levels attributable to the proposed Project light emissions. This technical report describes the results of the Light Assessment.

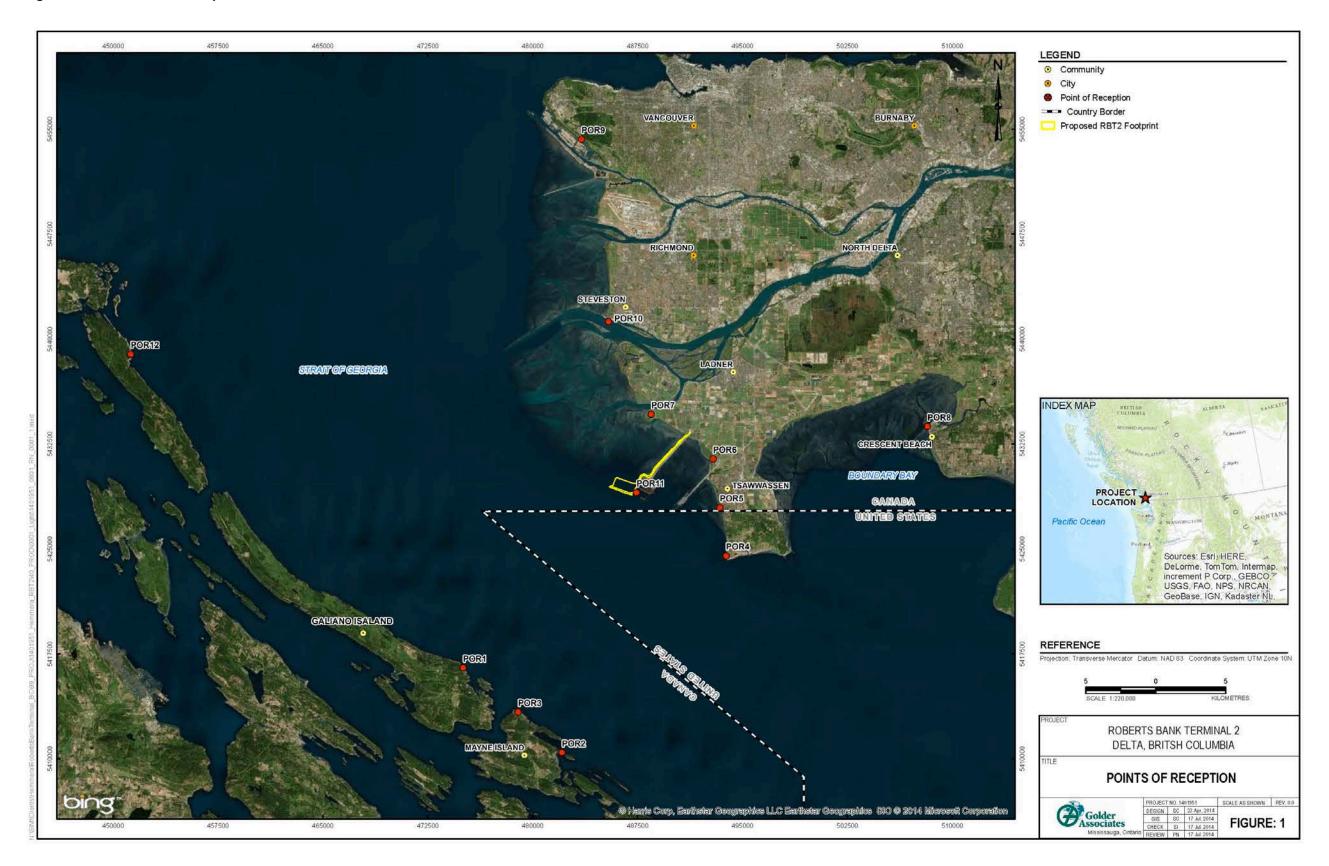
1.2 LIGHT ASSESSMENT OVERVIEW

A review of available information and state of knowledge was completed for the Light Assessment to identify key data gaps and areas of uncertainty related to light within the general RBT2 area. This technical report describes the study findings for key components identified from this gap analysis.

Light trespass and sky glow are the parameters that were used to assess the potential changes in light levels attributable to the Project. Light trespass can be described as the effect of the light or **illuminance** that strays from its intended purpose onto neighbouring areas. Sky glow is the result of stray light being scattered in the atmosphere, brightening the natural sky background level and reducing star visibility. The Commission Internationale de l'Eclairage (CIE)² guidelines are addressed in this report; specifically those relating to the potential Project-related changes on light trespass and sky glow at the surrounding locations.

The specific locations at which light levels are assessed are referred to as Point(s) of Reception (POR[s]). Golder measured the existing light trespass and sky quality levels at 12 PORs in the area surrounding the Roberts Bank terminals during site visits between March 27 and April 2, 2014 and on August 27, 2014. Using the measured light levels at the PORs, and photometric data (i.e., light fixture emission characteristics) from the light fixture manufacturers, light trespass and sky glow levels were predicted for the Project operation at each of the PORs, labelled as POR1 to POR12 on **Figure 1**.

² Translation: International Commission on Illumination


The following is a brief overview of the objectives of the assessment:

- Light Trespass objectives:
 - Measure the existing light trespass level at each of the PORs in the area surrounding the RBT2 to establish the current (year 2014) light trespass levels;
 - Determine the current light trespass CIE classification at each of the PORs;
 - Predict future (year 2025) light trespass levels at the PORs due to the Project; and
 - Determine whether the future light trespass level at each POR changes from the current CIE classification.
- Sky Glow objectives:
 - Measure existing sky quality level at each of the PORs in the area surrounding the RBT2 to establish the current (year 2014) sky glow levels;
 - Determine the current sky glow CIE classification at each of the PORs;
 - Predict future (year 2025) sky glow levels at the PORs due to the Project; and
 - Determine whether the future sky glow level at each POR changes from the current CIE classification.

1.3 REVIEW OF AVAILABLE LITERATURE AND DATA

There are no existing data sources summarising the current light trespass and sky glow levels in the vicinity of the Project. Assessments for the Deltaport Third Berth Project (Vancouver Port Authority 2005) and the Deltaport Terminal Road and Rail Improvement Project (Hemmera 2012) were both reviewed for the purposes of this assessment. However, the assessments were qualitative and did not include quantitative analysis of existing or predicted light trespass or sky glow levels. Therefore, field studies were carried out to collect the requisite data where appropriate, to characterise the existing conditions.

Figure 1 Points of Reception

This page is intentionally left blank

2.0 METHODS

Descriptions of the spatial and temporal scopes of the Light Assessment Study, as well as the study methods and data analysis are provided below.

2.1 STUDY AREA

The Light Assessment study area is comprised of 12 PORs. These POR locations were selected to represent the light conditions in the Lower Mainland and some Gulf Islands. The Aboriginal and federal lands and communities surrounding the Project are represented by the selected PORs.

In assessing the changes due to the Project on current light levels, this assessment has expanded on the typical definition of a POR representing an area of human habitation to include specific locations (POR 7 and POR 8) near the Project identified through consultation with the Canadian Wildlife Service (CWS), in order to enable the assessment of effects of light on coastal birds. The effects of light on coastal birds will be assessed in the Coastal Birds Section of the RBT2 Environmental Impact Statement (EIS). One location (POR12) was identified through consultation with Aboriginal groups.

POR1, POR2 and POR3 are located to the southwest; POR4 and POR5 are located to the southeast; POR6 and POR8 are located to the east; POR7, POR9 and POR10 are located to the north; POR11 is located at the existing Roberts Bank terminals; and POR12 is located to the northwest of the RBT2. **Table 1** summarises each POR.

POR ID	Location	UTM Coordinates (Zone 10U)		Distance from the Project	
PORID		Easting (m)	Northing (m)	(km)	
POR1	Galiano Island	475019	5416523	17.3	
POR2	Mayne Island	482086	5410465	19.3	
POR3	Mayne Island	478949	5413361	17.7	
POR4	Point Roberts	493819	5424530	8.4	
POR5	Tsawwassen	493381	5427976	6.7	
POR6	Tsawwassen First Nation Land	492897	5431451	6.5	
POR7	Brunswick Point	488475	5434643	5.7	
POR8	Crescent Beach	508223	5433767	21.9	
POR9	Lookout location near the University of British Columbia	483486	5454294	25.3	
POR10	Steveston Village	485416	5441259	12.2	
POR11	Existing Roberts Bank terminals	487421	5429047	0.6	
POR12	Valdes Island (Lyackson First Nation)	451275	5438934	37.0	

Table 1Points of Reception

2.2 TEMPORAL SCOPE

The Light Assessment is intended to summarise the current (2014) levels of light trespass and sky glow at the PORs surrounding Roberts Bank terminals using measured data, and to predict potential future levels of light trespass and sky glow during the operational phase of the Project. In assessing the potential changes in light levels attributable to the Project, the works and activities associated with each Project phase were reviewed to determine which phase would result in the greatest changes. Based on the number of light fixtures and the total light output during the operational phase of the Project, the operational phase was determined to result in the greatest changes on light levels.

A lighting layout representing the light emissions during the construction phase of the Project was not available. However, light sources and emissions during the construction phase are anticipated to vary according to construction requirements, and are expected to be lower than those during the operation phase (based on available information about anticipated construction equipment types and usage). The operational phase is therefore, assessed as the worst case scenario, intended to represent both construction and operational phases. The representative year for the operation phase is 2025, when RBT2 is anticipated to be operating at maximum sustainable capacity of 2.4 million TEUs per year.

2.3 STUDY METHODS

Light measurements were taken at each POR (**Figure 1**) between March 27 and April 2, 2014 and on August 27, 2014. Galiano Island (POR1) measurements were collected on the night of March 27, when the sky was mainly cloudy. Mayne Island measurements (POR2 and POR3) were collected on the night of March 28 under partly cloudy skies. Measurements in Point Roberts (POR4), Tsawwassen (POR5) and Tsawwassen First Nation Land (POR6) were collected on the night of March 30 under mainly cloudy skies. On the night of March 31, measurements at Steveston Village (POR10) were collected from a chartered vessel close to the shore under partly cloudy skies and windy weather conditions. The sky was mainly clear on the night of April 1, during which measurements were collected on April 1 at Brunswick Point (POR7), Crescent Beach (POR8), and at a lookout location near the University of British Columbia (POR9) under mainly clear skies. Measurements were collected under clear skies on Valdes Island on the night of August 27, 2014. Both light trespass and sky quality measurements were collected at each POR with the exception of POR9 where only sky quality was measured. All measurements were taken after **astronomical twilight**. More specifically, measurements were collected each night after 9:30 p.m. and before 2:00 a.m. the next morning.

2.3.1 Light Trespass

Light trespass measurements were carried out using a Solar Light PMA2100 photometer and a PMA2131 scotopic detector (see **Appendix A** for the calibration certificate). This unit has a precision of 0.001 lux (or 1 mlux, comparable to the light trespass of a moonless clear night sky). The measurements were made at each identified location following best practices as per CIE guidelines (CIE 2003). At each location, measurements were made on a vertical plane towards the Project site. To account for slight variations in direction and emissions, four measurements with the same orientation were taken at each location and averaged. The rationale behind the selection of the measurement locations are explained in **Section 2.1**.

2.3.2 Sky Glow

Two methods were used for gathering information on existing sky glow. The first approach used a Unihedron Sky Quality Meter (SQM), which provides sky quality measurements in mag/arcsec². Sky quality is a measure of sky brightness, which is used to calculate sky glow level. The sky quality measurements were taken facing the **zenith** and at 45° from the zenith in the direction of the centre of the proposed terminal footprint. To account for any variability in the measurements, four readings were taken at each location, and averaged to obtain a more representative sky quality measurement. SQM has a precision of ± 0.10 mag/arcsec².

The second approach provides a visual description of the existing sky glow and involves recording high resolution digital images of the night sky. In this regard, photographs were taken at 45° from the zenith in the direction of the centre of the proposed terminal footprint using a Nikon D700 dSLR with a Sigma 24 mm F1.8 wide-angle lens. This configuration provides high resolution images with low digital noise.

The number of stars captured in the resulting image far exceeds those visible to the naked eye. The images can be adjusted to obtain an accurate representation of what an average observer would see. The sky quality measurement from the SQM is used to determine the faintest star that could be seen by an average naked-eye observer (i.e., the **limiting magnitude** stars) from a particular location. The image is then compared to a star chart showing all the stars fainter than the limiting magnitude at that particular location, time, and date, and then adjusted to remove those stars too faint to be seen. Existing sky quality measurements were taken at all PORs listed in **Table 1** above.

2.4 DATA ANALYSIS

2.4.1 Light Trespass Predictive Modelling

Light trespass from the Project on the PORs was modelled using the AGi32 lighting software, which uses well established light propagation algorithms. This model allows for the incorporation of the following environmental factors that can result in noticeable changes in light levels:

- attenuation due to distance between the source and PORs;
- light fixture characteristics (e.g., shielding); and
- reflections off of building and ground surfaces.

Using the inverse square law, the AGi32 lighting software was used to calculate the aggregate illuminance from all significant light sources at the PORs identified in **Table 1**. The lighting model was developed based on the lighting layout provided for the Project. The proposed lighting for the Project includes high mast lighting, flood lighting, road lighting and crane lighting on the terminal, and road lighting on the causeway. The preliminary lighting layout includes more than 900 fixtures (**Table 2**). The layout (**Appendix B**) includes the locations and types of light fixtures proposed for the terminal and causeway structures. The types, luminous output and quantities of light fixtures used in modelling are listed in **Table 2**. The layout and **luminaire** information for the light fixtures identified with "type IDs" A, F, S, PL7, PL8 and PL9 can be found in **Appendix B**. The light fixtures photometric data is provided in **Appendix C**.

Type ID	Brand	Model	IES Photometric Filename	Description	Lumens per Lamp	Quantity
A	Cooper Lighting	HMC91S XX4D	HMC91SXX4D.ies	High Pressure Sodium High- mast light fixture, (lighting layout description: HMC91SXX4D)	140,000	462
F	GE Lighting	GE LU250	ge453647_tcm201- 56139.ies	High Pressure Sodium Flood lighting (lighting layout description: AMF-X-250- HPS-XX-44)	28,000	82
S	LED Roadway Lighting	SAT 96M 0XT3 450	SAT-96M-450mA- T3.IES	Road LED lighting (lighting layout description: SAT- 96M-450mA-T3)	12,148	61
PL7	Holophane	PLLED 7 4K 10A 66	PLLED_7_4K_10A _66.ies	Predator large LED lighting	25441	48
PL8	Holophane	PLLED 8 4K 10A 45	PLLED_8_4K_10A _ 45.ies	Predator large LED lighting	26378	96
PL9	Holophane	PLLED 9 4K 10A 44	PLLED_9_4K_10A _ 44.ies	Predator large LED lighting	29432	192

Table 2 Light Fixture Sum	mary
---------------------------	------

The illuminance from the light sources was used to establish the level of light trespass at the PORs. The inverse square law is described as follows:

$$E = \frac{I}{D^2}(\cos\theta)$$

Where:

- E = illuminance at the point of interest (Im/m² = lux);
- I = luminous intensity (candelas [cd]);
- D = distance to POR (m); and
- θ = angle between the light ray and the normal to the surface of interest (degrees).

The PORs were assumed to be vertical walls facing in the direction of the majority of lights at the existing Roberts Bank terminals. This is the Illuminating Engineering Society of North America (IESNA) and CIE recommended approach (IESNA 2000, CIE 2003). The precise orientation of each POR was varied to determine the highest light trespass.

2.4.2 Sky Glow Predictive Modelling

Modelling for sky glow was carried out using a computer program based on a model developed by Garstang (1986, 1989) that predicts the night sky brightness caused by a city or large industrial facility at an observer location inside or outside the city for various zenith distances. The model accounts for molecular scattering, aerosol scattering, reflectivity of the ground, distance, and the fraction of light radiated above the horizontal. The model is based on an observer located at position O at a distance D from an illuminated area centred at C with radius R presented on **Figure 2** (obtained from Garstang 1986).

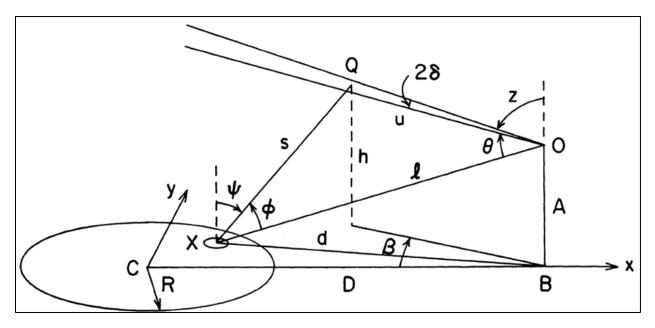


Figure 2 Sky Glow Model

The model predicts sky brightness using the following equation:

$$b = \pi N_m \sigma_R \exp(-cH) \iint (dxdy / \pi R^2) \int_0^\infty du \times I_{up} s^{-2} (EF)_{XQ} (EF)_{QQ} (DS) \times \left\{ \exp(-ch) 3(1 + \cos^2[\theta + \phi]) / (16\pi) + \exp(-ah) 11.11 K f(\theta + \phi) \right\}$$

Where:

- *b* = the sky brightness;
- N_m = the particle density of the atmosphere at sea level;
- $\sigma_R = 4.6 \times 10^{-27} \text{ cm}^2$;
- $c = 0.104 \text{ km}^{-1}$;
- *H* = elevation of facility above sea level (m);
- I_{up} = luminous intensity in the direction of ψ ;
- (*EF*)_{QO} and (*EF*)_{XQ} = extinction factor (the fractional reduction of light intensity with distance) from Q to O and from X to Q, respectively;
- *DS* = the double scattering correction;
- $K = \text{air clarity parameter (ratio of aerosol to molecular N_{\sigma} at ground level); and$
- $f(\theta + \Phi) =$ scattering function.

The total predicted Project-related lumens were obtained from the light trespass model and applied to the sky glow model (i.e., light trespass and sky glow models used the same input information). Lighting fixture layout and the number of lumens each light fixture produces were exported from the light trespass model and imported into the sky glow model. The total sky glow amount at each POR was then predicted.

2.4.3 Light Trespass Assessment Criteria

Light trespass is the unintended direct illumination of nearby off-site locations by the light sources from the Project. Illuminance, measured in lux, has been selected as the **indicator** to represent the light trespass levels for this study. In order to put the illuminance levels from the Project into perspective, it is important to recognise the illuminance levels associated with common well known sources. **Table 3** provides a list of illuminance levels for some familiar light sources.

Example Illuminance Source	Illuminance (lux)	
Moonless overcast night sky ¹	0.0001	
Moonless clear night sky ¹	0.002	
Full moon on a clear night ¹	0.27	
Family living room ²	50	
Hallway ³	80	
Office lighting ⁴	320-500	
Overcast day ¹	1,000	
Full daylight (not direct sun) ¹	10,000-25,000	

Table 3 Summary of Illumination Levels Associated with Common Sources

¹ Schlyter (2009) ² Pears (1998)

³ Australian Greenhouse Office (2005)

⁴ US Department of Labour (2010)

Light trespass limits attributable to the Project light sources may be determined based on the CIE environmental light classifications for the area. The CIE light classification system consists of a set of illuminance zones, identified as E1 to E4, ranging from intrinsically dark landscapes to areas of high ambient brightness (CIE, 2003; Narisada & Schreuder, 2004). The CIE light classification limits and their descriptions are provided in **Table 4**. The selection of a CIE environmental light classification for light trespass at each POR is based on the measured current light levels. As an example, measured existing light levels that are greater than 1 lux and less than 2 lux at a POR would result in an E3 classification.

Table 4 Environmental Light Classification

CIE Environmental Light Classification	Description of Environmental Light Classification	Maximum Recommended Light Trespass Limits (lux)
E1	Area with intrinsically dark landscapes	0
E2	Areas of low ambient brightness	1
E3	Areas of medium ambient brightness	2
E4	Areas of high ambient brightness	5

2.4.4 Sky Glow Assessment Criteria

Sky glow is the illumination of the night sky due to the scattering and reflection of light rays radiated in directions above the horizontal or reflected from the ground and buildings by aerosols present in the night sky. This results in a loss of contrast which reduces the number of visible stars, and produces a visible glow in the direction of the Project. One metric that can be used to describe sky glow is determining the change in sky brightness. Sky quality has been selected as the indicator representing sky brightness. **Table 5** provides a list of reference sky quality and corresponding sky glow levels.

Example	Sky Quality ¹ (Mag/arcsec ²)	Sky Glow ² (%)		
Standard natural background (zero sky glow)	21.6	0		
Limit for astronomical site of international standing	21.5	10		
Limit for dark sky site for most astronomers	21.2	40		
Full moon night sky	18	3,000		
Common densely populated area in North America	17	7,000		
Clear sky 30 minutes after sunset	15	43,000		
Heavily overcast sky	8	2.7 × 10 ⁷		
Clear daytime sky	3	2.7 × 10 ⁹		
Note: 1 Sky quality is a measure of sky brightness.				

Table 5 Summary of Commonly Seen Sky Glow in Percent above Natural Dark Sky Background

Sky glow defined as percent brightness above natural dark sky background is obtained by converting sky quality values into units of luminance. Luminance for 21.6 mag/arcsec² set as 0% sky glow; luminance for 21.5 mag/arcsec² is 10% greater and yields 10% sky glow, etc.

Similar to the CIE environmental light classifications for light trespass, classifications have been established for sky glow. The sky glow zone classifications are based on limits recommended in the literature (Narisada and Schreuder 2004). The zones are defined in Table 6 and are determined by sky glow levels in terms of percentage brightness above natural dark sky background. The sky glow limit for zone G1 – areas of outstanding natural beauty or protected landscapes is 20%. Zone G2 – areas of low district brightness are typically rural landscapes and have a sky glow limit of 100%. Sky glow limit of 200% for zone G3, suburban residential areas, is conservatively based on Narisada and Schreuder 2004 recommendations. Narisada and Schreuder 2004 recommend a sky glow limit for zone G4, areas of high district brightness, in multiple thousands; a limit was not set for zone G4 in Table 6.

Table 6 **CIE Zone Classifications for Sky Glow**

Class	E Zone sification ¹ Sky Glow	Description of the Zone	Sky Glow (% Brightness above Natural Dark Sky)
	G1	Areas of outstanding natural beauty, protected landscapes	0 % < x ≤ 20 %
	G2	Areas of low district brightness	20 % < x ≤ 100 %
	G3	Suburban residential area	100 % < x ≤ 200 %
	G4	Areas of high district brightness	x > 200 %

CIE (1997) classifies the zones as E1 through E4, however, to avoid confusion with light trespass Note: classifications (Table 4), the zones have been re-labelled G1 through G4.

3.0 RESULTS

This section presents the main findings of the study, and briefly describes data gaps, potential biases and incidental observations.

3.1 FIELD STUDY INCIDENTAL OBSERVATIONS

Light trespass and sky quality measurements were collected at eleven locations surrounding the Project. The following provides a qualitative description of the PORs:

- POR1 to POR3 are representative of the Gulf Islands located to the west of the Project. There is no street lighting on the islands and the only lights observed on the islands were home and building outdoor lighting.
- POR4 is representative of the small suburban community of Point Roberts located southeast of the Project. There is no street lighting at this suburban community and the only lights observed were outdoor home lighting. The existing Roberts Bank terminals were visible from this location.
- POR5 is representative of the suburban community of Tsawwassen. Streets are brightly lit throughout this community including along the waterfront. This location had the greatest level of ambient light out of all the locations investigated.
- POR6 is representative of Tsawwassen First Nation Land. Streets within Tsawwassen First Nation Land were not as brightly lit as the suburban community of Tsawwassen. The light measurements were collected roughly at the midpoint between two consecutive street lights.
- POR7 is located at Brunswick Point to the north of the Project. Activities associated with Roberts Bank terminals were the only observed light source from this location.
- POR8 is at a Crescent Beach public park located approximately 20 km to the east of the Project. The area had very little ambient lighting.
- POR9 is at a lookout location next to a busy roadway representative of the University of British Columbia. There was no street lighting in this area.
- POR10 is on the water to the north of the Project near the shore of Steveston Village. This POR is representative of the mouth of the Fraser River south arm.
- POR11 is on the water near the existing Roberts Bank terminals.
- POR12 is representative of the Gulf Islands (Valdes Island) located northwest of the Project.

The activities at the existing Roberts Bank terminals are visible from all of the 12 PORs with the exception of POR8 and POR12.

In **Section 3.2**, the existing light trespass levels are used to classify each POR location according to light trespass environmental light classifications listed in **Table 4** and in **Section 3.3**, the existing sky glow levels are used to classify each POR location according to sky glow zones listed in **Table 6**.

3.2 MEASUREMENTS OF EXISTING LIGHT TRESPASS

The measured illuminance levels at the identified POR locations are summarised in **Table 7**. The illuminance levels range from 0.005 to 0.571 lux and are all above 0 and under 1 lux. Based on the existing illuminance levels, all of the 11 PORs are classified as E2.

Table 7 Existing Illuminance Levels at the Identified Measurement Locations and the Corresponding Light Classification

POR ID	Location	Illuminance (lux)	CIE Environmental Light Classification
POR1	Galiano Island	0.005	E2
POR2	Mayne Island	0.010	E2
POR3	Mayne Island	0.006	E2
POR4	Point Roberts	0.032	E2
POR5	Tsawwassen	0.571	E2
POR6	Tsawwassen First Nation Land	0.058	E2
POR7	Brunswick Point	0.030	E2
POR8	Crescent Beach	0.013	E2
POR9 ¹	Lookout location near the University of British Columbia	0.013	E2
POR10	Steveston Village	0.031	E2
POR11	Existing Roberts Bank terminals	0.226	E2
POR12	Valdes Island	0.004	E2

Note: Property access was not possible for light trespass measurements at POR9. The lighting environment at POR9 is similar to POR8 and therefore, measurements taken at POR8 were used.

3.3 MEASUREMENTS OF EXISTING SKY GLOW

The measured average sky quality levels at the identified POR locations facing the centre of the proposed terminal footprint at 45° from the zenith are summarised in **Table 8**. Each POR zone is classified based on the sky quality measurements and the corresponding sky glow.

POR ID	Measured Sky Quality (mag/arcsec ²)	Existing Sky Glow (% Brightness above Natural Background)	CIE Zone Classification for Sky Glow
POR1	20.88	95	G2
POR2	20.82	105	G3
POR3	20.53	167	G3
POR4	18.34	1909	G4
POR5	17.46	4440	G4
POR6	17.19	5735	G4
POR7	19.21	804	G4
POR8	19.47	613	G4
POR9	18.80	1218	G4
POR10	19.33	711	G4
POR11	18.33	1932	G4
POR12	20.63	144	G3

Table 8 Existing Sky Quality Levels at the Identified Measurement Locations

3.4 MODELLING RESULTS

This section summarises light trespass and sky glow modelling results.

3.4.1 Light Trespass

Light trespass predictions for the Project generated by AGi32 lighting software are summarised in **Table** 9. A discussion of results is provided in **Section 3.5.1**.

Table 9 Summary of Predicted Results for Light Trespass

POR ID	Location	Light Trespass (lux) Attributable to the Project
POR1	Galiano Island	0.000
POR2	Mayne Island	0.000
POR3	Mayne Island	0.000
POR4	Point Roberts	0.003
POR5	Tsawwassen	0.004
POR6	Tsawwassen First Nation Land	0.005
POR7	Brunswick Point	0.010
POR8	Crescent Beach	0.000
POR9	Lookout location near the University of British Columbia	0.000
POR10	Steveston Village	0.001
POR11	Existing Roberts Bank terminals	1.621
POR12	Valdes Island	0.000

3.4.2 Sky Glow

Sky glow prediction results for the Project are summarised in **Table 10**. A discussion of results is provided in **Section 3.5.2**.

POR ID	Sky Glow (% Brightness above Natural Dark Sky)
POR1	121
POR2	124
POR3	192
POR4	2093
POR5	4753
POR6	6086
POR7	1307
POR8	626
POR9	1,226
POR10	794
POR11	13343
POR12	146

Table 10 Summary of Predicted Results for Sky Glow

3.5 DISCUSSION OF KEY FINDINGS

A discussion of the major results arising from the Light Assessment is provided below.

3.5.1 Light Trespass

Based on measurements of existing levels of light trespass (i.e., > 0 lux \leq 1 lux) at the PORs, the CIE environmental light classification E2 as described in **Section 2.4.3** is representative of the identified PORs. The maximum illuminance corresponding to the environmental light classification of E2 is 1 lux. Beyond this maximum illuminance, CIE light classification would change to E3 for trespass levels greater than 1 lux but less than 2 lux. Light trespass levels greater than 2 lux would result in an E4 classification. **Table 11** provides a comparison of the existing and predicted light trespass levels to the existing CIE classification maximum illuminance. The predicted illuminance levels with the Project result in a change of the CIE light classification for POR 11. The greatest increase of 1.621 lux in light trespass levels occurs at POR11. This increase yields a predicted future light trespass level of 1.847 lux at POR11 which is over 1 lux. This prediction is to be expected because of the proximity of POR11 to RBT2.

Point of Reception	Existing Illuminance [lux]	Project Prediction [lux]	Existing + Project Illuminance [lux]	Maximum Illuminance for the Existing CIE Classification (lux)
POR1	0.005	0.000	0.005	1
POR2	0.010	0.000	0.010	1
POR3	0.006	0.000	0.006	1
POR4	0.032	0.003	0.035	1
POR5	0.571	0.004	0.575	1
POR6	0.058	0.005	0.063	1
POR7	0.030	0.010	0.040	1
POR8	0.013	0.000	0.013	1
POR9	0.013	0.000	0.013	1
POR10	0.031	0.001	0.032	1
POR11 ¹	0.226	1.621	1.847	1
POR12	0.004	0.000	0.004	1

Table 11 Predicted Changes in Light Trespass Levels

Note: ¹ Predicted light trespass at POR11 is greater than the threshold of 1 lux.

3.5.2 Sky Glow Assessment

The sky glow CIE zone classifications for the PORs as described in **Section 2.4.4** were determined based on measurements of existing levels of sky quality at the PORs. The existing sky glow along with the corresponding CIE zone, and the future sky glow along with the corresponding future CIE zone classification at the PORs are presented in **Table 12**. The predicted future sky glow level (with the Project) at POR1 of 121% is greater than the sky glow limit of 100% for CIE zone G2 as defined in **Table 6**. The sky glow level of 121% falls in between 100% and 200% which is classified as zone G3. Hence, CIE zone classification at POR1 is expected to change from G2 to G3. The existing CIE zone classification does not change for any of the remaining PORs.

Point of Reception	Existing Sky Glow (% Brightness above Natural Background)	Existing Sky Glow CIE Zone Classification	Existing + Project Sky Glow (% Brightness above Natural Background)	Existing + Project Sky Glow CIE Zone Classification
POR1 ¹	95	G2	121	G3
POR2	105	G3	124	G3
POR3	167	G3	192	G3
POR4	1909	G4	2093	G4
POR5	4440	G4	4753	G4
POR6	5735	G4	6086	G4
POR7	804	G4	1307	G4
POR8	613	G4	626	G4
POR9	1218	G4	1,226	G4
POR10	711	G4	794	G4
POR11	1932	G4	13343	G4
POR12	144	G3	146	G3

Table 12 Predicted Changes in Sky Glow

Note: ¹ Predicted sky glow at POR1 is greater than the threshold of 100%.

The potential changes related to sky glow are presented as a visual aid in **Figure 3** and **Figure 4** for POR2. **Figure 3** shows the existing sky glow and **Figure 4** is an image that has been processed to represent the predicted future sky glow, which includes the changes associated with the Project. Based on a predicted change from 105% to 124% in sky glow, the brightness of the stars does not appear to change noticeably.

Figure 3 Photo of the Existing Sky at POR2

Figure 4 Photo of the Predicted Sky at POR2

3.6 DATA GAPS AND LIMITATIONS

The following assumptions and/or limitations were made/encountered in the Light Assessment:

- The IES photometric data obtained from lighting manufacturers was assumed to be current and correct, and were selected based on the catalog numbers indicated in the lighting schedule;
- When no manufacturer information was available for luminaires, Golder selected IES photometric data that seemed most appropriate for the luminaires in question;
- If information on physical barriers was not available, barriers were not included, leading to a conservative estimate;
- Ground reflectivity used was assumed to be 8% based on site observations;
- Light output above 90° from downwards was considered uplight;
- Light loss factors were not considered (i.e., the lights were considered to be 'new', with perfect ballasts, clean, and perfect input voltage). Older lights with varying input voltage, dirt and ballasts can reduce lumen output; and
- Light changes were modelled using the assumption that expected conditions would be the same as existing conditions. The plan to replace lights at Deltaport Terminal with LED lights prior to commencement of Project construction introduces some uncertainty to predicted future conditions with the Project.

4.0 CLOSURE

Major authors and reviewers of this technical data report are listed below, along with their signatures.

Report prepared by: Golder Associates Ltd.

t (A IN

Esen Cintosun, PhD, P.Eng.

Report peer reviewed by: Golder Associates Ltd.

Danny da Silva, B.Sc., B.A.Sc., P.Eng. Principal

5.0 REFERENCES

Pears. A. 1998. Appliance technologies and scope for emission reduction. Chapter 7 in Australian Green House Office. Strategic study of household energy and greenhouse issues.

Australian Greenhouse Office. 2005. Assessing lighting savings. Chapter 5 in Working Energy Program Resource and Training kit – Lighting. Available at: http://web.archive.org/web/20070415151053/www.greenhouse.gov.au/lgmodules/wep/lights/traini ng/training9.html Accessed July 2014.

- Commission Internationale de l'Eclairage (CIE). 1997. Technical report: guidelines for minimizing sky glow. CIE 126:1997, ISBN 978 3 900734 83 1. Vienna, Austria.
- CIE. 2003. Technical report: guide on the limitation of the effects of obtrusive light from outdoor lighting installations. CIE 150:2003, ISBN 9788 3 901906 19 0. Vienna, Austria.
- Garstang, R. H. 1989. Night-sky brightness at observatories and sites. Publications of the Astronomical Society of the Pacific 101:306-329.
- Garstang, R. H. 1986, Publications of the Astronomical Society of the Pacific 98:364-375.
- Hemmera. 2012. Environmental assessment report: Deltaport Terminal Road and Rail Improvement Project. Prepared for Port Metro Vancouver, Vancouver, B.C.
- IESNA. 2000. Light trespass: research, results, and recommendations, IESNA TM-11-2000. Prepared by the Obtrusive Light Subcommittee of the IESNA Roadway Lighting Committee. New York: Illuminating Engineering Society of North America.

Narisada, K., and D. Schreuder. 2004. Light pollution handbook. Springer: Dordrecht, The Netherlands.

- Schlyter, P. 2009. Radiometry and photometry in astronomy. Archived from the original on Dec 7, 2013. Available at http://stjarnhimlen.se/comp/radfaq.html. Accessed July 2014.
- U.S. Deptartment of Labor. 2010. Illumination. Regulations (Standards 29 CFR). Occupational Safety and Health Administration. Available at https://www.osha.gov/pls/oshaweb/owasrch.search_form?p_doc_type=standards&p_toc_level=1 &p_keyvalue=construction.
- Vancouver Port Authority. 2005. Environmental assessment application for the Deltaport Third Berth Project. Vancouver, B.C.

APPENDIX A Calibration Certificates

CERTIFICATE OF CALIBRATION

CUSTOMER	Golder Associates, Ltd.
	Mississauga, ON, Canada
P.O. NUMBER	Verbal
RANGE	0 – 1500 Lux
SENSITIVITY	380 – 780 nm, CIE Photopic weighted
SPECTRUM TO	
WHICH CALIBRATED	Quartz-halogen tungsten filament
REFERENCE PLANE	Leading edge of detector
TEMPERATURE	25.5 °C
HUMIDITY	44 %

PROJECT NUMBER	15055
INSTRUMENT DESC.	Photopic Det
INSTRUMENT MODEL	PMA2130L
INSTRUMENT SN	15922
DATE CALIBRATED	10/11/2013
PREV. CALIBRATED	10/08/201 2
CALIBRATION FREQUENCY	Annual
REFERRING STANDARD	Mfg Spec
CALIBRATION METHOD	Spectroradior
EXPANDED UNCERTAINTY	±5%, k=2

tector metric

The above instrument has been calibrated traceable to the National Institute of Standards and Technology (NIST). Solar Light Company's quality system is compliant with ANSI/NCSL Z540-1-1994. Unless otherwise specified, the tolerance limits are equal to the expanded uncertainty. This report may not be reproduced, except in full, without the written approval of Solar Light Company.

EQUIPMENT USED

- Optronic Laboratories Model OL220M 200W quartz-halogen, coiled-coil tungsten filament lamp S/N M1313
- Optronic Laboratories Model 65DS precision current source S/N 84473 •
- Vishay Model VFP4 shunt resistor S/N NA .
- Fluke Model 189 multimeter S/N 82290282 .
- Schott NG-5 1mm Thick Filter Melt: 135047
- Solar Light PMA Detector Programming Interface S/N LAB •
- Solar Light Model PMA2100 Radiometer S/N 10822

CALIBRATION METHOD

The spectral irradiance of the lamp is known and traceable to NIST.

The spectral irradiance of the lamp is weighted by the CIE Photopic Luminous Efficiency Function and 683 Lumens/Watt then integrated over the effective wavelength range (380-780nm) to give the photopic illuminance. The transmittance of the neutral density filter is then applied to the illuminance. The PMA2130L detector is calibrated to the photopic illuminance of the lamp at a distance of 50cm with neutral density filter in place.

RESULTS

Lamp Illuminance:	1091.3 [Lux]				
As Found:	1063.7 [Lux]	Error:	-2.5%	Condition:	In Tolerance
As Left:	1063.7 [Lux]	Error:	-2.5%	Condition:	In Tolerance

NOTES

FRINT DATE October 14, 2013 CALIBRATION CERTIFIED BY

absen

Christopher Voth Metrologist

Page 1 of 1

Solar Light Company Inc. | t: 215-517-8700 | f: 215-517-8747 | 100 East Glenside Avenue, Glenside, PA 19038 | www.solarlight.com

CERTIFICATE OF CALIBRATION

CUSTOMER	Golder Associates, Ltd.
	Mississauga, ON, Canada
P.O. NUMBER	Verbal
RANGE	0 – 200 Lux
SENSITIVITY	380 – 780 nm, CIE Scotopic weighted
SPECTRUM TO	
WHICH CALIBRATED	Quartz-halogen tungsten filament
REFERENCE PLANE	Leading edge of detector
TEMPERATURE	25.9 °C
HUMIDITY	43 %

PROJECT NUMBER	15055
INSTRUMENT DESC.	Scotopic Detector
INSTRUMENT MODEL	PMA2131
INSTRUMENT SN	15960
DATE CALIBRATED	10/11/2013
PREV. CALIBRATED	10/08/2012
CALIBRATION FREQUENCY	Annual
REFERRING STANDARD	Mfg Spec
CALIBRATION METHOD	Spectroradiometric
EXPANDED UNCERTAINTY	±5%, k=2

The above instrument has been calibrated traceable to the National Institute of Standards and Technology (NIST). Solar Light Company's quality system is compliant with ANSI/NCSL Z540-1-1994. Unless otherwise specified, the tolerance limits are equal to the expanded uncertainty. This report may not be reproduced, except in full, without the written approval of Solar Light Company.

EQUIPMENT USED

- Optronic Laboratories Model OL220M 200W quartz-halogen, coiled-coil tungsten filament lamp S/N M1313
- Optronic Laboratories Model 65DS precision current source S/N 84473
- Vishay Model VFP4 shunt resistor S/N NA
- Fluke Model 189 multimeter S/N 82290282
- Edmund Optics neutral density filter, 3.2% transmittance
- Solar Light PMA Detector Programming Interface S/N LAB
- Solar Light Model PMA2100 Radiometer S/N 10822

CALIBRATION METHOD

The spectral irradiance of the lamp is known and traceable to NIST.

The spectral irradiance of the lamp is weighted by the CIE Scotopic Luminous Efficiency Function and 1754 Lumens/Watt then integrated over the effective wavelength range (380-780nm) to give the scotopic illuminance. The transmittance of the neutral density filter is then applied to the illuminance. The PMA2131 detector is calibrated to the scotopic illuminance of the lamp at a distance of 50cm with neutral density filter in place.

RESULTS

Lamp Illuminance:	107.28 [Lux]				
As Found:	100.33 [Lux]	Error:	-6.5%	Condition:	Out of Tolerance
As Left:	107.28 [Lux]	Error:	0.0%	Condition:	In Tolerance

<u>NOTES</u>

PRINT DATEOctober 14, 2013CALIBRATION CERTIFIED BY

Show

Christopher Voth Metrologist

Page 1 of 1

Solar Light Company Inc. | I: 215-517-8700 | f: 215-517-8747 | 100 East Glenside Avenue, Glenside, PA 19038 | www.solarlight.com

CERTIFICATE OF CALIBRATION

CUSTOMER	Golder Associates, Ltd.		
	Mississauga, ON, Canada		
P.O. NUMBER	Verbal		
RANGE	0 – 5 Volts		
REFERRING STANDARD	Mfg Spec		
CALIBRATION METHOD	Transfer		
TEMPERATURE	25.5 °C		
HUMIDITY	36 %		

PROJECT NUMBER	15055
INSTRUMENT DESC.	Radiometer
INSTRUMENT MODEL	PMA2100
INSTRUMENT SN	15833
DATE CALIBRATED	10/14/2013
PREV. CALIBRATED	10/08/2012
CALIBRATION FREQUENCY	Annual
EXPANDED UNCERTAINTY	±0.5%, k=2

The above instrument has been calibrated traceable to the National Institute of Standards and Technology (NIST). Solar Light Company's quality system is compliant with ANSI/NCSL Z540-1-1994. Unless otherwise specified, the tolerance limits are equal to the expanded uncertainty. This report may not be reproduced, except in full, without the written approval of Solar Light Company.

EQUIPMENT USED

- Fluke Model 189 multimeter S/N 85500008
- Maxim Model MAX677 precision 5.0000 volt reference S/N NA

CALIBRATION METHOD

The above instrument was calibrated by transfer from the Fluke 189 multimeter measuring the MAX677 precision voltage reference.

The precision voltage reference is applied to each the left and right detector connector of the PMA2100 for calibration. The high range calibration factor for each connector and the common low range calibration factor are stored in the PMA2100. Any PMA21xx series detector can interface to either connector.

RESULTS

	Low Range	High Left	High Right	Units
Reference:	0.3307	3.0000	3.0000	[Volts]
As Found:	0.3307	2.9992	2.9991	[Volts]
As Found Error:	0.00	-0.03	-0.03	[%]
As Found Condition:	In Tolerance	In Tolerance	In Tolerance	
As Left:	0.3307	3.0000	3.0000	[Volts]
As Left Error:	0.00	0.00	0.00	[%]
As Left Condition:	In Tolerance	In Tolerance	In Tolerance	

NOTES

PRINT DATE October 14, 2013 CALIBRATION CERTIFIED BY

Cabu

Page 1 of 1

Christopher Voth Metrologist

APPENDIX B Lighting Layout

This page is intentionally left blank

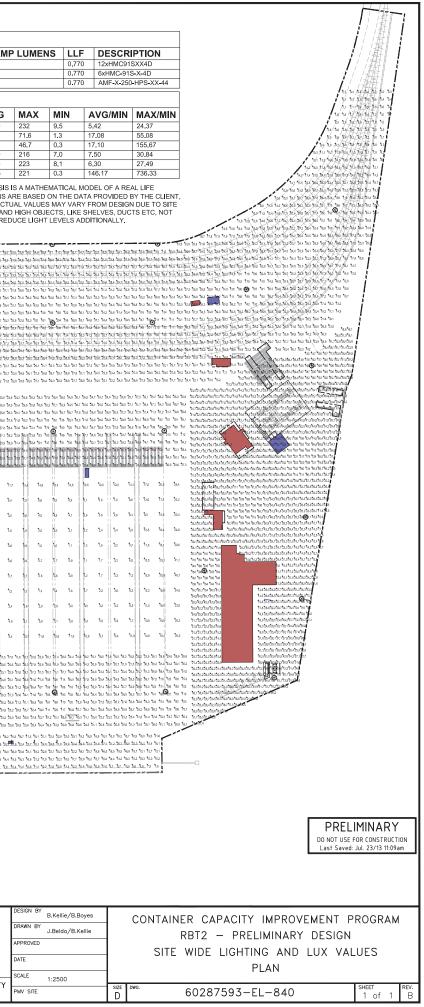
					A6	
				94 95	A6 F	200.837 253.54
	1		SUMMARY	96 97	F	280 280
UM NO	LABEL	ORIENT	TILT	98	F	280
	A	0	0	99 100	F	280 280
	A	0	0	101	F	280
	A	0	0	102	F	280 280
	A	0	0	103	F	280
	A	0	0	105	F	280
;)	A	0	0	106	F	280 280
0	A	0	0	108	F	280
1 2	A	0	0	109 110	F	280 280
3	A	0	0	111	F	280
4	A	0	0			1
15 16	A	0	0	1	- br <u></u>	
17	A	0	0		8000 8 1 142 120 174 34	0 35.5 33.5 75.1 38.7 3
18 19	A	0	0		12.5 12.5 12.5 12.6 12.4 23 12.5 12.6 12.6 15.6 12.5 22	4 28.5 33.8 39.5 23.2 3
20	A	0	0		1.3104 125 168 203 23 1.8. 105 144 160 215 25	8 380 397 989 999 3 9 315 372 321 361 3
21	A	0	0		124 112 151 187 200 29 127 117 155 183 253 34	7 38.1 38.1 38.9 34.2 3
22 23	A	0	0		9.1 12.1 16.8 20.1 27.3 39	3 83.0 97.7 941 962 9
24	A	0	0		8.5 12.4 15.9 20.2 20.7 12 8.5 12.5 197 200 2004 12	
25	A	0	0		10 110 150 192 203 20 10 110 10 102 205 20	
26 27	A	0	0		1: 100 100 100 100 100 10	9 95 1 959 567 709 1
34	A6	0	0		7.1 124 12.1 152 188 21	a 24.a 28.2 30.a 32.3 1
35 36	A6 A6	0	0		to to 11.5 163 186 21 to to 11.3 163 186 21	
37	A6	0	0			
38	A6	0	0		inst ert auf ent est inst ert ent <mark>ant</mark> as	28.1 38.3 45.5 83.6 85.7
39 40	A6 A6	0	0		12 120 149 187 283 16 124 180 204 287	
41	A6	0	0		108 128 158 213 31.1 108 127 157 212 31.3	boz 164 140 180 201
42	A6	0	0		10.3 12.1 15.1 20.0 28.6	\$4.7 75.2 919 909 906
43 44	A	0	0		177 114 143 179 248 179 104 131 158 204	
45	A	0	0		to te tis tas ter	30.9 38.0 31.0 34.5 35.:
46 47	A	0	0		140 B.0	12,1 14.1 15J
48	F	260	80			 % to ⊡‰
49	F	260	80			
50 51	F	260	80 80		1.5 2.0	\$1 \$7 \$42
52	F	260	80		รัก รัง	15 18 19
53 54	F	260	80 80		tus tus	to to to
55	F	260	80		tas ta4	bs bs be
56	F	260	80		ts 5.4	tus tus tur
57 58	F	260	80 80		ts ts	1 1a 12
59	F	260	80			
60	F	260	80			
61 62	F	260	80 80		2.1 3.5	15 3s 8s
63	F	260	80		\$a \$1	\$7 \$1.4 \$2
64 65	F	260	80		h 103 125 146	17.2 20.6 20.8 261 26.
66	F	260	80		35 120 144 175	224 287 348 399 31.
67	F	260	80		114 142 183 256	963 905 969 982 92 913 988 982 918 92
68 69	F	260 260	80 80		120 150 200 209 123 153 206 204	10,7 10,0 128 175 189 19,7 17,2 107 20 201
70	F	260	80		12.1 15.0 20.0 29.0	16.1 18.7 100 177 181 177 1808 1809 121 121
71 72	F	260	80 80		100 130 163 217	29.7 21.9 28.9 21.1 24
73	F	260	80			927 992 965 910 92 3 963 967 910 922 9
74	F	260	80		23 32 35 351 828 383 20	s 1 81 228 239 1 10 3
75 76	F	260	80		20 29 26 128 127 172 19 16 24 38 101 155 136 15	
77	F	260	80		to to to to to to	
78	F	260	80	[
79 80	F	260	80 80	LUMINA	AIRE LOC	
81	F	260	80	LUM NO	LABEL	ORIEN
82 83	F	260	80	112	F	280
84	F	260	80	113 114	F	280 280
85	F	260	80	115	F	280
86 87	F	260 260	80 80	116 117	F	280 280
88	F	260	80	118	F	280
93	А	0	0	119	F	280

LUMINAIRE LOCATION SUMMARY

LUM NO LABEL ORIENT TILT 200.837 253.54

LUMINAIRE LOCATION SUMMARY

LUM NO	LABEL	ORIENT	TILT
120	F	280	80
121	F	280	80
122	F	280	80
123	F	280	80
124	F	280	80
125	F	280	80
126	F	280	80
127	F	280	80
128	F	280	80
129	F	280	80
130	F	280	80
131	F	280	80
132	F	280	80
133	F	280	80
134	F	280	80
135	F	280	80
136	F	280	80


LUMINA		CHEDUL	E				
SYMBOL	QTY	LABEL		ARRANGEME	NT	TOTA	
۲	33	A		12 @ 30 DEGREES		140000	
Ú.	11	A6		GROUP		N.A.	
Ī	82	F		SINGLE		28000	
CALCU	LATIO		A	RY			
LABEL			C	ALC TYPE	UN	ITS	AVG
BUILDINGS AR	EA		ILL	UMINANCE	LUX		51.50
CAISSON WHA	RF AREA		ILL	UMINANCE	LUX		22.21
CONTAINER YA	ARD .		ILL	.UMINANCE	LUX		5.13
CONTAINER YA	ARD 50LX ARE	A NORTH	ILL	UMINANCE	LUX		52.49
CONTAINER YA	ARD 50LX ARE	A SOUTH	ILL	.UMINANCE	LUX		51.00
RAILS			ILL	UMINANCE	LUX		43.85
FIXTURE MOUNT FIXTURE MOUNT TYPE F - 5.5m ARM'S LENGTH: BUILDINGS' HEIG	TING HEIGHT: 2.5m;		.6 - 3	5m; SITUATION AS STATE CONDITIO SHOWN O	N THI D ON NS O	E CALCU THE DES BSTRUCT	LATIONS IGN. ACT

																						_		_		_						_						_								_	_				-07									. -	-				_
2.5" 25 2.5 <u>" 2.5</u>	142 1 109 1 128 1	29 97.4 4.8 98.4 5.1 98.1	240 90 230 30 224 21	6.5 3.8 19 8 9 19 5 8 9	5 78.1 .7 53.0 .8 39.5	88.7 Ja. 88.7 Ba. 88.7 Ba.	84.6 15.6 36.5	0.1 28.4 4.7 21.5 1.9 28.5	244 90 242 22 25.1 23	1 201 1 200 5 22 8	14.2 20.8 20.5 22.2 22.8 23.5	24,9 2 24,5 2 25,2 2	9,4 92.2 9,6 35,6 9,0 32,1	81,8 82,1 96,7 86,1 97,1 9,1	0 193 9 100 9 240	73.9 59.3 53.4 82.3 20.8 55.0	36.8 2 30.5 2	264 223 262 232 269 243	19.5 19. 21.5 20. 23.0 22.	1 192 2 2 208 2 4 227 2	21.5 24.9 22.5 25.5 23.7 25.9	39.8 37 30.1 38 29.1 33	s 180.3 8 9 50.2 8 6 30.5 9	7.2 \$7.1 9.0 \$9.1 9.2 \$3.5	86,5 3,62 86,0 88,7 86,0 88,9	4 32.0 7 30.2 5 29.4	24,7 21,5 25,5 22,7 26,2 24,0	20.6 20 22.9 22	14 217 23 15 23.1 24	8 28,9 A 26,7	32,4 32 30,4 35,	27 325 20 901	194 100 1840 190 1848 196 1847 191	8 112 16 88 14 856 14 952	94.4 27 94.6 37 94.0 26 94.1 26	2 200 2 21,4 8 22,0 6 22,9	18,0 14 14,5 14 18,9 17 20,7 35	48 948 60 957 71 965 92 979	148 1 147 1 147 1 175 1	47 180 62 184 78 261 84 200	22.8 33 24.6 31 23.4 29 22.7 28	10 300 3 10 300 3 10 300 3 10 300 3	8.9 112 8.5 18.9 8.9 18.7 8.1 1225	tra tale tale tale tale tale tale tale tale tale	551 324 558 354 558 562 552 562	20.4 200 24.6 21.4 25.4 22.8 26.0 24.0	778 97 703 98 203 20 229 22	7 18.4 3 2 30.6 3 4 21.7 3 6 23.2 3	1,4 242 2,5 247 3,4 242 4,4 247	912 929 915 934 922 924 922 924	89,2 115 74,3 190 83,2 80 80,1 23,	1 20 3 1 20 5 1 20 5 10	3 255 14 215 27 365 11 324	20,1 20,5 20,0 20,5 20,5 20,5 20,4 20,2 20,4 20,2	1935 17 1922 19 1925 19 1926 19 1926 19	6 778 78 3 792 79 5 704 72 7 727 72	8.1 220 2 0.6 228 2 20 24.4 2 3.5 260 2	27 259 28 212 29 251 27 218 77 218	14,2 105 20,5 34,0 36,1 36,4 36,5 41,6	175 195 1924 24 1904 34 1904 34 5 24 191	2 125 12 5 134 14 0 129 13 1 150 19	in the second second		177 180 182 182 284 289 228 228	
7.3 10.5																													12 25.6 28 10 27.4 22				39,5 34 35,5 34	19 383 10 388	1 308 27 344 29	n 24.2 5 258	21.9 20 23.4 20	10.0 19.9 12.3 21.3	21.9 2	10,8 22,4 11,9 23,8	26.7 30	up 3119 3 119 3119 3	62 39.5 11.1 *44.8	39.6 197.3 45.1 41.7 '	33.0 291 37.1 321	28.9 27.8	26.9 27	2 27.5	95 975 7,9 79-9	30,8 34,3 34,2 30,1	880 40 83.4 85	9 314 3	1.2 35.3	30.9 28.0	27.4 X	10 27.0 2	7.5 28.0 3	10 357	20.4 24.4	1 25.9 23	13 388 3	A.6 29.6 1	28,1 27.1	20 2.	27.8 3
1.4 11.2	15.1 1	8.7 23.0	29.7 3	is.1 %	u 1849	842 801	\$15	2.4 35.0	29.9 28	6 28.2	28.7 29.2	2 50.8 5	6.5 \$4.3	\$4.2 B3/	la 184.5 '	57.8 47.7	39.2 3	12.7 28.5	28.1 27.	5 28.3 7	28.6 31.6	37.8 45	9 362 1	4.0 83.7	80.9 30.9	9 37.7	91.6 29.1	28-2 28	ua 28.6 25	1 33.4	40.2 48.	.s teo	84,5 81	13 81.9	81,9 33	a 27.8	244 22 No N	2.6 22.5	22.5 2	13.0 25.2	29.6 36	ta Na B La Nua B	6.5 to.5 4 1 to 0	83.4 85.8 ⁻ 80.1 80.0 -	95.8 97.7 94.7 903	31.7 29.3 Two too	28.4 28	5 285 2 1 865 3	9.4 33.9 20 3 82	81,0 89,9 81,4 91,4	80.1 85. 80.6 900	3 814 81 5 164 7	18 426 ' 49 726	35.1 29.9 39.7 301	28.6 28	.0 20.5 2 16 29.2 1	39 503 5 02 507 5	57 485 T 121 T21 T	53.2 62.3 78.6 66.8	1 164.8 158. 8 162 156	.a %az % aa %az %	0.1 30.2 1 1 6.55 1.0	28.9 28.3 21.4 28.9	27.8 28.5 28.8 29	- 29.3 3 (31.1 3
18.7 11.7 19.1 19.1																		38,0 30,7 38,8 32,7	28.5 28. 29.3 29.	.5 28.0 3 42 28.7 1	0.8 355 32.5 39.2	35.3 83 35.4 85	u 18522 1 Jo 125 1	00 156,4 58 1157	183.6 181.1 1921 181.1	8 143.6 1 0 152.6 1	94.5 30.1 97.9 31.9	28.6 25 28.4 25	12 295 31 23 304 34	14 3823 i 15 \$12.6 \$	20.6 80. 83.2 96.	.5 90.8 1.2 1 38	103 95 162 14	62 769 19 906	88.9 %	.7 28.9 .6 32.5	24.9 2 28.0 2	90 205 95 2 39	25.4 2	108 2807 14.8 28.5	36.9 B3	1.6 621 8 1.7 84.0 9	24 1 58	991 830 198 121 1	80,9 82.0	37.9 32.1	29.6 29	, 200 i 7 309 1	5.3 °24.1	ban ban	142 163	s 146 11	н 8 63	24.9 35.4	30.4 25	11 29.5 3	10 300 3	8.9 75.1 1	112 152	¶61 ¶3	я 1917 В	JOD \$1.1	33.5 29.8	28.1 30.7	10.01
1.1 12.1 1.3 12.4 1.3 12.5	15.9	0.2 28.7	\$2.9 %	12.9 12	2 180	h i 1ar	129	8,9 BQ.	37.2 31	2 20.0	30.1 32.8	104 3	7.5 BE.0	149 199	B 00	168 108	864 3	3.0 33.8	29.7 29.	15 29.9 2	33.5 42.2	12.7 10	1 101 1	© 200	155 15L	8 89.5	8.5 ⁶ 6.04	29.7 25	er 30.6 Se	7 10.5	12.3 118	8 1 77 (ð l	1 1 35	81.6 39	5 342 clash	27.3 %	67 263 Galleri	203.2	5.5 2 9.5	30.1 B1	u 100-1	• •	202 954 Mod 94	tes tas texitoi	110 330 110 127	29.9 30 348 34	0 312 1 8 308	6.8 °8.5 6.1 °813	96.0 924 96.1 925	102 🔁	. 187 1: s 1101 1	10 79.1	49.7 37.0 1900 365	31.0 29	.7 29.8 3 1 1 215 1	21 383 8 11 883 1	u ta 1 la Teal '	143 196 144 197	2 ¹¹ 17	2 112 8 /s 113 1	85 45 * 87 ***	34.7 30.2 34.4 30.0	29.7 30.2	: 33,9 ³ - 33,6 3
30 318	150	22 28.3	381 8	25 98	9 144	165 148	325 1	81 441	344 23	3 284	18.6 30.8	3 38.5 5	0.1 78.4	119 158	8 163	132 88,9	36.9	38.7 31.7	28.4 27	18 28.3 3	31.3 37.8	34,5 8	3 127	15 160	123 31	5 32.0	36.9 31.0	28.5 28	3.2 29.0 33	11 31 4 1	827 96.	5,8 141	165 15	12 106	7011 343	.8 31.6	25,1 2	23,7 23,2	23,3 2	27.6 5.7.3	3926 53	10 944 1	27 161	160 123	81.4 32.1	373 312	28.7 28	4 29.5	sa 1 27	95.6 101	145 160	j 149 1	18 86.3	34.1 543	29.5 28	u 183 1	6.2 35.4 7	7,9 74,9	114 158	164 13	1 227 8	9.8 40.0	325 289	28. 282	1 312
B.5 112	143 1	23.6	327 4	4.9 B	9 317	1q3 1q.	72.9 1	1.4 37.1	30.3 27	8 27.1	22 284	32.2 \$	11.0 \$7.9	80.6 98.	7 102	27.3 24.0	24.6 3	34.2 28.0	28.9 28	16 267 2	28.6 33.5	23.1 8	0 85.1	01 99.9	82.7 59	8 120	2.8 28.5	26.9 26	19 27.4 3	1 36.0	28.0 28.	LS 191.0	103 85	3 74.6	524 37	1 28.3	23,4 2	2.5 22.1	22.2 2	22.0 24.9	31.4 41	1.7 81.1 8	4.3 501	59.6 82.7	59.7 321	92.9 28.0 28.0 28.0	21.2 2	2 27.8	0.8 37.1	50.0 71.1 38.1 47.7	93:0 90: 54:1 80:	94.5 7: 7 869 7	52 81.7 40 80.0'	37.9 30.2 31.8 30.2	27.5 26	9 270 2 N 249 1	6.0 31.4 3 6.1 27.7	19 568) 19 926	18.2 97.3 51.0 01.2	103 89 2 83.2 84	15 762 7 16 63 63	83 352 864 304	287 272	26.9 27.1	28.9 3 98.5 1
26 301	180.1	eaff ra	tole t	in be	4 387	\$1.0 300	1051	1.0 27.	248 24	8 244	264 243	12.12	as \$25	37.4 31	la tha l	38.9 33.9	243 3	258 292	24.1 23	19 260 2	24.8 25.5	280 30	5 380	14 112	20 20	1 20.0	201 2015	342 3	<u>d 542 5</u>	us best *	302 34	13 384	314 37	10 1 55	i skris	9 1 23	Xia Si	128 1 927	193-1	83 215	20.7 22	18 20 3	10.0	310 375	33.0 128.	25.5 24.9	24,4 24	3 249	97 240	<u>ha hai</u>	4do 41.	that's	1 7 1 12	272 245	da b	1 202 7	<u>87 bed 2</u>	<u>1930</u>	<u>98 8 - 40</u> 8	a ka ka	d Mark	<u>ka 1262</u>	245 244	<u>tai a</u> i	r tiert
7.1 3.4	12.1	5.2 1 8.8	218 2	2428 °21	12 30.9	32.3 31. *** **	5 30.0 1 10 7	17.8 1 5. 4 c 1 c-	24.8 22	3 22.8 3 20.7	22.9 24.1	1 249 2	84 285 557 370	310 32	17 330 '	31.6 29.2 28.6 27.4	26.8 2 26.0 2	249 241 248 229	22.5 22	2 224 7 11 205	34.0 24.7 22.7 24.4	28.6 28	19 31.4 12 28.5 1	12.9 32.8 19.3 29.3	31.2 28. 28.4 27.	7 26.5 2 26.9	24.9 24.0 24.4 22.8	227 2	25 228 2 28 214 2	ы 253 ° ы 250 °	27.2 29. 28.2 27.	us 31.7 i 7.5 22.6	r 32.7 31 5 29.1 28	1.9 ¹ 29,8 9,6 ¹ 27,4	3 26.7 24 1 25.8 24	4 22.2	2013 71 7928 71	18.9 98.3 17.4 98.7	184 1 168 1	18.9 2 00 17.8 20.4	22.6 24	5.3 26.0 3 4.8 26.5 2	60.8 32.5 28.0 28.0	325 311 291 283	28.6 263 27.2 253	i 250 240 240 229	22.9 22	.8 23.4 1 .1 22.3 1	918 257 97 254	27.6 30.1 28.5 27.9	72.2 73. 29.0 29	1 323 3 .5 281 2	13 27.7 8.0 2 6.6	25.7 24.3	23.2 22 22.3 V	.5 22.6 2 1.5 20.6 7	1.8 24.8 2 2.6 24.0 7	51 282 5 55 289	382 392 382 392	1 330 31 2 29.4 26	8 27.6 2 88 27.6 2	26.2 24.9	23.2 21.3	1 21.4 20.	1 230
to to													25.8 28.9	28.0 29.	20 28.1	28.4 27.0	2010	24.5 22.8	\$1.3 ¶9	10 212 1	22.6 24.4	25.8 %	ia 1 83 1	1910 2910	28.1 28.	9 267 1	24.3 22.5	20,4 16	R3 218 2	12 24.9 1	26.2 27.	.12 28.3	5 28.5 ⁵ 8	1.3 27.1	26.7 22	ua 121.0	19.6 1:	17.1 15.6	157 1	ia.6 20.5	22.6 24	4.7 26.3 2	27.7 28.6	28.7 28.0	26.9 284	201 221	2016 20	5 22.1	11.5 25.3	26.5 27.5	28,7 29,	2 28.8 2	17 265	25.3 23.6	22.0 20	ua 20.4 2	2.3 23.9 2	67 2 67 7	27.9 28.9	3 29.1 28	15 27.2 2	95.2 2 4.8 '	23.1 21.5	19.2 21.0	22.8
		12 × 10	a *az	• • • • •	1 4 0 1 0		an 1 11	379 3	sa 1 50'	he h	7 310 3	151 354	386 3 0	o 300 1	ter te	s 152 50	14 366	3 343 32	a 1 32 '	23.1 23.	7 238 2	5.7 29.1	341 372	30.2 37	a 545 I	Let act	541.54	JD 23.4	23.5 24.0	245 261	s 104 1	35.1 38	an 13ar 1	363 3	116 27.1	23.5 21	3 99.5	18,4 19	RI 194	20.1 21	7 241	28.0 33.4	37.0 Be	s Ivo I4.	4 29.6 2	6.1 24.5 2	2 237	23.8 24.3	24.9 27	2 31.0 35	7 38.6 1	ast aet	32.1 28	10 254 2	4.7 23.6	23.5 23.8	24.7 25.1	28.1 32:	.1 367 S	1920 - 3 925 -	55.6 5 0.9	1 27.0 24.	.7 \$4.5 \$3	3.5 23.5 7	11.9 24.2
30.3		175 21	.9 28.1	56.5	45.5 \$3	a 1557 1	8.3 % 0.7	33.4 3	10 228	25.0 25	1 25.1 2	5.5 28.7	344.31	us tais 1	867 84.	2 36.0 37	18 3 0.9	26.2 %	9 246 1	24.6 247	7 25.2 29	94 357	23.4 22.1	36.9 32	7 442 3	38.5 30.	35.8 34	.9 24.9	24.9 25.2	26.3 31.1	0 37.9	46,0 84	40 382 '	20.7 °a	0.7 32.9	26.6 22	4 20.5	20.5 21	0.2 20.1	20.8 23	10 27.8	34.4 42.6	514 58	5 \$2.5 \$4.	1 36.3 3	0.0 25.8 2 5.7 28.7 2	2 25.2	25.2 25.5	27.0 31	7 38.8 47	1 54.9	66,4 49,6	30.9 33.	3.6 28.0 25	5,1 247	24.9 24.8 25.8 25.5	25.2 28.1 27.8 32.5	33.5 \$1.0 \$1.6 \$8:	0 207 20 7 205 2	16.5 84.7 ° 91.3 84.2	17.0 38.6 12.8 12.7	31,8 280 1 38,4 30	ua 25.3 24 U2 26.9 25	10 240 2 58 258 1	49 254 853 281
					t			1				0.0	ten te	a 100 1	101 144	101 20		121.20	n tes t	545.525	3 315 20	en# nn	to a 122	102 13	6 362 1	10.6 312	1 223 27	a 266	26.8 28.4	33.0 44	3 ° 805 °	104 141	41 950	121 3	46 511	35.7 26	8 22.4	22.1 22	2.0 22.2	22.9 28	2 38.3	39.8 92.0	132 15	135 16.	3 63.6	14 325 2	L1 ¹ 26.9 1	27.1 28.0	34,1 %	8 128 10) 1 44 1	149 121	12.2 13.	3,1 36,7 30	0.1 27.1	20.6 27.1	302 368	53.3 Ber	6 121 1/	49 944 .	108 72.4	16.5 33	a 20.8 20	as 265 2	7.8 31.8
1a 1	28 958	21.3 31	1 802	2 85.4	143 16	3 ²⁰¹	60 1 01	82.0	517 ao	28.0 27	5 28.2 3	2.4 82.1	18.5 10	6 166	ö.	n 1a7 1a	3.2 BOS	: 30.0 2: . 1 1.	12 27.0	27.0 28.1	, 335 % - 316 %	4.8 720	119 178 100 100	ĝ: 1:	0 125 1 0 100 1	75.4 Neu 770 Neu	5 34.5 28 5 34.5 28	17 27.3 15 29 5	27.3 29.5	38.3 512 Na. 9. 521	.2 83.5 ¹ 10 85.8 ¹	138 18		165 1) 171 1-	ace ao 10 Mar	tala ta	2 23.8 la 23.5	1 22.6 22 1 22.5 22	2.5 22.7 24 102.5	1 244 30 5 242 30	10 ¹ 42.6 1.2 1 42.9	1028 118 172,8 122		5 180 123 6 188 121	5 154 3 9 1024 3	67 347 2 77 347 2	1.9 °27.6 ' 1.7 °87.8 '	27.7 30.1 27.4 30.	37.5 54 37.6 59	o 83.0 14 b 90.5 14	199 201	(01 160 211 165	102 €2. 105 ∰2	1 305 31 33 306 2	15 277 34 275	27.3 27.8 28.1 27.2	31,8 20.8 31,8 20.8	7224 702 105 705 105	6 166 1	01 192 81 201	143 87,4 148 89,9	73.5 37. 1948 37	12 30.0 27 13 29.8 27	1,4 27,3 2 72 (\$7,1 3	34 334 342 34
																																																												68 160	1:0 760 1:0 1:0	17.8 30.	19 202 29	31 259 2 4 5 9 2	11 ⁰ 63
																																																							218 2 24	224 224	2013 31.9 122.6 26.1	42,1 60,1 12,4 41.	1. arg 1.	loja Bela	2019 3812) 303 24	18 228 22	25 °24 °	2.5 2.5
7.0 1	.e 10	13.9 10	1 20.9	9 260	310 3	5 35.3 1	13.0 29.	245 2	1,1 20,2	20.1 20	1 20.2 2	20.4 ZO.4	25.1 25	R.7 * 33.6 *	30.9 30.	0 31.7 21	12 225	9 10.1 TS	18 1 98	10.6 °0.5	3 905 2	20 25.8	30.5 342	560 34	5 30.9 3	283 22	3 1928 20	1.0 † 9.8	19.8 20.0	20.1 220	o *27.2 *	31.6 34	H.8 35.6	330 2	18.9 23.9	199 17	5 163	163 10	RO 984	10.5 17	9 207	24.9 29.5	327 33	7 344 30	s 212 1	1.2 20.5 2 2.4 20.2 2	12 201	201 20:	20.6 22	5 °09 %	2 363	ks 3a2	29.2 24	.5 <u>717 7</u>	(c) ⁸ 9.9	tea tea	20.1 21.1	24.6 292	2 332 3	15.8 3 6.2	\$2.1 27.7	23.4 20.	14 Don 19	28 199 2	no 99:
															1									¦ .		340	12.5	빏	11.9			÷			4.0		-	. 1	<u>i</u> -	\$0.1	-	1	-1	a 14	- 1	0.4 ¹		1 14	130	143	10	150	=		2,2	10.2	123	13.8	15.0	 1 53	142	2 12	u 11	11 1.5 1	11.7
i i	в	3.9	12.1			15.0			ia.1			182		4.4	15.3	34,7	12.1			1 1.1		14,0	15.			140	12-3	11.2	11.9	13.			10,1	=	_	-	-	1	: =	tu:	=[]	1.			-11	_		1 16.1	-11		=	5.1		1000	12		1.2		٦,		3.5	,	. 1	 6d •	k4
	1.8	\$2	151		ħ.s	3.1	3.6	1Ľ	17	€.1 	62	75	1	3	\$4	8.9	30	ŧ		8.9	1.3	84	\$.2			8.4	7.4	80	7.0	84	1	9.9	9.2	1		7.2	5.3		1		=[*]		=l Î		-11	Internet	- II		3.0	3.9		manufactured	_			Ĵ.	+	Ĩ.							ŧ.
		2.3	\$1		\$17	42	3.8	II.	1.5	\$1 	3.2	3.6	1	(9)		* 4.0	3.6	5	a	13.2 	3,4	3.8	3.1	11 1		3.8	34	\$d 	30	34	6	* 10	133			23	27	2	8	24	3.4	ts		• 1.	•	ls 1	.0	3u •	3.5	3.9	341 11 +	3.1 I • ·		3		.32 11 -	3.4		- 41 - 1	43 43	3.9				
	i.r	٩.1	15		¶a	1.9	1 .9	II.	.7	1.s	1. 6	ħ.	2	.0	1.s	2.0	18	1	8	14	tr	19	2.0	1 2		1.0	τ.	14	٦,٥	10	[2.0	1.8			1.6	5,4	1	1	۹.4 ۲.4	1.7	1.0 1.0		9 Z	•	u 1 in 1	.6	ъs Ъя	1.7	1,9 ħo	2.0	2.0	ľ		4 1	10 		19	20	<i>w</i>					**
		ħ.s	to		3.8	tus .	ð.9	11	a.c	₹s	ζu)	ĩ.	1	.9	6.9	ð.9	Ť.9	, 1	8	8.8	^{5,9}	t.º	ħ.	⁸		34	1.9	Č.s	ađ	25	9	ћ.я	1.9		h.o	3.8	3.7	0		b.7	6.6	1.9	ľ	9 a.				•		0.9	.)		u.].					10		***				1.0 1.0
ŀ	is	ħ.4	5,5		ð.5	b .6	ħ.e		a.	1¦ a∂	δus	to.	8	.6	\$4 	τus	ħ,6	. 1	5	8.6	ίu	tus .	ů.	5 		Ъs (tus -	τις 	ð.s	100	a	τιs	106 5.7		8.5 8.7	3.6	ζι.5		us ; 	d.5	215	tus		s 0.	8	1.6 1	ua	•	•	0.5 %.7		1.7	ľ		0.0 5.7	1	ħ.		0.0	<u> </u>	5.7	, .			**
ľ	L3	5.4	b 5		Ъ.с	t.7	ħ.;		la -	tus	ħ7	67	1			ħ.7	67	. 1	a	0.7	ħ7	ħ,	5.7	1 8		τ.r	ħ7	an L	\$.r	74	7	°0.7	1		***	Ъ.6 1 о	7.6 7.0		1	8.0 10	ba	1.7		7). . 1	2	67 1 15 1	a	11	1.	0.7 1.4	07 11			1.	аг 1.		10		•.	11	14 14			~ 1 1 1	*-
	15	83			1.3	1.2	1.1		12	¹ .1	1 .1	1.3	1	A	14	ħ.	15	1	л	¹ .1	12	1.3	14			1.3	1.2			72	3	ъ.	13		13	12	1.0	9	1.9	1,0	12	1.3		3 i. •	•		^	1.1 5.2	1.2	5.	54				í.	1			5.0		5.0 5.0			1	5.
		17	23	1	27	2.8	2.0		2.5	2.2	24	58	2	La .	3.i	29	20	5 3	и !!	13.2	25	2.7	2.9	1	9	22	25	22	2.4	20	.6	2.9	3.1		2.7	2.4	20	. 1		2.1	2.4	2.8		.7 2.		2.6		• .	23	2.8	3.0	29	ĺ			1.					÷.][[,		Ĵ.	5. 5.
	2.1	3.5	15	5	3.8	% 3	5.		ko	4.5	4,7	30	5	17	1.0 	5.8	\$2	2 1	8 	10	5.0	64	ι.	11	9	3.6	3.1	14	53	53	2	8.1	1.9		8,4	4.8	3.9		3.4 	42	4.8	5.0 Tu			18	a.)		4,0 4.0		0,0 t		•••				11			100	1 100	, t.				5.
	3.a	5,1	\$7	r	11.4	12.2	11	6	10.4	3.3	1 .8	10	5 ¹	ita	12.5	1 1.9	51.	8 1	4	18.0 	\$.9	11.3	12	3 ¹	2.3	714	9 .9	- 11	R 5	0f	0.9	71,9	12.3		11,4	9.7	7,5	i t	6-6	8.2	10.1	11.	5	2,4 1	1.8	10.8		6.3	163	11,0	120	144			1.5		P.1		12.4	1		1			
	1 10	12.5 %	10 972	2 20.6	23.8 2	26.9	25.5 23.	2 20.3	10.5 10.1	17.9 17	iz 17.9 1	18.3 18.4	1 20.4 °2	3.3 25.7	2. 20	u 147 1	12.1 18-	4 17.8 1	18 97.5	17.3 17.	a 176 1	8.6 20.8	23.7 26.	2.5	5 263 .	21.5 19.	1 180 17	1.8 12.6	97.5 97.9	17,7 18	2 217	244.28	27.0	254 3	22.9 99.7	17.4 11	i7 946	s 145 1	43 945	5 NZ 15	5.8 47.8	20.0 23.	2 25.7 2	1 264 24	14 213	92 961 9	8.0 17.8	17.8 18.	18.0 %	5 22.2 2	us 2009	27.3 257	21.2	1. 184 1	an 17.7	175 177	7 18.1 182	: 20.1 22.	:9 25.5 P	27.2 27.0	25.0 22.4	4 1926 18	21 120 17	72 175	17.8 172
			1.1			11.		11.		. LI			1 .		. I I .					. 			4	يه د الع		tala ta	- 1 to		200.200	A	la Anni	A	Sec. 842.	210.2	ton to a	300 3	1 100	100 1	an Ian	n 110 3	en Meñ	Ses So	e 185 i N	10 TTA TA	9 395	ns 348 5	33 2 30.	23.0 25	5 259 3	3 223 5	9 69 6	72.4 83.4	1 48.4 2	5.5 27.8 2	23.6 22.8	23.0 22.6	6 20.9 222 8 23.8 272	2 34.6 46	6.6 61.9 7	71.7 70.5	5 39,5 43,7	7 32,9 26	83 ZS5 Z	22.8 23.1 5	22.9 23.8
1						14.				a . 4		والتغارب			- U		والخاري		المنافعة	Acres 644	o 80 c 8	la tra	Acres 244	A	a track	Sele Se	o 340 34	e 1 % da da	the tipe	300 30	0 100	Acc 11	100 205	306.3	No Sec	208 2	ia bia	5 203 2	04 302	a 30 a 3	52 S UR	30.5 78	6 1 08 1 8	લ 114 દિવ	37 5 68 1	7.9 28.8	5.7 2k.T	24.8 26.	2 30.2 9	(3 B1.6 B	LB 118	124 103	72.3 3	7.6 33.7 2	27.7 24.8	28.8 243	7 27,1 325	7 75.3 60.	9.2 59.4 1	123 120	93,0 64.1	1 2198 31 1 314 31	10 283 2 56 287 2	945 248 2 259 281	25.1 28. 28.8 31.
	12.0 95. 12.3 95.) 20.0 2) 3 20.6 3	8.9 ¹ 897 0.4 1997	7 98.0 7 97.2	128 1 147 2		151 10. 172 111	1 10.1 65.6	98.3 30.2 91.0 31.4	26.5 2	LO 2645 LS 27.2	30.2 385 31.3 20.5	2 130.4 16 9 135.3 91	(7.0 ¶50) (9 ¶71)		5 129 7 13 148 18	19.9 28 19.1 53.	8 34.5 2 2 36.2 2	8.0 25.5 8.8 26.2	25.6 28	6 310 3 21 324 7	10.9 71.8 13.9 71.8	107 158 121 183	Q.	se 118 ' 33 135 '	7218 184 30.1 98	3 72.9 Z 4 74.4 2	7.4 25.7 8.1 26.3	28.7 27.7	33.7 4 35.3 50	843 75.7 2.4 84.1	123 17 141 14	171 186 198 0 221	155 1 178 1	101 81.3 115 87.2	37.4 2 39.4 2	1 22.8	8 21.4 2 0 21.9 2	nis 220	6 23.0 2 0 23.3 2	1.6 36.6 9.5 41.2	10.5 121	100	3 193 12	15 80.2	41.6 34.7 1 18.6 34.7 1	8.4 26.6	26.7 29.	2 36.5 8	15 7015 70	, "C	118 172	110 B	&1 \$0.8 T	31.1 26.9	26.8 261	2 29.7 389 8 30.4 39.1	1 81.9 90	A 165	Ø 207	164 B42	10 BE(3 30	7.2 29.6 2	81.5 28.3	27.5 32
	21 15	. ton t	90.341	1 787	1at 1	7 107	153 36.	1 80.1	185 1 03	26.7 28	10 26.7		4 39.8 3	152	187 17	18 1 31 18	10.6 °.0.	2 34.6 2	8.0 25.5	25.9 253	ເຮັບເຈັ	10,7 85.8	108 16	189 1	120	72.9 24	e 33,0 2	7.5 25.8	25.8 27.8	33.8 48	6.6 76.3	124 17	174 1 89	157 1	103 151,8	37.5 2	2 228	8 21.5 2	21.5 21.5 10.5 20.5	5 23.1 2 4 30.0 3	7.7 39.0 5 3 14 1	84.5 107 10 10 10	161 1 . 1 1	19 170 11 10 117 11	19 1 3.0	47 333 1 382 280 1	7.7 DEO 5.8 D4.8	26.1 28. 24.8 26	5 349 % 3 304 %	1:1 304 1: 1:1 726 1	0 1 77 15 1 21	187 153 127 105	384 B	10 384 3 63 340 1	10.4 26.4 27.8 24.5	28.2 28.3 24.9 24.	1 29.7 37.1 8 27.3 32.	i Bala Bai a Bala No	.0 947 9 25 901 7	188 181 128 123	137 84.9 16.0 86.1	3 81,6 35 2 82,3 8	5.8 28.8 2 1.2 26.5 2	50 262 1 M5 249	18.8 31. 25.2 28.
	114 1 4. 108 1 5	1 163 5	17 397	7 213	163.1	1 742	N 7 39	158	33 345	251.2	30 23.1 2	24.4 28.5	2 36.0 %	92 1 49	743 71	ia tea t	iso 32	4 25.9 2	3.2 22.6	22.9 22.	27 23.9 2	8.4 37.7	\$2.5 87	2 75.0 8	1.85 8.1	\$0.3 \$1	1 25.0 2	3.2 22.9	22.9 23.3	25,4 31	1.6 31.4	\$7.6 %	10.1 14.7	85.7 8	50.2 35.9	27.2 2	La 1 8.9	o 98.0 9	18,9 18,9	9 19.0 2	1.8 27.9	36,8 51,	a 66.8 7	50 89.4 80	5.2 40.3	110 25.1	3,4 23.1	23.1 23	6 26.1 3	u 131 3	13 714	74,4 85,0	19.4 5	6.0 28.1 7	142 229	23.1 22.1	9 24.0 27.1	5 °35.0 °47	ta tas t	73.7 72.2	80.9 \$4.5	6 33.3 20	6.5 23.6 2	12.9 23.2	23.0 24.
i i	ke 12																																														1.0 20.9 1.0 1 20.9	20.9 21	1 217 2	64 3009 3 14 0 3009 3	87 ¹⁸ 1.7 10 0 10 1	\$2.5 Ses	- 30.3 21	17.2 22.8 2 	.05 207	2015 2015	- 121.0 122.4 a a 1 a a 1	. 26.7 32. 170 3 46 (5 583 9 104 101	82.6 782.1 2 70 0 70	27.2 27.5 1 a not z r	3 25.8 21 187 1 73	12 209 2 166 164	0.6 20.6 2	02 808 1841 -
25 35 3 <mark>2</mark> 23 32 35	3.1	1	·	L. 4.		£	الم وروا		mil.		no kra		na taa	*	, 1	50 5ea	1.1	500 BLA	1 2 20	18 200 8	A76 318	27 4	9 345 3	50 Å16.	347 343	7 100	2.9 216	22.21	12 20.9 18	10.22.3	22.7 10.	12 24.9	217.70	19 243	23.2 68	8 213	19.4 8	5.2 37.9	17.3 8	\$4. 20.0	20.78	34 237.2	3.7 70.8	22.6 21.9 25.3 24.5	70.2 23.	227 68.3	10.0 16 21.1 21	2 104	ogo 17.1 2.1 2 2.4	12.2 200 10.8 242	21.0 22. 24.8 21.	ь 26.2 °2 Б 75.2 °2	1. 302.	20.2 22.4	. 67.8.X	1.305	23 221 3	2.7 68.8	24.4 24.2	1 1.6 25	11 248 8	iaa 225	21.9 87.4	_tas tat	.
20 29 35	12.8	2.7 17.2	19.2 %	74.2	a 217	40.9 222	22.1	8.1 21.1	20.4 47	o 18.4	18.2 46.8	3 200 2	ana 201	22.6 22.	1.6 50.3	22.9 22.2	28.9 2	21.0 1928	20.6 16. 100 14	18 184 1 1 1 1 1 1	46.7 20.3 10.4 14.0	210.25	1 170 1	2.8 BQ2 0.7 Mar	22.5 212	7 46.9 1 1 100 1	21,3 1 9,9 Na 6 14 8	26.7 Te 14.5 Te	15 988 39 15 948 90	u 207 1 6 162 1	21.1 38. 367 31	9.3 ⁹ 2.9 ' 1.3 ⁹ 7.9 '	22.6 % 34.0 22	19 22. 4 20 1 76	1 21 4 38 1 169 20	a 200 a 157	984 24 946 97	44 973 175 934	16.5 % 13.2 1	64.2 98.7 17.4 94.7	18.1 38	10 220 2 22 17 1 1	11.8 20.9 17.4 21.9	23.2 22.4 i 18.2 17.8 i	2013 211 2115 770	120.9 147.3 16.5 19.8	19.6 18 14.6 14	0 7677 4 98677	0.4 20.7 5.9 16.4	49.0 22.5 20.9 17.5	22.4 50. 17.0 22.	.3 23.1 22 :2 18.2 17	2.3 748.1 7.7 721.3 (21.5 20.7 16.8 16.4	r 746,9 17 1 18,5 14	12 781 7 13 944 9	16.7 20.4 2 18.9 1 8.0 1	80.9 782.0 5 1825 121.1 1	22.4 22.6 17.6 18.0	6 50.3 23 0 22.2 18.	3.0 22.4 48	8,0 21,0 ° 21,1 °6,4 °	20,1 46.7 15,9 19,3	985 980 145 941	76.9 2 196.5 1
16 24 38 13 1 <u>9 3</u> 0	70,1 * 164. *	5.5 ° 3.5 18 ° 5.0	160 11 155 11	18.8 96 10.1 91	16 77.3 .3 <u>1</u> 2.0	21.8 97.1 92.5 92.1	17.6 1 17.2 1	11.2 76.8 2.0 70.9	16.2 19 10.5 10	6 745 8 9.8	4.67 4.67 4.08 6.6	1 16,1 1 1,10,9 1	16,4 21,1 10,8 1 1,1	17.8 18. 12.2 12.	u 22.2 .5 12.8	18.1 17.5 12.4 12.2	21.0 T	10.4 15.7 10.6 10.8	163 14. 10.1 92	0 14,0 1 8 3 ,9 ¹	8.4 15.9 10.5 10.6	10.5 %	.2 1/8 1 .1 122 1	ne 22.1 26 1 28.	123 121	o 2021 0 1021	80° 708 80° 708	10.1 B	<u>s 100 10</u>	u 10.5.1	10.6 12.	u 1123																													15 123 1	a. %*	10.9 10.3	.hz. hz	10.4.1
	_		_		_	*****	_		_		_						_					-				_			21/21-00	_							arar-			-		-					-							-								_	-	_	-

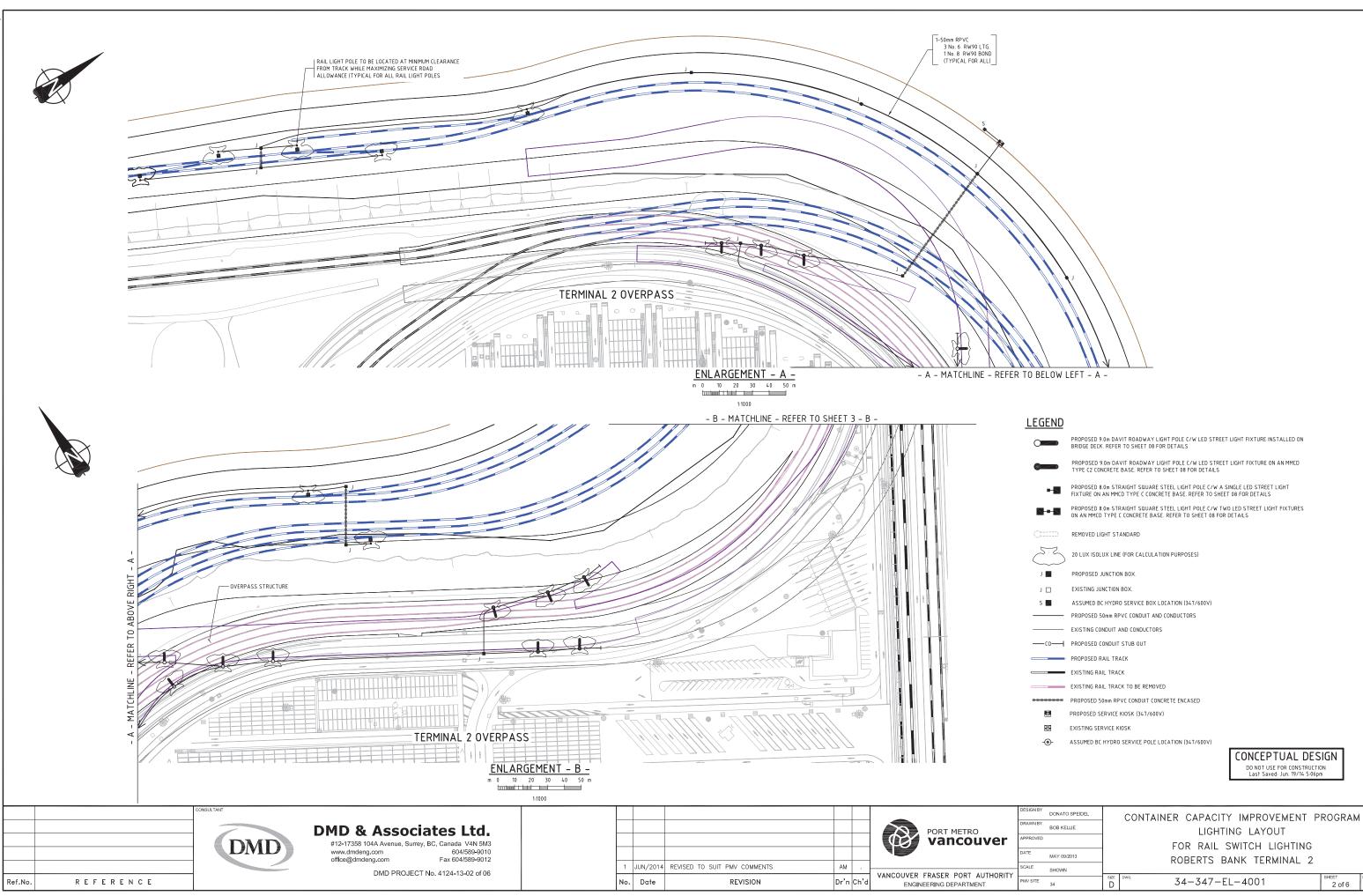
-			
LUMINA	IRE LO	CATION S	UMMARY
LUM NO	LABEL	ORIENT	TILT
112	F	280	80
113	F	280	80
114	F	280	80
115	F	280	80
116	F	280	80
117	F	280	80
118	F	280	80
119	F	280	80

					PORT METRO	DES DRA
в	22-Jul-13	Project Description Issue	JB,EC	BB		DATE
А	27-Jun-13	Issued for Review	JB,EC	BB		SCA
No.	Date	REVISION	Dr'n	Ch'd	VANCOUVER FRASER PORT AUTHORITY ENGINEERING DEPARTMENT	PMV

-

(Dellaport)(AD Drawings/4124-13-0.1 dvg			ENLARGEM REFER TO : ENLARGEM	HEET 3 FOR INT - C - HEET 2 FOR INT - B - HEET 2 FOR INT - A -	MIERNOOAL Y	OR THE OFFICE	OR V S OD MAR A A A A MAR A A A A MAR A A A A S OUT	t		
m 00-4199)\4124-13 (ST LTG - T2	Ref.No. REFERENCE	CONSULTANT							DESIGN BY DONATO SPEIDEL	CONCEPTUAL DESIGN DO NOT USE FOR CONSTRUCTION Last Saved: Jun. 20/14 10:17am CONTAINER CAPACITY IMPROVEMENT PROGRAM
DATE: 2014/06/20 - 10:19. PATH: P:\Projects\(Jobs 4	Ref.No. REFERENCE	DMD	DMD & Associates Ltd. #12-17358 104A Avenue, Surrey, BC, Canada V4N 5M3 www.dmdeng.com 604/589-9010 office@dmdeng.com Fax 604/589-9012 DMD PROJECT No. 4124-13-01 of 06		Image: 1 JUN/2014 REVISED ⁻¹ No. Date Image: 1	to suit pmv comments REVISION	AM .	ANCOUVER FRASER PORT AUTHORITY ENGINEERING DEPARTMENT	DRAWN BY APPROVED DATE MAY 09/2013 SCALE SHOWN PMV SITE 34	KEY PLAN FOR RAIL SWITCH LIGHTING ROBERTS BANK TERMINAL 2 0000 34-347-EL-4000 SHEET 1 of 6

T


Ι

Ι

I

Ι

I

Т

_

DATE: PATH:

1

0
()
8- 1
-8-
(
53
ì 🔽
1 🗆
s 🗾
C0
-
•
·
×03
×
-@-

PROPOSED 9.0m DAVIT ROADWAY LIGHT POLE C/W LED STREET LIGHT FIXTURE INSTALLED ON BRIDGE DECK. REFER TO SHEET 08 FOR DETAILS

PROPOSED 9.0m DAVIT ROADWAY LIGHT POLE C/W LED STREET LIGHT FIXTURE ON AN MMCD TYPE C2 CONCRETE BASE. REFER TO SHEET 08 FOR DETAILS

PROPOSED 8.0m STRAIGHT SQUARE STEEL LIGHT POLE C/W A SINGLE LED STREET LIGHT FIXTURE ON AN MMCD TYPE C CONCRETE BASE. REFER TO SHEET 08 FOR DETAILS

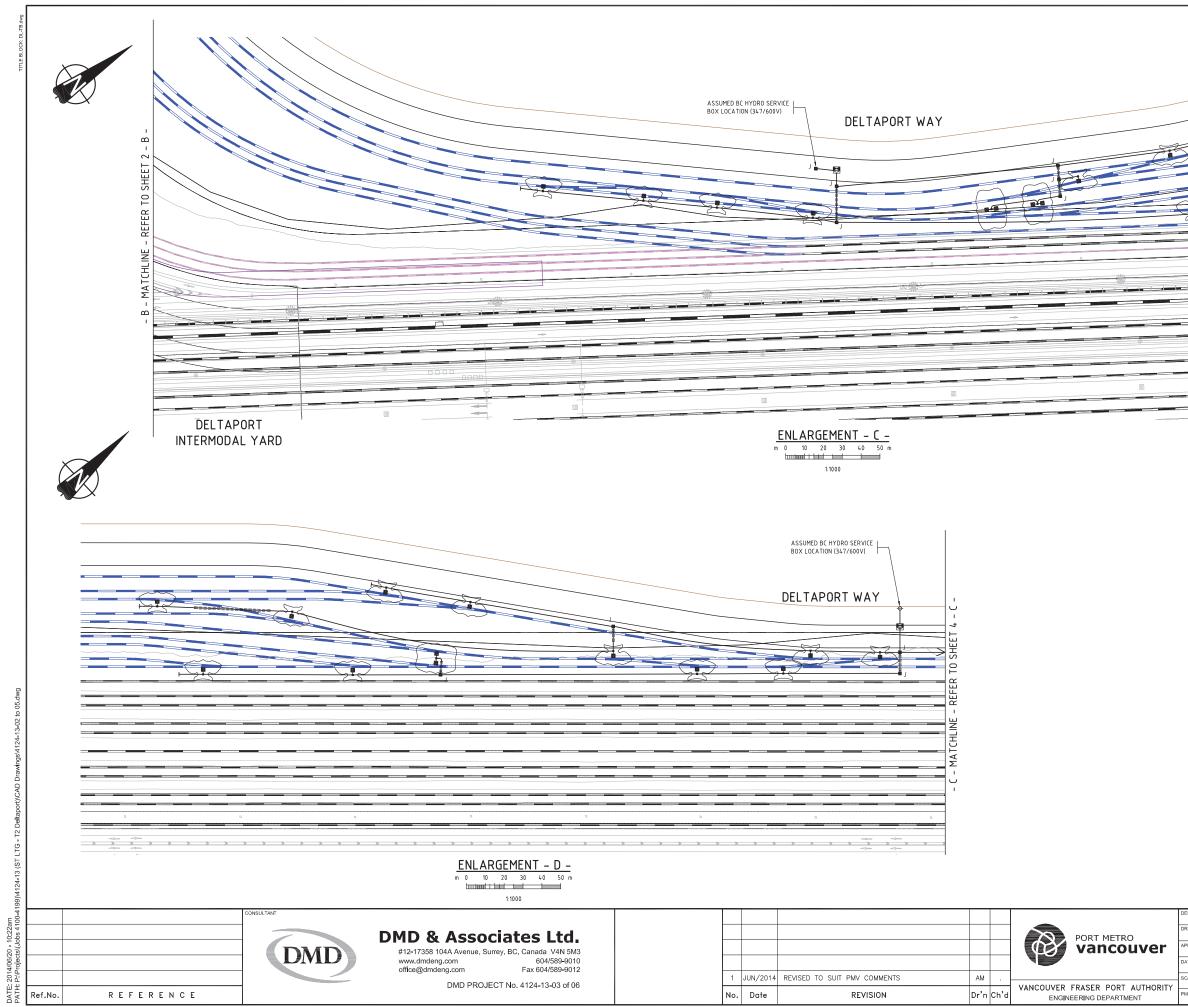
CONCEPTUAL DESIGN

DO NOT USE FOR CONSTRUCTION Last Saved: Jun. 19/14 5:06pm

2 of 6

1

LIGHTING LAYOUT

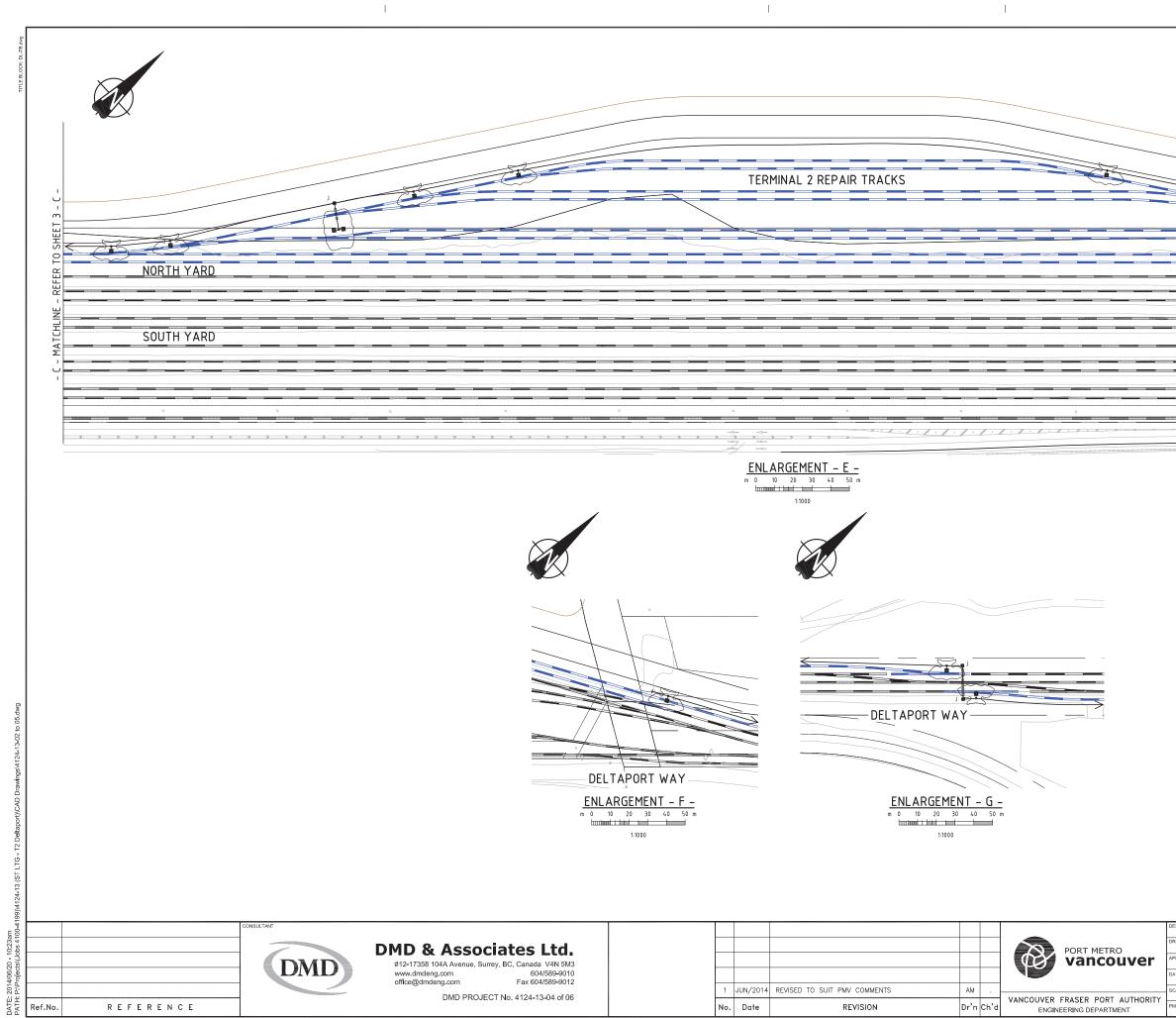

FOR RAIL SWITCH LIGHTING

ROBERTS BANK TERMINAL 2

34-347-EL-4001

PROPOSED 8.0m STRAIGHT SQUARE STEEL LIGHT POLE C/W TWO LED STREET LIGHT FIXTURES ON AN MMCD TYPE C CONCRETE BASE. REFER TO SHEET 08 FOR DETAILS

ASSUMED BC HYDRO SERVICE BOX LOCATION (347/600V)


_

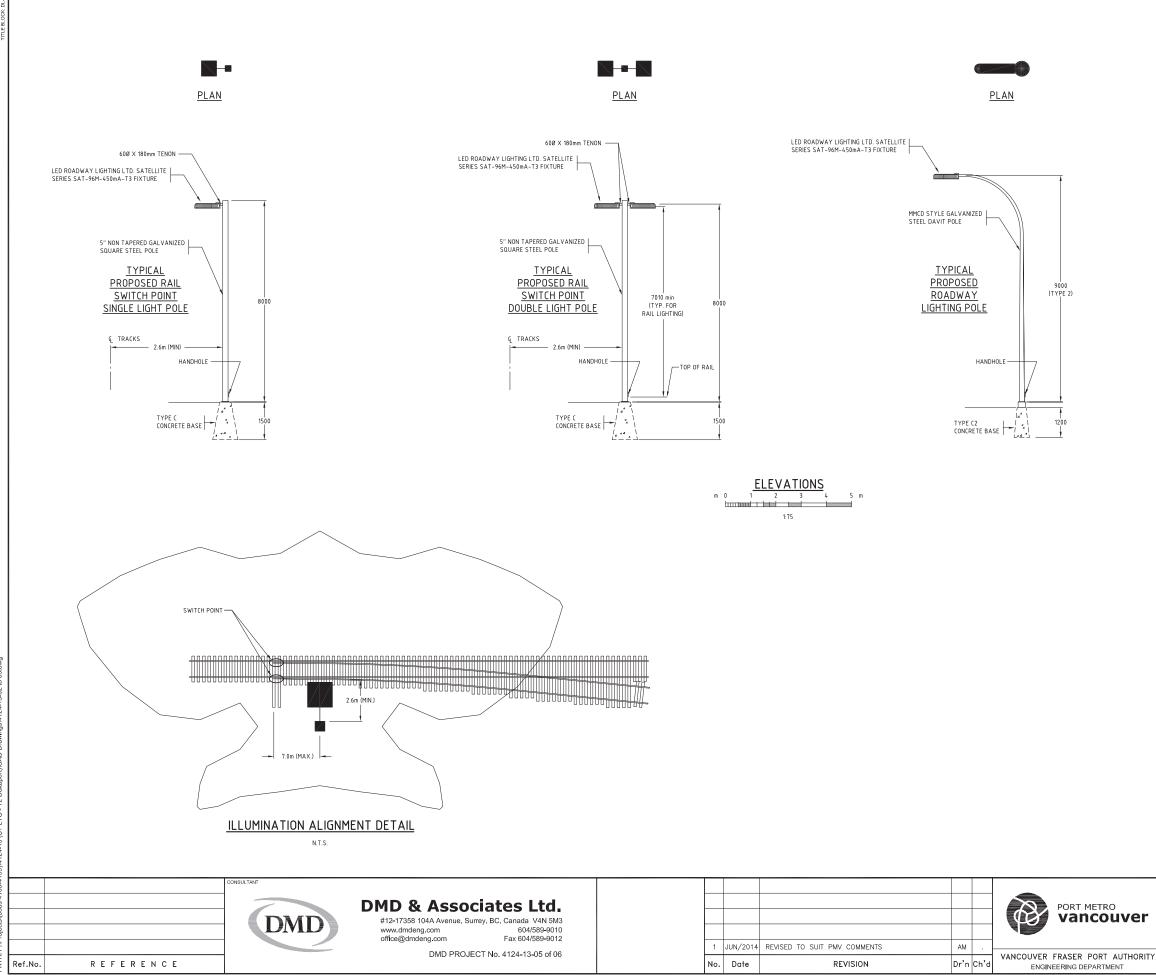
~~~~	
2	
	9
Q	
ويتركبها ومراجعا ومراجعا ومراجعا ومراجعا	
TT T T I I I I	A ALTER AT ALL ALL ALL ALL ALL ALL ALL ALL ALL

CONCEPTUAL DESIGN
DO NOT LISE FOR CONSTRUCTION

DO NOT USE FOR CONSTRUCTION Last Saved: Jun. 19/14 5:06pm

DESIGN BY	DONATO SPEIDEL		CONTAINER CAPACITY IMPROVEMENT P	ROGRAM	
DRAWN BY	BOB KELLIE		LIGHTING LAYOUT		
APPROVED			FOR RAIL SWITCH LIGHTING		
DATE	MAY 09/2013		ROBERTS BANK TERMINAL 2		
SCALE	SHOWN		Köberris barrit renminae 2		
PMV SITE	34	size D	^{DWG.} 34-347-EL-4002	SHEET 3 of 6	rev. 1




_

R-B	
DELTAPORT WAY	
σ	a a

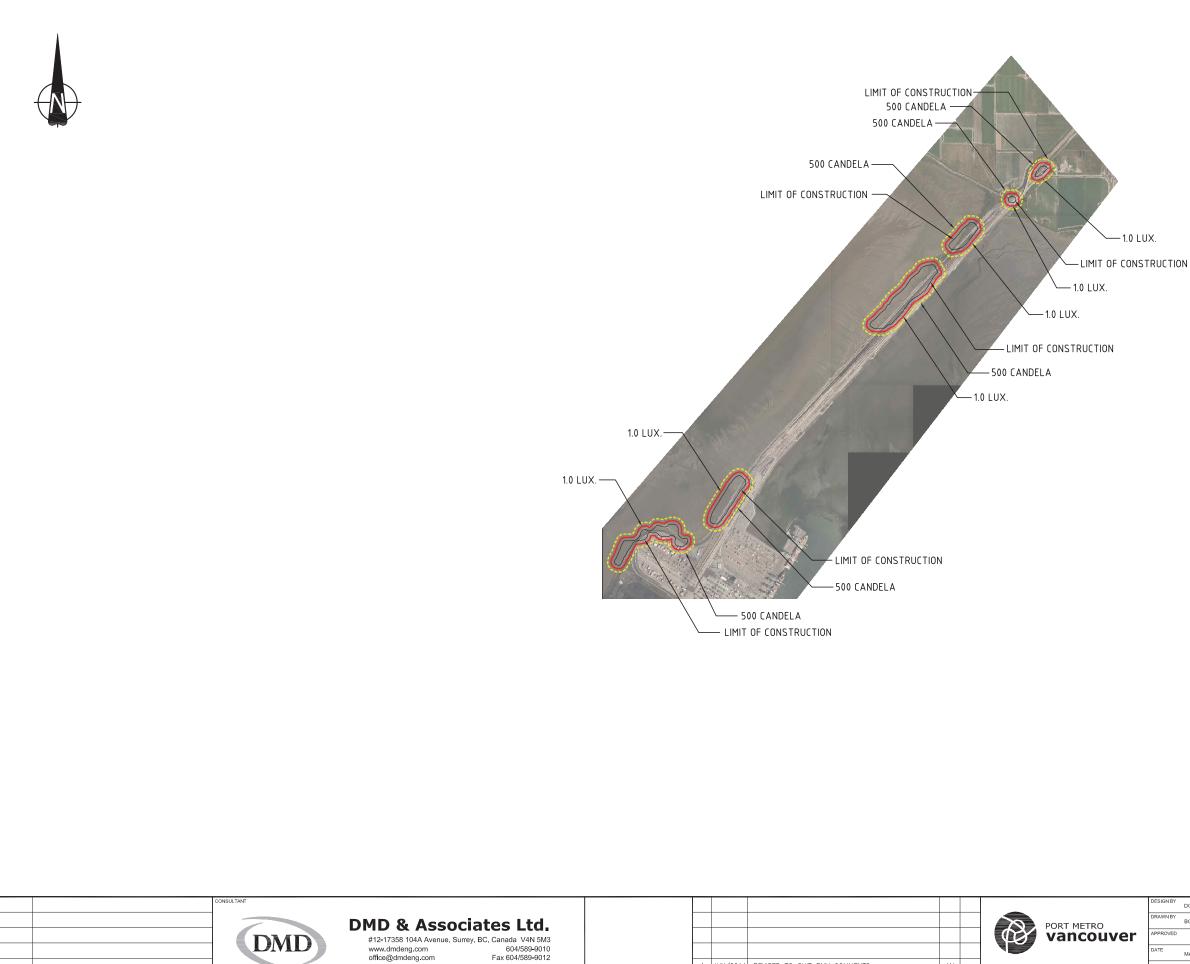
DO NOT LISE FOR CONSTRUCTION

DO NOT USE FOR CONSTRUCTION Last Saved: Jun. 19/14 5:06pm

DESIGN BY	DONATO SPEIDEL		CONTAINER CAPACITY IMPROVEMENT P	ROGRAM									
DRAWN BY	BOB KELLIE		LIGHTING LAYOUT										
APPROVED			FOR RAIL SWITCH LIGHTING										
DATE	MAY 09/2013	]	ROBERTS BANK TERMINAL 2										
SCALE	SHOWN		ROBERTS BARK TERMINAE 2										
PMV SITE	34	D size	^{DWG.} 34-347-EL-4003	SHEET 4 of 6	^{REV.}								
				-									



DATE: 2014/06/20 - 10:24am PATH: P:Projects/Jobs 4100-4199)\4124-13 (ST LTG - T2 C


_

I

<u>PL</u>	AN
LED ROADWAY LIGHTING LTD. SATELLITE SERIES SAT-96M-450mA-T3 FIXTURE	
MMCD STYLE GALVANIZED	
TYPICAL PROPOSED ROADWAY LIGHTING POLE (MOUNTED TO OVERPASS)	9000 (TYPE 2)
HANDHOLE FACING ROAD (TYPICAL ON OVERPASS) REFER TO STRUCTURAL DRAWING FOR FOUNDATION DETAILS.	

CONCEPTUAL DESIGN
CONCEPTUAL DESIGN DO NOT USE FOR CONSTRUCTION Last Saved: Jun. 19/14 5:06pm

000101	DONATO SPEIDEL	CONTAINER CAPACITY IMPROVEMENT P	ROGRAM							
RAWN BY	BOB KELLIE	LIGHTING LAYOUT								
PROVED		FOR RAIL SWITCH LIGHTING								
TE	MAY 09/2013	ROBERTS BANK TERMINAL 2								
ALE	SHOWN									
IV SITE	34	^{SIZE} D 34-347-EL-4004	SHEET 5 of 6	REV. 1						



Τ

DMD PROJECT No. 4124-13-06 of 06

_

DATE: PATH:

Ref.No.

REFERENCE

Ι

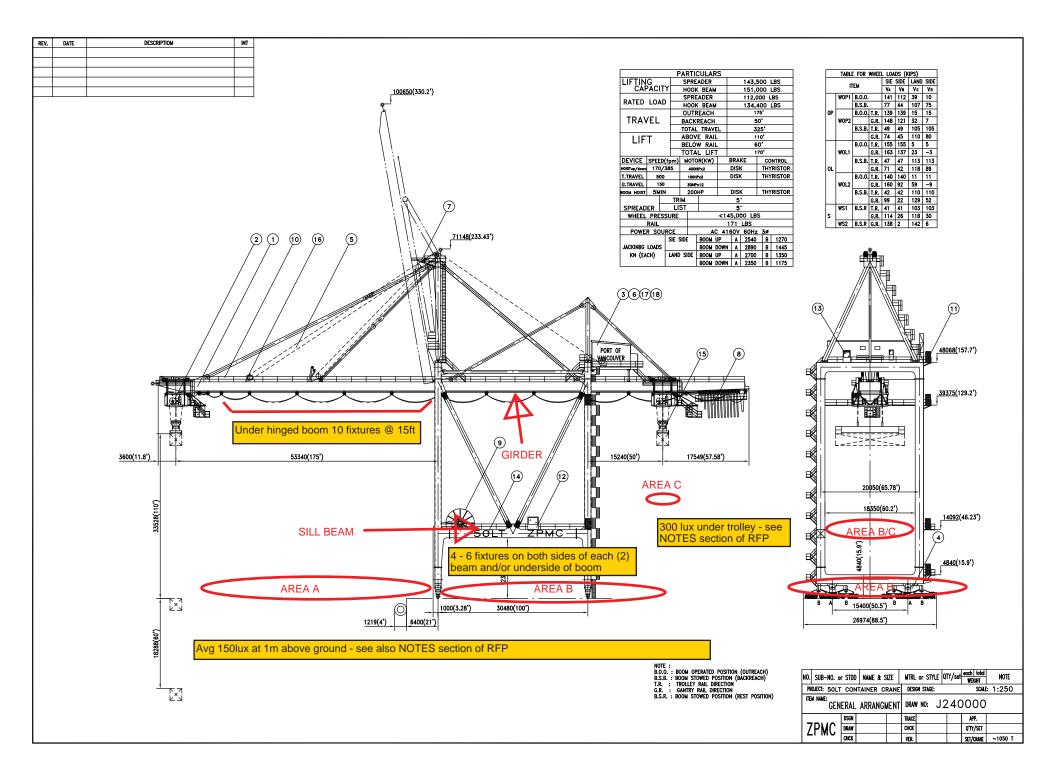
No. Date

1

JUN/2014 REVISED TO SUIT PMV COMMENTS

REVISION

AM


Dr'n Ch'd

VANCOUVER FRASER PORT AUTHORITY ENGINEERING DEPARTMENT

DONATO SPEIDEL CONTAINER CAPACITY IMPROVEMENT PROGRAM BOB KELLIE LIGHTING LAYOUT FOR RAIL SWITCH LIGHTING MAY 09/2013 ROBERTS BANK TERMINAL 2 CALE SHOWN 34-347-EL-4005 PMV SITE REV. D 6 of 6 34

CONCEPTUAL DESIGN DO NOT USE FOR CONSTRUCTION Last Saved: Jun. 20/14 10:01am

I



Symbol	Label	Quantity	Manufactur er	Catalog Number	Description	Lamp	Number Lamps	Filename	Lumens Per Lamp	Light Loss Factor	Wattage
	Α	16	Holophane	PLLED 9 4K 10A XX 44 XX	PREDATOR LARGE LED	360W 4000K LED ARRAY	1	PLLED_9_4K _10A_XX_44 _XX.ies	-1	0.82	360
	В	4	Holophane	PLLED 7 4K 10A 66	Predator Large LED with 7 COBs, 4000K Color Temperature , 1050mA Drive Current , 6X6 Distribution	LED	1	PLLED_7_4K _10A_66.ies	-1	0.82	280
$\stackrel{\frown}{=}$	С	8	Holophane	PLLED 8 4K 10A XX 45 XX	PREDATOR LARGE LED	330W 4000K	1	PLLED_8_4K _10A_XX_45 _XX.ies	-1	0.82	323.4

Current View

Statistics							
Description	Symbol	Avg	Max	Min	Max/Min	Avg/Min	Avg/Max
AREA A	+	151.4 lux	212.1 lux	52.5 lux	4.0:1	2.9:1	0.7:1
AREA B	+	157.6 lux	345.5 lux	38.4 lux	9.0:1	4.1:1	0.5:1
AREA C	+	308.2 lux	341.3 lux	249.8 lux	1.4:1	1.2:1	0.9:1
Vertical	+	229.5 lux	245.2 lux	182.1 lux	1.3:1	1.3:1	0.9:1

_61.7	,72.1 ,84.6 ,92.6 ,98.7	103.0 102.5 102.7 103.7	100.4 97.4 97.2 94.5 90	.6	_65.4 _84.6	.99.9 .87.0 .96.4 .7	5.4 _65.5 _56.3 _47.	.1 _73.3 _198.4 _264.4	_249.7
<b>,</b> 94.4	110.9 128.9 141.7 150.	8 155.9 155.7 155.9 156.6	152.4 145.8 140.6 134.8 <u>1</u> 2		125.0 110	120.2 <u>151.1 159.9 1</u>	19. <b>.²,</b> 90.0 <b>,20</b> .4 ,41.	 <del>ρβ8.0221.1296.1</del>	 ,308.4
+ ^{118.0}	,138.7 ,159.9 ,177.4 ,187.	8 192.4 193.6 193.7 193.3	189.5 180.4 169.6 164.3 15	7.0	¢٩	8 167.6 184.4 187.4 1	P		335.0 324.0 318.6 31
+127.2	150.5 173.0 191.5 202.	9 _207.7 _208.9 _209.1 _208.4	204.6 194.3 180.2 175.8 17 ⁻	4.7	_158.9 _180.1	2,102.9,169.8,151.0,1	52.1 161.2 164.3 13	.7 130.1 207.6 285.9	.325.2 Ⅲ > .325.1 .3 <u>26.2 .2</u>
+ ^{129,2}	151.4 1740 193.8 205	0 43:0 ⁰ ,2 ⁴⁴ :3 ¹⁰ ,9;2 ¹⁰ ,4;2 ⁰⁹ ,6 43:0 [°] ,2 ⁴⁴ :3 [°] ,2 ⁴⁴ :4 [°] ,2 ⁴⁴	#8°241:195.6.179.7.173.2.18	2d8.	189.0 221.3	2 , 196.7 , 149.1 , 136.4 , 1	41.8 149.3 161.0 16	.3 106.2 161.2 247.4	
			_207.3 196.2 178.0 166.2 18						
						5 184.6 140.5 137.0 1	\[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]   \[   \]		
1 120.0	, 140.0 , 111.1 , 108.0 , 200.	5 <u>- 200.0 - 200.1 - 200.5 - 200.2</u>	_201.0 _180.0 _114.1 _100.0 _10		+ ^{147.3} + ^{154.3}	3 151.1 144.4 153.2 1	57.8 + 169.1 + 163.0 + 10	.7 112.3 251.6 321.7	• <mark>345.5</mark> 333.5_323.6_30
+ ^{116.0}	136.0 155.4 173.5 183.	9 186.8 189.1 189.2 187.1	• 184.3 • 174.4 • 157.4 • 140.9 • 12	7¦5	+112.1 +113.0	8 123.2 136.4 137.4 1	72.0 171.6 131.6 79	3 <b>1</b> 96.5 268.5 297.1	312.7 279.1 _268.5 _24
<b>\$8.6</b>	104.0 117.9 132.1 140.	5 142.4 144.8 145.0 142.7	141.0 133.4 120.4 109.5 10	1.1			<b>V</b>		
			\$3.5 79.1 71.5 66.4 63						



TSI TERMINALS Option 2

____

Designer Date 1/13/2014 Scale Not to Scale Drawing No.

ummary

1 of 1

This page is intentionally left blank

### APPENDIX C Photometric Data

#### DESCRIPTION

The HMC Large Area Luminaire's asymmetric optics can be oriented by rotating the optical assembly 360° making this high mast fixture ideal for use on interstate highways mounted at 100' in a series of four or more fixtures. U.L. listed for wet location.





Catalog #	Туре
Project	
Comments	Date
Prepared by	

#### SPECIFICATION FEATURES

#### Construction

HOUSING: Die-cast aluminum housing and cover. DOOR: Die-cast aluminum door with tempered convex glass lens and silicone rubber gasket.

#### Optical

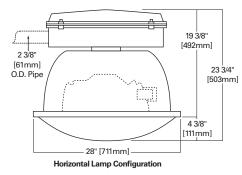
OPTICS: Anodized spun aluminum outer reflector housing. Light pattern can be oriented by rotating optical assembly (360°). A degree indicator is provided to identify the aiming position. REFLECTOR: Inner hydroformed and anodized reflector.

#### Mounting

Clamp type slipfitter for 2-3/8" O.D. pipe.

#### Finish

Standard bronze polyester powder coat finish. Other finish colors available. Consult your Streetworks Representative.




### HIGH MAST LUMINAIRE

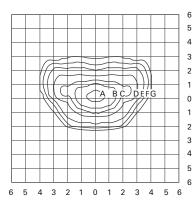
400 - 1000W Pulse Start Metal Halide High Pressure Sodium Metal Halide

LARGE ROADWAY LUMINAIRE

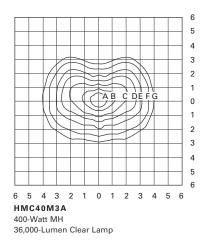
#### DIMENSIONS

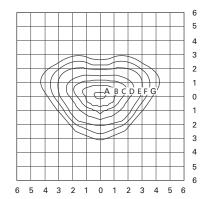





EPA Effective Projected Area: 1.46 Square Feet

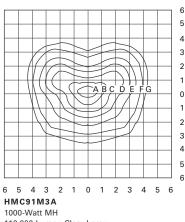
SHIPPING DATA Approximate Net Wt: 68 lbs. (30 kgs.)





ADW082622 2010-03-10 10:27:53

#### PHOTOMETRICS (Complete IES files available at www.cooperlighting.com)




HMC40S3D 400-Watt HPS 50,000-Lumen Clear Lamp





HMC91S3D 1000-Watt HPS

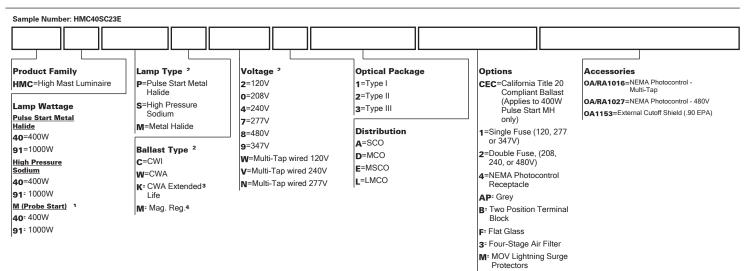
140,000-Lumen Clear Lamp



110,000-Lumen Clear Lamp

Footcandle Table

Select mounting height and read across for footcandle values of each isofootcandle line. Distance in units of mounting height.
Mounting Footcandle Values for


Height	Isofootcandle Lines										
	Α	В	С	D	E	F	G				
HMC40S3D / HMC91S3D											
80'	0.78	0.31	0.16	0.08	0.03	0.02	0.008				
100'	0.50	0.20	0.10	0.05	0.02	0.01	0.005				
120'	0.35	0.14	0.07	0.03	0.01	0.007	0.003				

#### Footcandle Table

Select mounting height and read across for footcandle values of each isofootcandle line. Distance in units of mounting height. Mounting Footcandle Values for

Height Isofootcandle Lines							
	Α	В	С	D	E	F	G
HMC40M	3A / HMC	91M3A					
80'	1.56	0.78	0.31	0.16	0.08	0.03	0.02
100'	1.00	0.50	0.20	0.10	0.05	0.02	0.01
120'	0.69	0.35	0.14	0.07	0.03	0.01	0.007

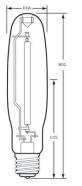
#### ORDERING INFORMATION



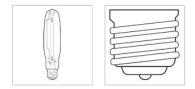
Notes: 1 Probe Start Metal Halide available for non-US markets only (400-1000W).

2 Refer to the technical section for lamp/ballast voltage compatibility.

3 1000W HPS only.


4 Not available in 1000W






#### 44047 - LU250

GE Lucalox® High Pressure Sodium ED18 This product is no longer manufactured.







#### CAUTIONS & WARNINGS

#### Caution

- Risk of Burn
- Allow lamp to cool before handling.
- Do not turn on lamp until fully installed.
- Lamp may shatter and cause injury if broken
- Dispose of lamp in a closed container.
- Do not use excessive force when installing lamp.
- Do not use lamp if outer glass is scratched or broken.
- Wear safety glasses and gloves when handling lamp.

#### Warning

- Contains sodium chemical burn risk
- Avoid skin contact with broken pieces.

Risk of Electric Shock

- Do not use where directly exposed to water or outdoors without an enclosed fixture.
   Turn power off before inspection, installation or removal.
- Risk of Fire
- Keep combustible materials away from lamp.
- Use in fixture rated for this product.
- Unexpected lamp rupture may cause injury, fire, or property damage
- Do not exceed rated voltage.
- Do not store flammable materials near/below lamp.
- Do not turn on lamp until fully installed.
- Do not use lamp if outer glass is scratched or broken.
- Do not use where directly exposed to water or outdoors without an enclosed fixture.
- Use only properly rated ballast.

#### **GRAPHS & CHARTS**

**Graphs_Spectral Power Distribution** 

#### **GENERAL CHARACTERISTICS**

Lamp Type

Bulb Base Bulb Finish Rated Life (MIN) Bulb Material Lamp Enclosure Type (LET) Mercury Content (NOM) Picograms of Mercury (NOM) High Intensity Discharge -High Pressure Sodium ED18 Mogul Screw (E39) Clear 2400.0 h Hard glass Open or enclosed fixtures 16.4 mg 27.1 pg

#### **PHOTOMETRIC CHARACTERISTICS**

Initial Lumens (NOM) Mean Lumens (NOM) Nominal Initial Lumens per Watt	28000.0 25200.0 112.0
(NOM) Color Temperature (NOM) Color Rendering Index (CRI) (NOM)	2100.0 K 22.0
Effective Arc Length (NOM)	2.64 in

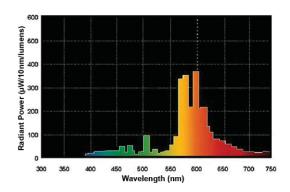
#### **ELECTRICAL CHARACTERISTICS**

Wattage (NOM) Burn Position Open Circuit Voltage (RMS lag ballast) (MIN) Warm Up Time to 90% (MIN) Warm Up Time to 90% (MAX) Hot Restart Time to 90% (MAX)

250.0 Universal burning position 198.0 V 3.0 min 4.0 min 1.0 min

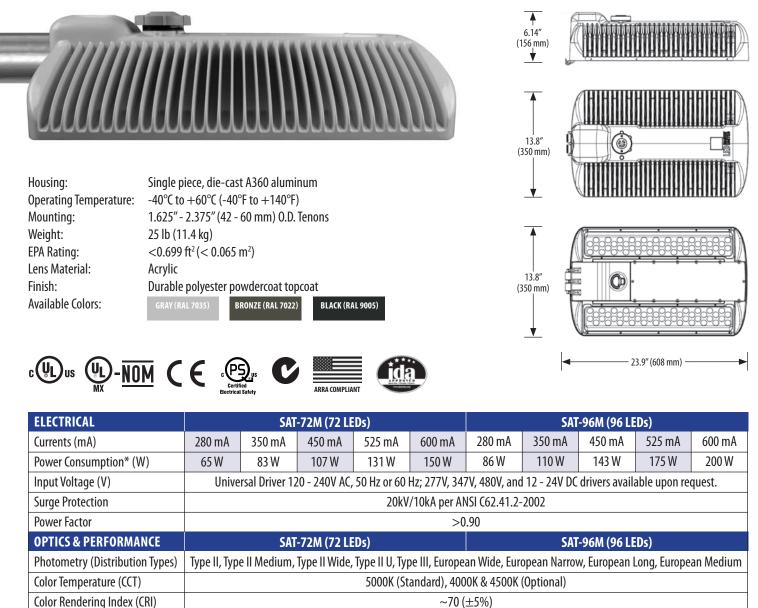
#### DIMENSIONS

Maximum Overall Length (MOL) (NOM) Nominal Length (NOM) Bulb Diameter (DIA) (NOM) Light Center Length (LCL) (NOM) 9.750 in(247.6 mm)


9.750 in(247.6 mm) 2.250 in(57.2 mm) 5.750 in(146.0 mm)

#### **PRODUCT INFORMATION**

Product Code Description ANSI Code Standard Package Standard Package GTIN Standard Package Quantity Sales Unit No Of Items Per Sales Unit No Of Items Per Sales Unit No Of Items Per Standard Package UPC 44047 LU250 S50 Case 10043168440476 12 Unit 1 12


043168440479

For additional information, visit www.gelighting.com



## SATELLITE[™] SERIES LUMINAIRE: SPECIFICATIONS ⊆

sar-m



<b>PHOTOCELL &amp; CONTROLS</b>		SAT-72M (72 LEDs)					SAT	-96M (96 LI	EDs)	
LED L70 (Hours)		> 100,000 hours (@ 350mA)								
Fixture Output (Lm)*	6,200 Lm	7,500 Lm	9,300 Lm	10,800 Lm	11,800 Lm	8,250 Lm	10,000 Lm	12,250 Lm	14,100 Lm	15,500 Lm
Fixture Efficacy (Lm/W)*	97 Lm/W	93 Lm/W	87 Lm/W	84 Lm/W	80 Lm/W	96 Lm/W	92 Lm/W	86 Lm/W	81 Lm/W	78 Lm/W
Drive Currents (mA)	280 mA	350 mA	450 mA	525 mA	600 mA	280 mA	350 mA	450 mA	525 mA	600 mA
Color Rendering Index (CRI)		~70 (±5%)								

<b>PHOTOCELL &amp; CONTROLS</b>	SAT-72M (72 LEDs)	SAT-96M (96 LEDs)				
Photocell Options	20-Year Life Photocell with NEMA Twist-Lock (Standard)					
Control & Monitoring	Available with integrated Streetlight Intelligence [™] System.					

NOTES: * VALUES SHOWN ARE BASED ON "TYPE II" LM-79 TESTING AND ARE SUBJECT TO ±5% TOLERANCE. ILLUSTRATED ABOVE: SAT-96M IN GRAY (RAL 7035). ALL INFORMATION PROVIDED IS SUBJECT TO CHANGE WITHOUT NOTICE.



 115 Chain Lake Drive, Halifax, Nova Scotia, B3S 1B3 Canada

 Toll-Free Phone: +1 (877) 533.5755

 Toll-Free Fax: +1 (888) 533.5755

 info@ledroadwaylighting.com

### SATELLITE™ SERIES LUMINAIRE: ORDERING GUIDE sat-m

SERIES	LED'S/BODY SIZE	VOLTAGE	PHOTOCELL CONTROL	OPTICS	DRIVE CURRENT
SAT Satellite	72M Medium 96M Medium	<ul> <li>120V-240V Universal</li> <li>277V-347V Universal</li> <li>480V</li> <li>12V-24V DC (Solar Applications)</li> </ul>	<ul> <li>C/w NEMA Photocell Receptacle</li> <li>Solid Casting (No Photocell Receptacle)</li> <li>Photocells and shorting caps ordered separately.</li> </ul>	T2Type IITWType II WideTMType II MediumTUType II UT3Type IIIEWEuro WideENEuro NarrowELEuro LongEMEuro Medium	280       280 mA         350       350 mA         450       450 mA         525       525 mA         600       600 mA
A	B	$(\mathbf{C})$	D	E	F

FINISH	COLOR/TEMPERATURE (CCT)	LENS TYPE	CERTIFICATION	CONTROL OPTIONS
GYGray (RAL 7035)BKBlack (RAL 9005)BZBronze (RAL 7022)4 Digit RAL# (Custom Finish)	<ol> <li>5000K (Standard/Default)</li> <li>4500K (Optional)</li> <li>4000K (Optional)</li> <li>Other color temperatures available. Please contact factory for details.</li> </ol>	A Acrylic	NSUSA/Canada (QPS) (Standard/Default)CEEuropeanNMNOM-MexicoCTC-TICK (Australia)ULUSA (120-240V only)	XX TBA
G	H		J	ĸ
SAMPLE CATALOG NUN	<b>IBER:</b>   SAT   96M	0   R   T	⁻ 2   450   GY   1	A NS XX

A= Satellite[™] Series B= 96 LEDs (Medium Body Fixture) C= 120V - 240V D= NEMA Photocell Receptacle E= Type II Distribution F= 450mA Drive Current G= Gray Finish H= 5000K CCT I= Acrylic Lens J= CDN/US QPS Certification K= No Control Option Specified

**D** 

**E** 

 $(\mathbf{F})$ 

**G** 

 $(\mathbf{H})$ 

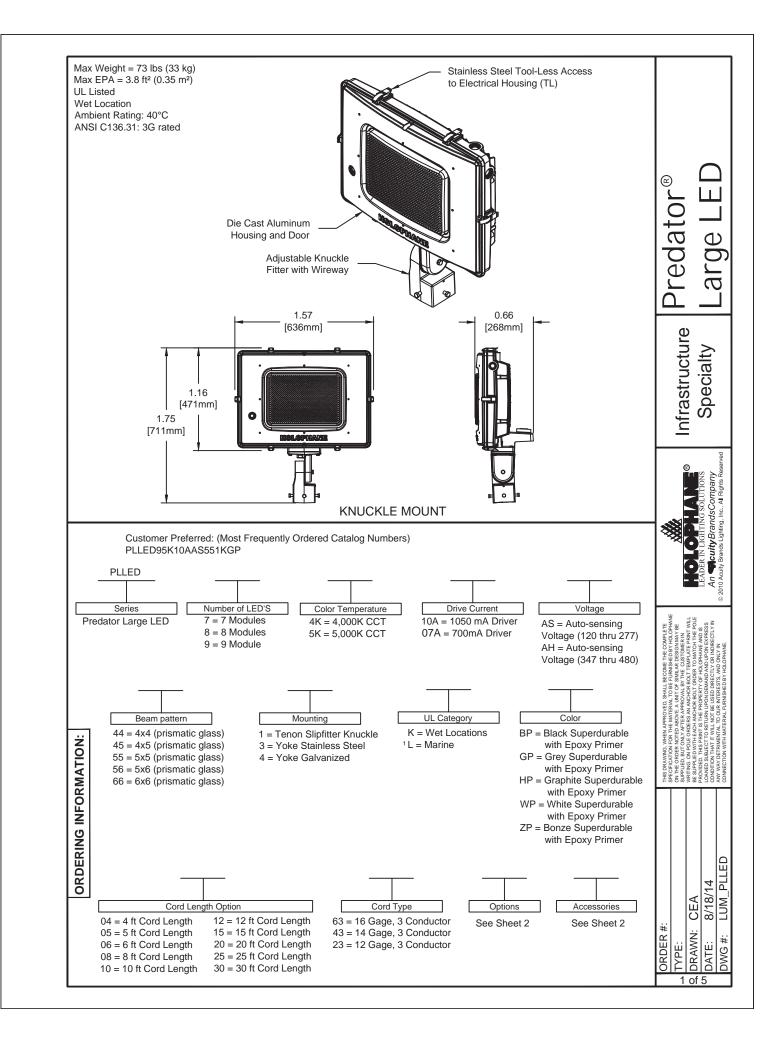
 $(\mathbf{I})$ 

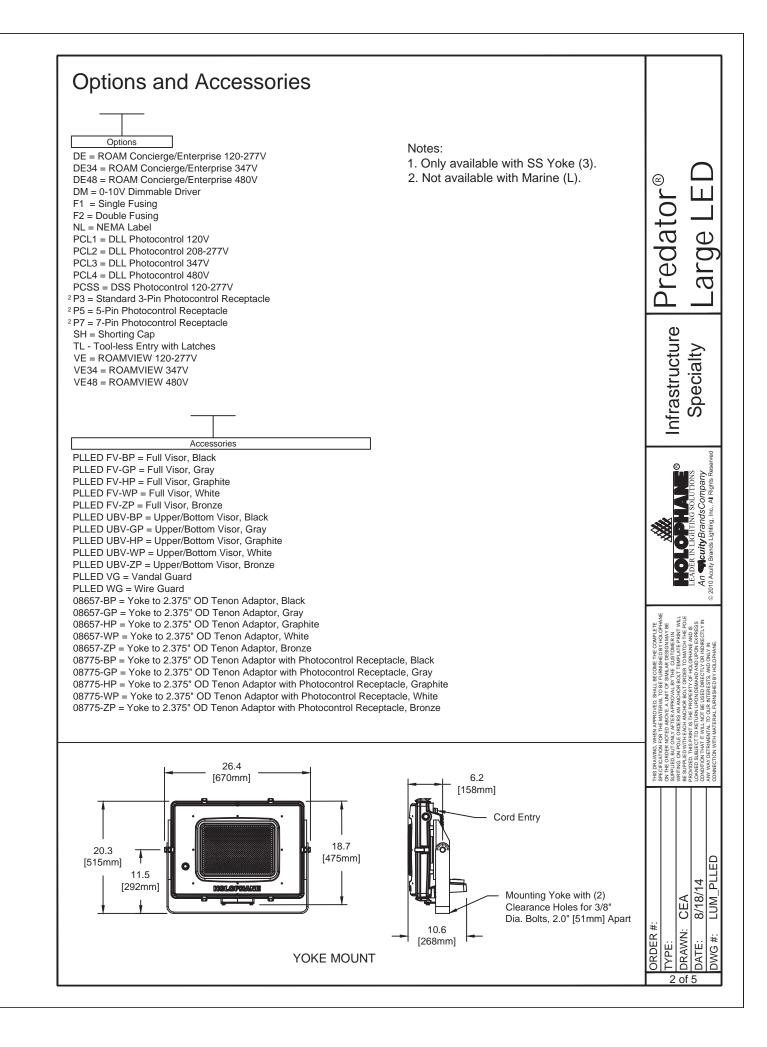
 $(\mathbf{J})$ 

 $(\mathbf{K})$ 

 $(\mathbf{c})$ 

 $(\mathbf{A})$ 


 $(\mathbf{B})$ 


ORDER CONFIRMATION	COMMENTS
PROJECT NAME:	
QUANTITY:	
APPROVED BY:	
DATE:	
(For standa	rd finishes insert 2 digit code. For custom finishes, insert 4 digit RAL number)
<b>CATALOG NUMBER:</b> SAT     _   _   _	_   A     XX
(A) (B) (C) (D) (E)	$(F) \qquad (G) \qquad (H) \qquad (I) \qquad (K)$

By completing the Order Confirmation above, I certify that I am authorized to sign the confirmation on behalf of the company. Information provided is subject to change without notice.



115 Chain Lake Drive, Halifax, Nova Scotia, B3S 1B3 Canada Toll-Free Phone: +1 (877) 533.5755 Toll-Free Fax: +1 (888) 533.5755 info@ledroadwaylighting.com www.ledroadwaylighting.com





### Performance Specification

#### Optical

Performance of the PLLED is to replace 400 -1000 watt HID product. The optical system utilizes state of the art chip on board technology with 4000K and 5000K color temperature choices with a 70 CRI minimum color temperature. The luminaire uses a highly specular internal reflector designed for superior field to beam ratios, uniformity and spacing. NEMA beam pattern choices of 4X4, 4X5, 5X5, 6X5, and 6X6 are available. Optional shielding is available to control uplight and light trespass. The optical enclosure is a borosilicate prismatic glass lens.

#### Electrical

Long Life: LED light engines are rated > 100,000 hours at 25C, L70. Electronic driver has a rated life of 100,000 hour at a 25C ambient.

Surge protection device provides IEEE/ANSIc62.4 Category C (10kV/5kA) level of protection .

#### Mechanical

Rugged low copper A360 alloy die cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convection cooling. The die cast aluminum housings are painted with a super durable polyester paint finish over an epoxy primer pretreat yields a finish that achieves a scribe creepage of 8 after 5,000 hours exposure to salt spray providing durability and corrosion resistance.

The luminaire is available in either knuckle mount or yoke mount. The knuckle mount is adjustable and is designed to fit 2.375 inch to 2.875 inch tenons. The yoke mount is available in either galvanized steel or stainless steel. The luminaire comes standard prewired eliminating the lineman from opening the unit during installation. The knuckle version is pre-wired to the wiring chamber at the fitter. The yoke mount has provision for a pre-wired cord drop to specified length in the ordering information.

The luminaire comes standard with the door frame bolted to the housing. Optional tool less stainless steel latches are available to allow easy access to LED drivers, surge protection, and optional terminal block.

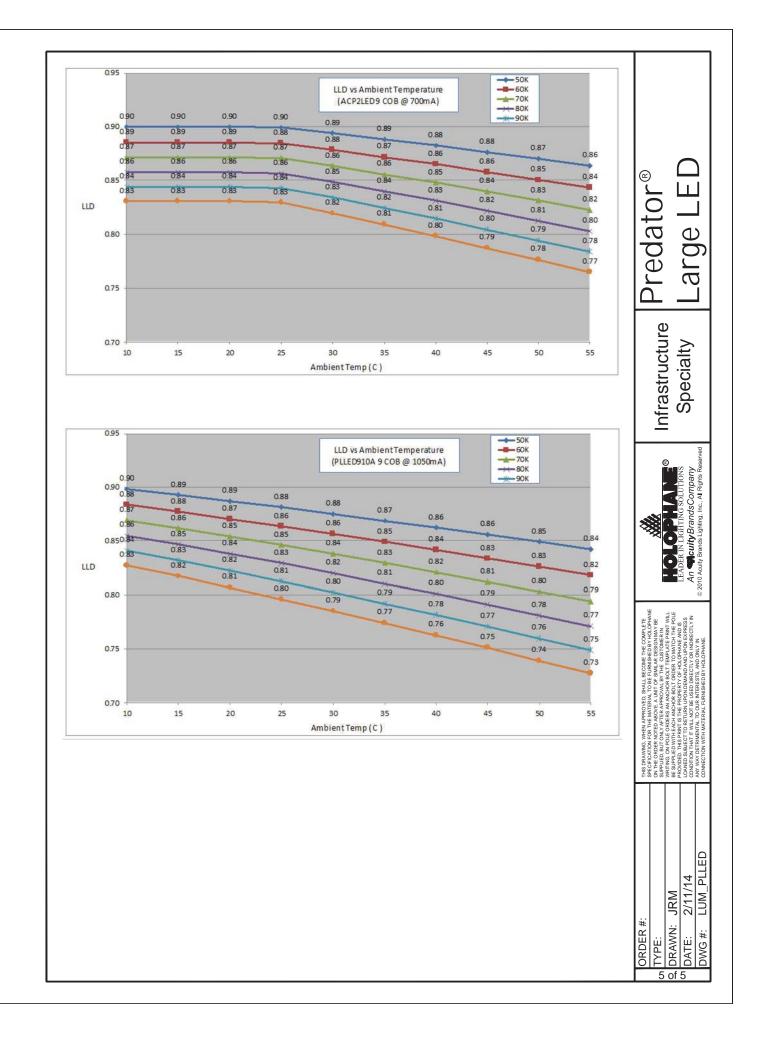
The optical enclosure is sealed and gasketed to an IP66 rating. All luminaire mountings are 3G vibration rated per ANSI C136.

#### Controls

The NEMA three pin locking-style photocontrol receptacle and an optional five pin receptacle is available.

Dimming version (available with DE and VE option) uses proprietary Acuity Brands components to enable continuous 0-10V dimming down to 10% output via the ROAM smart controls system. (sold separately)

Photocontrol for solid -state lighting meets ANSI C136.10 criteria


#### Warranty & Standards

Rated for -40C to 40C ambient

UL 1598 A wet location, UL 1598A Marine Outside Type(Salt Water)



PLLED 07 07A	Distribution					ating Amp			Input Watts	Input Watts				
07 07A		4K	120V	208V	240V	277V	347V	480V	(AS)	(AH)	LPW (AS)	LPW (AH)		
		10.000	1.541	0.898	0.799	0.719	0.538	0.400						
	44 45	16,852 16,835							185 185	185 185	91	91		
	45 55	18,161							185	185	91 98	91 98		
	65	18,447							185	185	100	100		Ĺ
	66	18,417							185	185	100	100		Ē
													Predator®	
PLLED	Distribution	Lumens 4K	120V	208V	Input opera	ating Amp 277V	s 347V	480V	Input Watts (AS)	Input Watts (AH)	LPW (AS)	LPW (AH)	ЦЦ	-
08 07A	Diambaton	-11	1.746	1.012	0.896	0.804	0.608	0.448	(7-3)				D ⁱ	
	44	19,129							210	210	91	91		
	45	19,110	]						210	210	91	91		
	55	20,615							210	210	98	98	ŢΨ	
	65	20,940							210	210	100	100		
	66	20,905	J						210	210	100	100		-
		Lumens			Input operation			1	Input Watts	Input Watts				
PLLED 09 07A	Distribution	4K	120V 1.949	208V 1.127	240V 0.993	277V 0.886	347V 0.677	480V 0.497	(AS)	(AH)	LPW (AS)	LPW (AH)		ן ביי
00 UIA	44	21,224	1.343	1.12/	0.993	0.000	0.077	J.49/	233	233	91	91	E	3 3
	44	21,224							233	233	91	91	<u> </u>	<u>ז</u> ל
	55	22,873	1						233	233	98	98		<u>ה ר</u>
	65	23,233							233	233	100	100	1 7	5 9
	66	23,195							233	233	100	100	Infractructure	Coordial+1
		Lumens			Input opera	ating Amp	5		Input Watts	Input Watts			- ¹	= ~
PLLED	Distribution	4K	120V	208V	240V	277V	347V	480V	(AS)	(AH)	LPW (AS)	LPW (AH)		-
07 10A			2.343	1.375	1.207	1.074	0.859	0.680						
	44 45	23,279 23,299							280 280	316 316	83 83	74 74	e e e e e e e e e e e e e e e e e e e	8
	55	25,088							280	316	90	74		ION
	65	25,483							280	316	91	81		
	66	25,441	1						280	316	91	81		
		Lumens			Input opera	ating Amn			Input Watts	Input Watts				
PLLED	Distribution	4K	120V	208V	240V	277V	3 347V	480V	(AS)	(AH)	LPW (AS)	LPW (AH)	<b>~</b>	O
08 10A			2.646	1.547	1.361	1.20	0.968	0.754						
	44	26,355							317	353	83	75		
	45	26,378							317	353	83	75	6	
	55 65	28,403							317	353 353	90 91	80 82		
	66	28,850 28,803							317	353	91	82	ANE	금명
									·				COMPLETE IV HOL OPHANE SN MAY BE MER IN	RINT WI
PLLED	Distribution	Lumens 4K	120V	208V	Input opera 240V	ating Amp 277V	s 347V	480V	Input Watts (AS)	Input Watts (AH)	LPW (AS)	LPW (AH)	E CON DBY HG SIGN N	ATE PI ATCH ANE A
09 10A 4K	Distribution	-11	2.949	1.719	1.515	1.326	1.077	0.828	(A3)	(АП)	LPVV (AS)		ME TH IISHED AR DE CUST	TEMPL TO M.
	44	29,432							354	390	83	75	EECC SIMIL SIMIL	SOLT -
	45	29,456							354	390	83	76	SHALL TO BE UT OF VAL B	SHOR.
	55	31,718							354	390	90	81	VED, S ERIAL ERIAL PPRO	N ANC HOR E PROF
	65 66	32,218 32,164							354 354	390 390	91 91	83 82	APPRO E MAT ABOVI	ERS A H ANC IS THE
	00	32,104	]								51	02	WHEN / FOR TH NOTED	ITH EAC
													ATION RDER 0, BUT (	D. THIS
													THIS DRA' SPECIFICA ON THE O SUPPLIED	RITING E SUPP. ROVIDE
													= 000	202
ARRANT														
	ranty locat			urooo/7	Formo o		itiona a	<b>.</b>						
ww.acuity	brands.co	n/Custon	ierkeso	urces/1	i erms al	na cona	itions.a	spx						
OTE														JRM
	ons subject	to chang	e withou	It notice	e.									JRM
													:#	
ctual perfe	ormance m	ay differ a	as a res	ult of e	nd-user	environ	ment ai	nd appl	ication.				ORDER TYPE:	DRAWN:



### **APPENDIX 9.4-B**

Rationale for Exclusion of Other Certain and Reasonably Foreseeable Projects and Activities in the Light Assessment of Cumulative Change This page is intentionally left blank

### Appendix 9.4-B Rationale for Exclusion of Other Certain and Reasonably Foreseeable Projects and Activities in the Light Assessment of Cumulative Change

The assessment included consideration of the potential for an interaction between potential Project-related changes to light and the changes resulting from other certain and reasonably foreseeable projects and activities on light. **Table 9.4-B1** presents the rationale for exclusion of each certain and reasonably foreseeable project and activity identified in **Section 8.0 Effects Assessment Methods, Table 8-8 Project and Activity Inclusion List**, from the assessment of cumulative change for light. All future projects are expected to meet CIE and IESNA guidelines for limiting light trespass and sky glow.

# Table 9.4-B1Rationale for Exclusion of Other Certain and Reasonably<br/>Foreseeable Projects in the Light Assessment of Cumulative<br/>Change

Other Certain and Reasonably Foreseeable Project /Activity	Rationale for Exclusion
Project	
BURNCO Aggregate Project, Gibsons, B.C.	Located too far away from the Project to be relevant for light assessment.
Centerm Terminal Expansion, Vancouver, B.C.	Located too far away from the Project to be relevant for light assessment.
Fraser Surrey Docks Direct Coal Transfer Facility, Surrey, B.C.	Located too far away from the Project to be relevant for light assessment.
Gateway Pacific Terminal at Cherry Point and associated Burlington Northern Santa Fe Railway Company Rail Facilities Project, Blaine, Washington	There is a lack of relevant publicly available information.
Gateway Program – North Fraser Perimeter Road Project, Coquitlam, B.C.	Located too far away from the Project to be relevant for light assessment.
George Massey Tunnel Replacement Project, Richmond and Delta, B.C.	There is a lack of relevant publicly available information.
Kinder Morgan Pipeline Expansion Project, Strathcona County, Alberta to Burnaby, B.C.	Located too far away from the Project to be relevant for light assessment.
Lehigh Hanson Aggregate Facility, Richmond, B.C.	There is a lack of relevant publicly available information.
Lions Gate Wastewater Treatment Plant Project, District of North Vancouver, B.C.	Located too far away from the Project to be relevant for light assessment.
North Shore Trade Area Project – Western Lower Level Route Extension, West Vancouver, B.C.	Located too far away from the Project to be relevant for light assessment.
Pattullo Bridge Replacement Project, New Westminster and Surrey, B.C.	There is a lack of relevant publicly available information.
Southlands Development, Delta, B.C.	There is a lack of relevant publicly available information.

Other Certain and Reasonably Foreseeable Project /Activity	Rationale for Exclusion
Vancouver Airport Fuel Delivery Project, Richmond, B.C.	There is a lack of relevant publicly available information.
Woodfibre LNG Project, Squamish, B.C.	Located too far away from the Project to be relevant for light assessment.
Activity	
Incremental Road Traffic Associated with RBT2	Mobile sources of light not relevant for light assessment.
Incremental Train Traffic Associated with RBT2	Mobile sources of light not relevant for light assessment.
Incremental Marine Vessel Traffic Associated with RBT2	Mobile sources of light not relevant for light assessment.