Commission d'examen conjoint du projet de stockage dans des couches géologiques profondes

PMD 14-P1.46A

File / dossier : 8.01.07 Date: 2014-05-23 Edocs: 4495476

Présentation de
Pete Roche
In the Matter of
Ontario Power Generation Inc.
Installation de stockage de déchets radioactifs à faible et moyenne activité dans des couches géologiques profondes

Joint Review Panel

Commission d'examen conjoint

September 2014

septembre 2014

Expansion Plans for the DGR Project and Implications for the Waste Inventory

Pete Roche Edinburgh Energy and Environment Consultancy

Presentation to the Joint Review Panel – September 2014

Prepared for Northwatch and ZeroWaste4ZeroBurning

Review of Ontario Power Generation's Proposed Deep Geologic Repository for Low and Intermediate Level Nuclear Wastes

From EIS12-512 we learn:

 Of a possible increase in the planned waste volume capacity of 200,000 m3 to a capacity of 400,000 m3

This may arise from (a) new reactors (b) new refurbishments (c) decommissioning

Don't know volumes

Don't know characteristics

Yet according to OPG:

"...waste types ... are fundamentally the same as those arising from operations and refurbishment activities."

But significant differences:

	Decommissioning Waste	Operational Waste
Radionuclide content	Higher	Lower
Total amounts of Ni-59, Ni-63,	Higher	Lower
Fe-55, Co-60, (activation		
products in metal) Cl-36 and		
Ca-41 (activation in concrete)		
Amounts of concrete & metal	Larger	Smaller
Total amounts of H3 and C14	Expected to be less	
(most important radionuclides		
for operational safety for		
inhalation exposure)		-
Co-60 inventory (With Cs-137	Expected to be higher.	Lower
most important radionuclides		
for operational safety for		
external irradiation)		a: a
Most important radionuclides	Similar, so adding waste arising from	Similar
accuracion for long term sofety	soult in a calculated part aloruse peak	
are C 14 and Nb 94	dose that is approximately double the	
are C-14 and N0-94	dose calculated for waste arising from	
	operational and refurbishment only	
Other radionuclides notably	Larger inventory but the increase has	
Ni-59 and Ni-63	limited effect since these are sufficiently	
	small dose contributors for operations	
	and refurbishment L&ILW that their	
	dose contribution remains relatively	
	small.	
Gas Generation Potential	Expected to be larger due to higher metal	
	content.	

For operational and refurbishment waste

- The EIS gives: Number of packages
- Volumes of different types of waste
- Estimated radionuclide inventory
- Little of this detailed info is available for decommissioning waste, but expected to accept back-of-the-envelope calculation that adding decommissioning waste will:

"...double the dose calculated for waste arising from operational and refurbishment only..."

Gas Generation

- A larger proportion of metals means more gas generated by anaerobic corrosion of metals,
- Uncertainties about radionuclide properties means estimated contamination levels and risk estimates could be subject to very large errors.
- Throws development of safety case into disarray.

Conclusions

- Uncertainties regarding radionuclides could mean estimated contamination levels calculated for a deep geological disposal facility are in error by a factor of 10,000 to 1,000,000
- Additional wastes from decommissioning or even new reactors have not been properly characterised
- Additional wastes from decommissioning or even new reactors have not been properly subjected to a full Environmental Impact Statement process

Contact Information

Pete Roche

Edinburgh Energy and Environment Consultancy www.eee-consultancy.co.uk